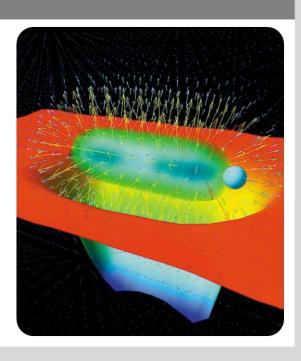


Kerne und Teilchen

Physik VI


Vorlesung # 13 27.5.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Elementarteilchen-Phänomenologie

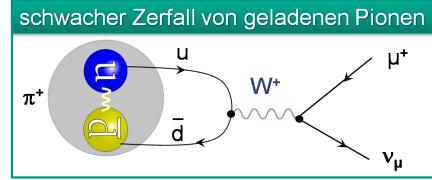
- Gluonen: Selbstwechselwirkung
- Gluonenbälle (Glueballs)
- Confinement & asymptotische Freiheit
- starke Kopplungskonstante α_{s}
- intermediäre Vektorbosonen W, Z neutrale Ströme

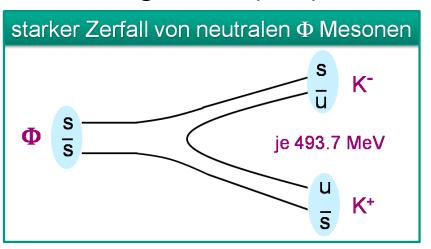
Mesonen – Klassifikation & Zerfälle

Spin-Singulett Mesonen (⇩⇧)

pseudoskalares Mesonen-Nonett: ($\ell = 0$, S = 0)

- **Pionen:** Isospin-Triplett mit π^+ , π^- , π^0 (M = 135-140 MeV)
- Kaonen: Mesonen mit 'offener' Strangeness (s,s): geladene Kaonen K⁺, K⁻, neutrale Kaonen K⁰, K⁰ (M~500 MeV)
- Spin-Triplett Mesonen (企企)


vektorielles Mesonen-Nonett: ($\ell = 0$, S = 1)


- ρ -Mesonen: Isospin-Triplett mit ρ +, ρ -, ρ 0 (M = 770 MeV)
- Eta-Mesonen: neutrale Mesonen mit 'verdeckter' Strangeness (s+s):
- Meson-Zerfälle: starke/elmagn./schwache Ww.

 $\tau = 10^{-8} \dots 10^{-24} \, \text{s}$

Zweig-Regel:

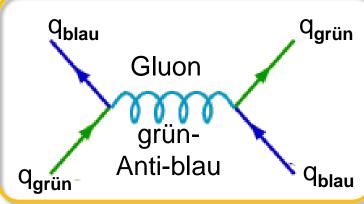
Quark-Linien ununterbrochen

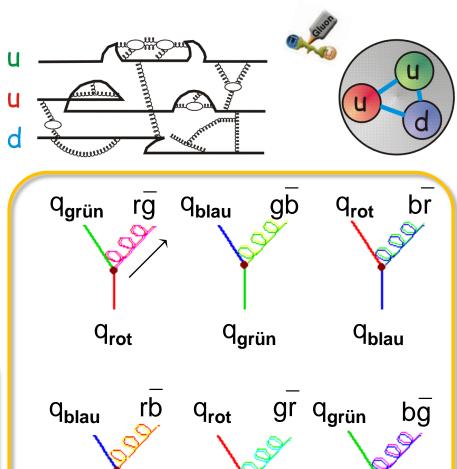
Bahn-

drehimpuls

Spin

Spin


Gluonen – Grundlagen


- Hadronen (Baryonen & Mesonen) sind QCD 'farbneutrale' Objekte in einem Farb-Singulett-Zustand
- Farbfreiheitsgrad wichtig für eine vollständig antisymmetrische Wellenfunktion

$$\Delta^{++} = |u\,u\,u\rangle \cdot |\uparrow\uparrow\uparrow\rangle \cdot |\ell=0\rangle \cdot \left|\frac{1}{\sqrt{6}} \varepsilon^{ijk} q_i q_j q_k\right\rangle$$
Flavour Spin Orbital- ℓ Farbfreiheitsgrade

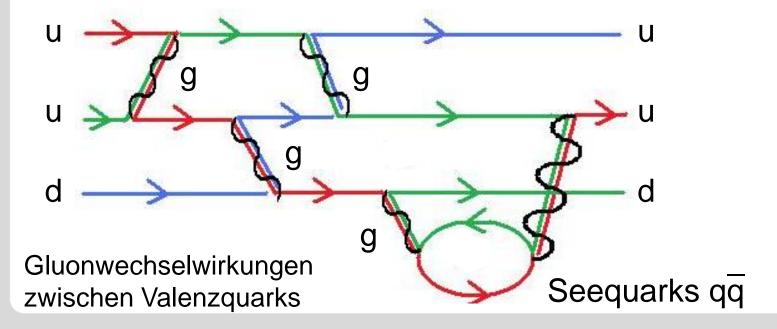
in der QCD existieren 8 Gluonzustände ('Farboktett'):

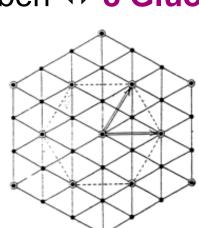
- linear unabhängig
- masselosesSpin 1 Boson
- Gluon: Farbe +Anti-Farbe

q_{grün}

q_{rot}

q_{blau}


Farbe und SU(3)_c Symmetriegruppe

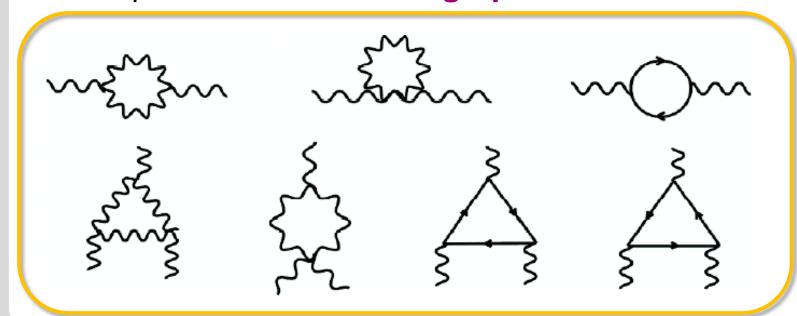


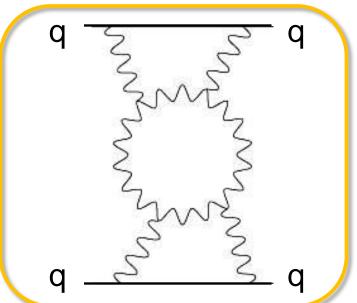
- Regeln der Quantenchromodynamik:
 - gleiche Farbladungen stoßen sich ab
 - Farbe & Antifarbe ziehen sich an ♦ Meson als qq – Bindungszustand),
 - antisymmetrischen Zustände ziehen sich an

- die Farbladungen spannen einen 3-dimensionalen Farbladungsraum auf
- die SU(3) Eichgruppe wird durch 8 Parameter beschrieben ⇔ 8 Gluonen

QCD: Spezielle Unitäre Gruppe SU(3) [Lie-Gruppe]

Gluonen: Selbstwechselwirkung

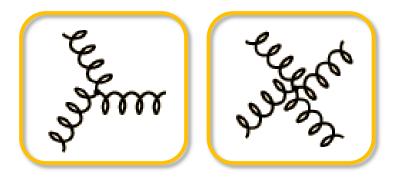


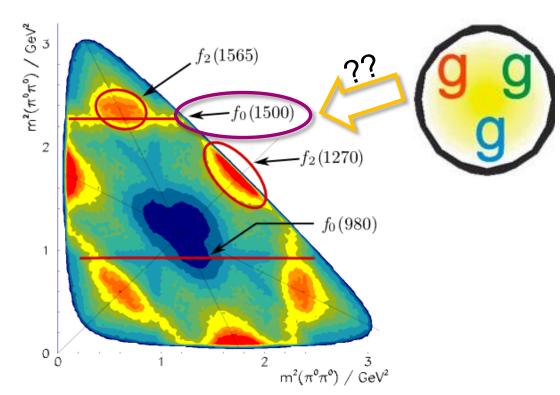

■ QED (Elektrodynamik):

Photonen (γ) als Eichbosonen tragen selbst keine elektrische Ladung & unterliegen als neutrale Teilchen keiner Selbstwechselwirkung

QCD (Chromodynamik):

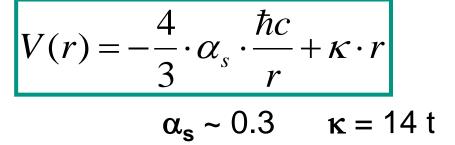
- Gluonen (g) tragen selbst QCD-Farbladungen und können daher nicht nur mit Quarks sondern auch untereinander in Wechselwirkung treten
- die Selbstwechselwirkung der Gluonen führt zum Auftreten von komplexeren QCD-Vertexgraphen




Gluonenbälle als exotische QCD-Zustände

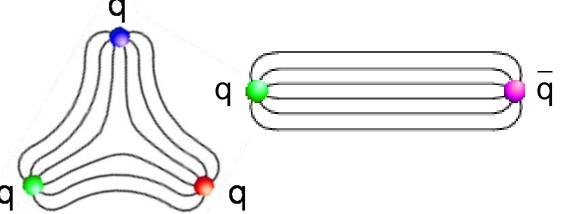
- die Gluonselbstwechselwirkung kann zu gebundenen Zuständen führen, die keine Quarks enthalten: Glueballs
 - die hypothetischen Gluonenbälle bestehen nur aus den Strahlungsquanten der starken Wechselwirkung
 - in der QCD werden Gluonenbälle bei Massen M = 1500 – 1700 MeV erwartet (stark modellabhängig)
- 3-Körper-Zerfälle von schweren Mesonen: die Resonanz f₀(1500) wird als ein möglicher Glueball-Kandidat angesehen (Verifikation?) Darstellung des f₀ im Dalitzplot (Auftragung invarianter 2-Pionmassen)

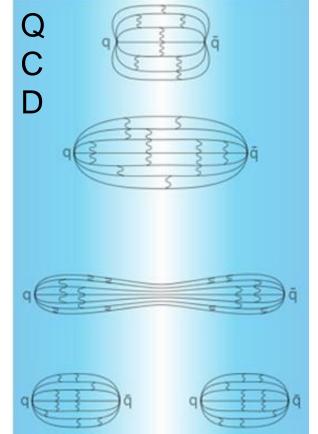
Gluon-Selbstwechselwirkung

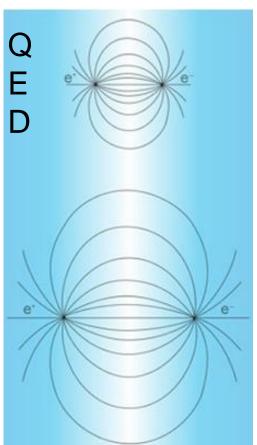


27.5.2010

Gluonen: Fluss-Schläuche & Confinement

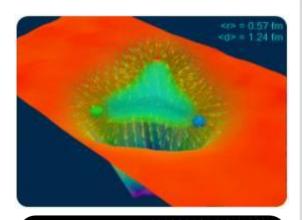


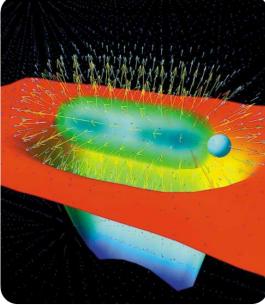

- die Gluon-Gluon-Selbstwechselwirkung erzeugt bei einer räumlichen Trennung von Quarks zylindrische Farb-Flussschläuche mit einer konstanten Feldstärke über Länge der Fluss-Röhre
- Quark-Antiquark-Potenzialansatz mit: 1/r 'Coulombansatz' 2 linearer Term



E_{pot} nimmt für große r stark zu!

♦ Quark-Confinement in ~ 1 fm


Asymptotische Freiheit in der QCD



 bei extrem kurzen Abständen sollten sich die Quarks entsprechend der QCD (Wilzeck, Gross, Politzer) wie nahezu freie Teilchen verhalten

'asymptotische Freiheit'

 dieser Effekt der QCD ermöglicht die Anwendung des Quark-Parton Modells zur Interpretation der tiefinelastischen eN-Streuung (vgl. Kap. 3.2)

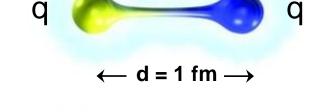
Nobelpreis 2004

"for the discovery of asymptotic freedom in the theory of the strong interaction"

Frank Wilczek David J. Gross H. David Politzer

10 27.5.2010 G. Drexlin – VL13 KIT-IEKP

Confinement & Jetstrukturen



- bei einem harten Stoßprozess wird das qq-Paar räumlich voneinander getrennt & die Energie im farbelektrischen Flussschlauch wird so groß, dass ein weiteres Quark-Antiquark Paar erzeugt wird, man erhält damit 2 Mesonen
- Meson

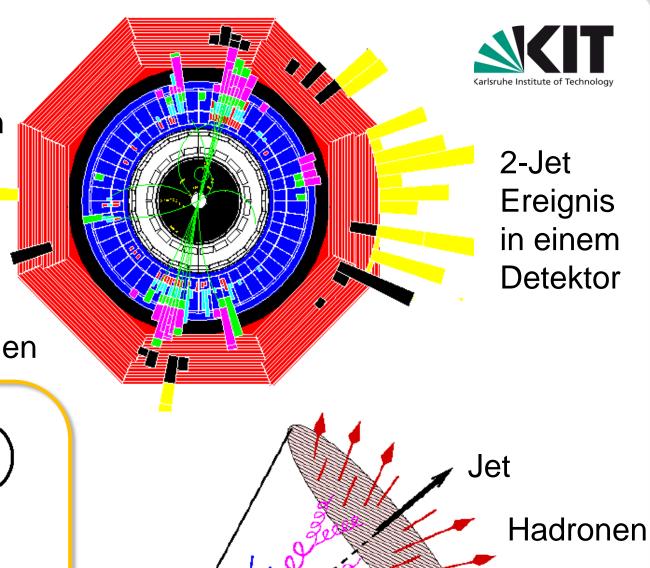
Energie-Abschätzung bei d = 1 fm (linearer Term)

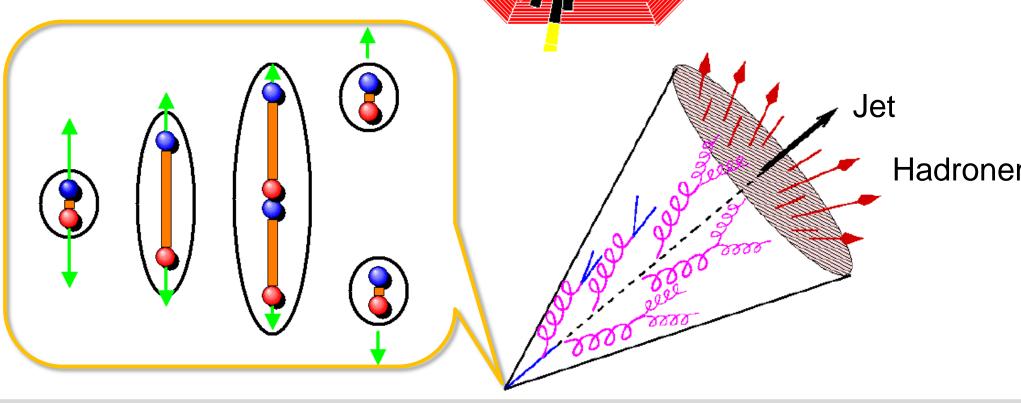
$$V \cong 9.81 \times 14 \cdot 10^{3} \times 10^{-15} J$$
$$= 1.4 \cdot 10^{-10} J \cong 0.9 \ GeV$$

$$\kappa = 14 t$$

Energie ist ausreichend für neues qq-Paar

Meson Meson


- dieser Prozess kann sich mehrmals wiederholen: Bildung von zahlreichen Quark-Antiquark Paaren Ausbildung eines hadronischen Jets

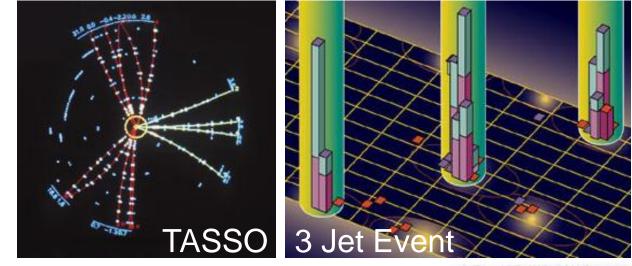

11

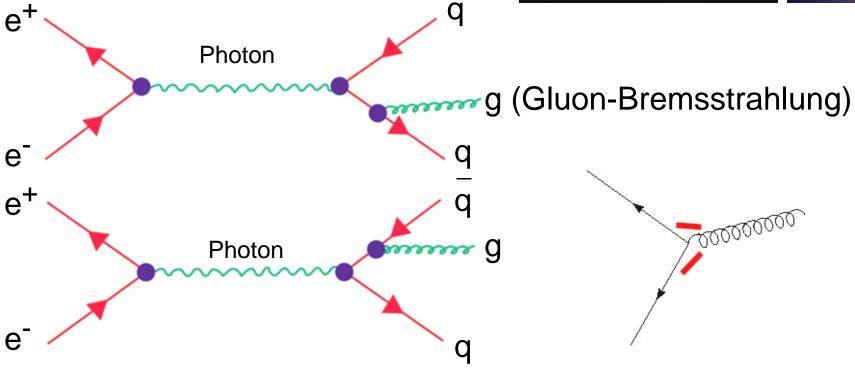
Jetstrukturen

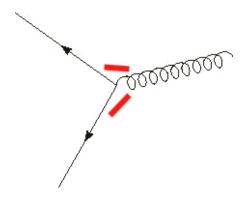
 Ausbildung eines beobachtbaren hadronischen Jets:
 Pionen, schwere Mesonen, Nukleonen, Hyperonen,...

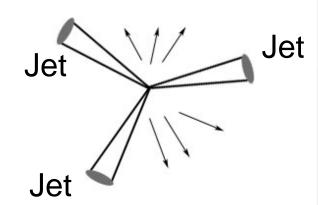
aus den Jet-Parametern (E_T, p_T)
 Rückschluss auf die Primärteilchen

G. Drexlin – VL12 KIT-IEKP

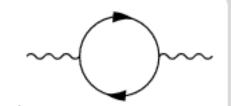

27.5.2010


Gluonen: Nachweis in 3 Jet Ereignissen




Gluonnachweis am DESY:

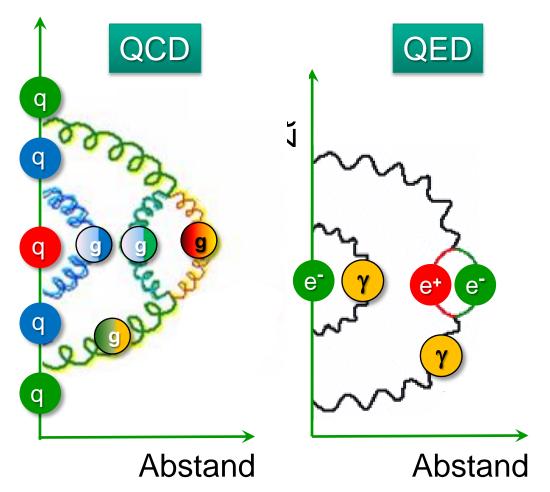
TASSO Detektor am PETRA e⁺e⁻ Speicherring Quark – Antiquark Jets und Abstrahlung eines harten Gluons ⇒ 3 Jet Struktur



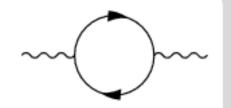
Vakuumpolarisation in QED und QCD

- die Stärke einer Wechselwirkung (Kopplungskonstanten α, α_s) variiert mit dem Impulsübertrag Q² zwischen den beteiligten Teilchen Grund: der Vakuumzustand einer Quantenfeldtheorie (QED, QCD) ist ein sehr komplexer Zustand
- Vakuumfluktuationen erzeugen ständig virtuelle Teilchen-Antiteilchenpaare

(polarisierbares Medium)


Renormierung der nackten Ladung

QED:


Photonen erzeugen e⁺/e⁻ Paare

QCD:

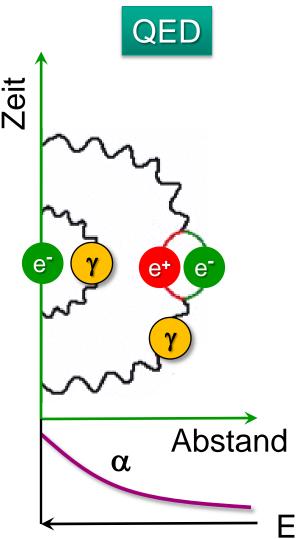
Gluonen erzeugen Paare von Quarks/Antiquarks & Gluonen

Vakuumpolarisation in der QED

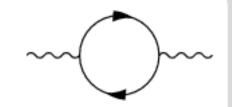
Quantenelektrodynamik:

"nacktes" Elektron ist von Elektron-Positron-Paaren umgeben, dies führt zu einer **Abschirmung der Ladung**

- mit wachsendem Abstand d wird effektive
 Ladung e_{eff} des Elektrons kleiner
- bei kürzeren Abständen (höhere Energie): größere "nackte" Ladung des Elektrons wird sichtbar


Verlauf der Feinstrukturkonstanten α:

die Stärke $e^2 = \alpha$ (Feinstrukturkonstante) der elektromagnet. Wechselwirkung steigt mit der Energie an


$$\alpha(Q) = \frac{\alpha(\mu)}{1 - \frac{\alpha(\mu)}{\pi} \cdot \ln\left(\frac{Q^2}{\mu^2}\right)}$$

μ: Impulsübertrag

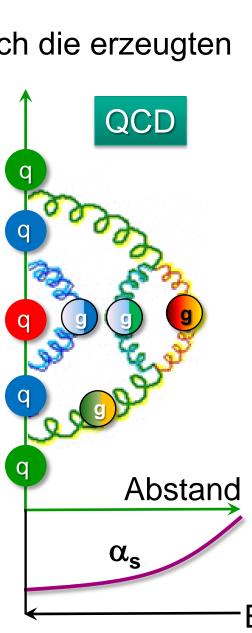
 α = 1/137 bei μ = 1 MeV \Rightarrow α = 1/129 bei μ = 90 GeV

Vakuumpolarisation in der QCD

Quantenchromodynamik

- Abschirmung der Farbladung des "nackten" Quarks durch die erzeugten virtuellen Quark/Antiquark Paare (wie bei der QED),

die qq-Paare tragen aber keine Netto-Farbladung


- Anti-Abschirmung der Ladung durch die vom Quark emittierten virtuellen Gluonen, da diese Farbladungen mitnehmen, dies führt zu einer Verschmierung der QCD Ladung auf ein größeres Volumen

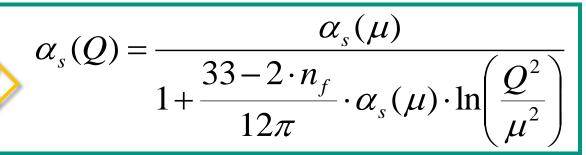
- bei kleinen Abständen dominiert der Effekt der Gluonen!

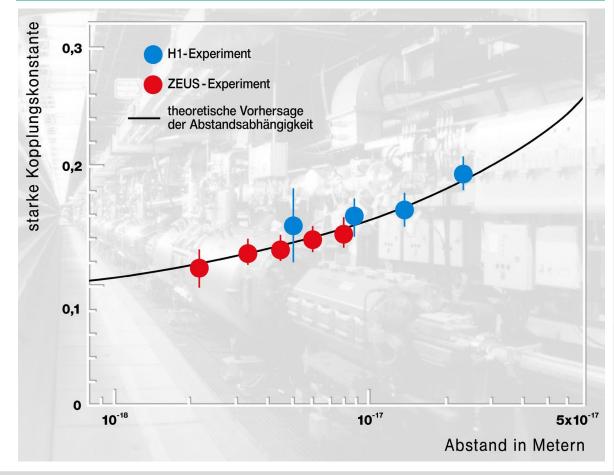
Verlauf der Feinstrukturkonstanten α:

die Kopplungs konstante α_s der QCD wird mit steigender Energie (d.h. bei kleineren Abständen d) durch die schwächere gluonische Anti-Abschirmung kleiner

 α_s wird mit wachsendem Impulsübertrag kleiner

starke Kopplungskonstante & Abstand



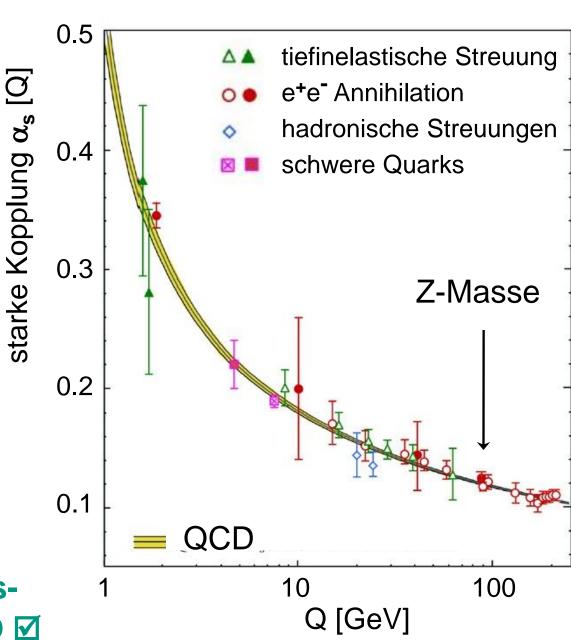

- die starke Kopplungs konstante αs
 αs
 hängt ab vom den Parametern:
 - Impulstransfer µ
 - Zahl N_f der Quark-Flavourarten
- zwei sehr eng benachbarte
 Quarks fühlen eine schwächere
 Kraft saymptotische Freiheit

$$\alpha_s(Q^2) \overset{Q^2 \to \infty}{\to} 0$$

 zwei weit entfernte Quarks fühlen eine deutlich stärkere Kraft
 Confinement in Hadronen

- für kleine Werte von Q gilt $\alpha_s \sim 100 \cdot \alpha$

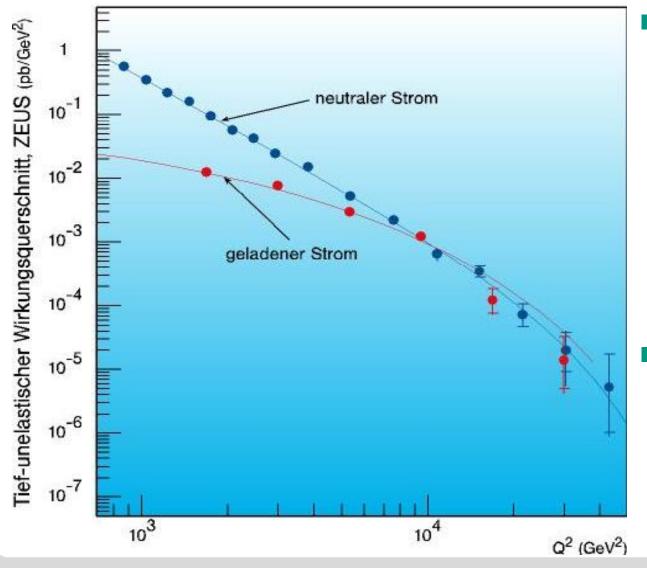
starke Kopplungskonstante $\alpha_s(Q)$


- Zusammenfassung der bei verschiedenem Q-Werten gemessenen Kopplungs-Parameter & Vergleich mit QCD
 - Energie-Bezugspunkt ist die Ruhemasse des Z-Bosons M_z:

$$\alpha_{s}(M_{z}) = 0.1189 \pm 0.0010$$

da α_s implizit auch von der Zahl der Farbfreiheitsgrade N_c abhängig ist, kann aus den experimentellen Daten nach einer Anpassung der Wert von N_c bestimmt werden:

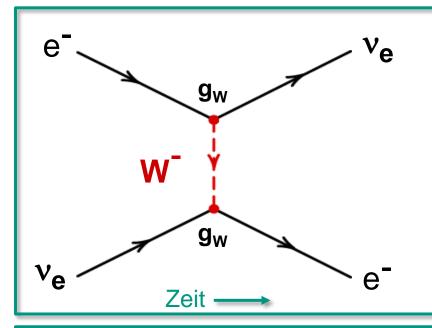
 $N_f = 3.03 \pm 0.12$


3 Farbfreiheitsgrade der QCD ☑

Elektroschwache Wechselwirkung

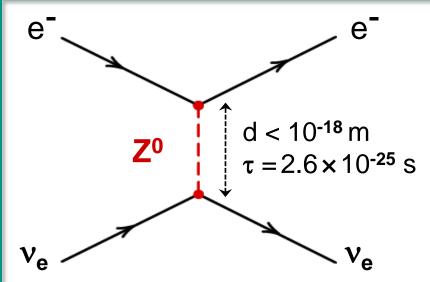
 eine zentrale Säule des Standardmodells (SM) ist die Vereinheitlichung von elektromagnet. & schwacher Ww. zur elektroschwachen Wechselwirkung

20


- eine wichtige Vorhersage des Glashow-Weinberg-Salam Modells war die Existenz von schwachen neutralen Strömen (weak neutral currents, NC) NCs werden durch den Austausch von massiven Z⁰-Bosonen vermittelt
- bei hohen Energien (HERA)
 lässt sich experimentell direkt die Vereinheitlichung der Stärke der beiden Wechselwirkungen beobachten

27.5.2010 G. Drexlin – VL13 KIT-IEKP

Schwache Wechselwirkung - Vektorbosonen


Intermediäre Vektorbosonen JP = 1

Geladene Ströme

'charged current' (CC) Reaktionen

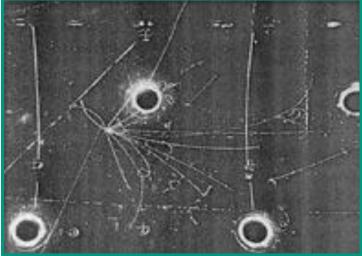
- Ladungstransfer durch Austausch von geladenen W+ W- Bosonen (M = 80.42 GeV)
- vermittelt Übergänge in einem schwachen
 Isospindublett (u ⇔ d′) (e⁻ ⇔ v_e)

Neutrale Ströme

'neutral current' (NC) Reaktionen

- kein Ladungstransfer, Austausch von neutralen Z⁰ Bosonen (M = 91.19 GeV)
- Flavour-Universaliät des NC: identische Kopplung $\nu_{\rm e},\,\nu_{\rm u},\,\nu_{\rm \tau}$ an Z⁰

geladene & neutrale schwache Ströme



1973: erster Nachweis von neutralen Ströme am CERN mit Gargamelle

Gargamelle Blasenkammer

(Target: 20 t Freon, $\ell = 4.8 \text{ m}$, $\emptyset = 1.9 \text{ m}$)

geladener Strom: W+, W-

Untersuchung tiefinelastischer Reaktionen an Kernen
v_µ + N → µ⁻ + Hadronen
CC Ereignis: Identifikation durch auslaufendes Myon µ

22

27.5.2010

neutraler Strom: Z⁰

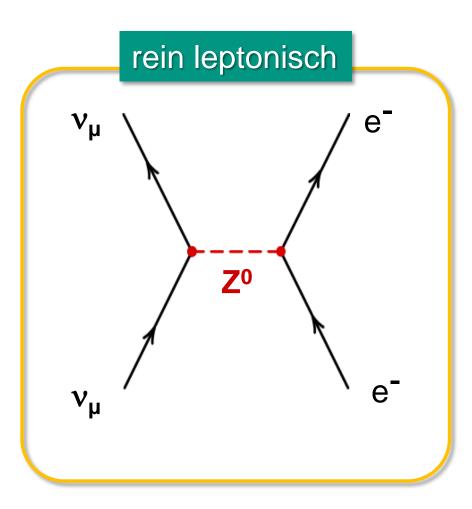
Untersuchung von Streuungen Von Neutrinos an Elektronen

$$\nu_{\mu}$$
 + e⁻ $\rightarrow \nu_{\mu}$ e⁻

NC Ereignis: Identifikation durch auslaufendes Elektron e

G. Drexlin – VL13 KIT-IEKP

neutrale schwache Ströme



■ parallel zur Suche nach neutralen Strömen bei tiefinelastischen Neutrino-Reaktionen an Kernen wurden NC Ereignisse $\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$ beobachtet

Analysegruppe in Aachen: visueller Scan von Teilen der ~700.000 aufgenommenen Gargamelle Bilder

