

Kerne und Teilchen

Physik VI

Vorlesung # 14 1.6.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Elementarteilchen-Phänomenologie

- Vektorbosonen W[±], Z⁰: Eigenschaften

Beschleuniger und Detektoren

- Wechselwirkung von Strahlung & Materie
- Bethe-Bloch: Ionisationsverluste
- radiative Prozesse leichter Teilchen
- Landau-Vavilov Verteilung

www.kit.edu

Selbstwechselwirkung von Gluonen

- Gluonen als farb-geladene Eichbosonen der SU(3)_{Color} Symmetrie unterliegen einer Selbstwechselwirkung:
 - Existenz der hypothetischen Gluonenbälle?
 - - Solution Quark-Confinement in Baryonen & Mesonen
 - Asymptotische Freiheit bei sehr kleinen qq-Abständen: Quarks als quasi-freie Teilchen (Partonen) bei der eN Streuung
 - Hadronisation eines getrennten qq-Paares: Ausbildung einer Jet-Struktur im Detektor

QCD – Vakuumpolarisation, Vektorbosonen

QCD-Vakuumpolarisation

die "nackte" Quark-Farbladung wird modifiziert:

- **Abschirmung** durch virtuellen Quark-Antiquark Paare (Analogie zur QED-Vakuumpolarisation)
- Anti-Abschirmung durch Gluonen-Emission
 ৬ Verschmierung der Farbladung auf Volumen
 Iaufende starke Kopplungs 'konstante' α_s :
- α_s wird kleiner bei höherer Energie/größerem Q²/ kleineren Abständen (^t/₂) asymptotische Freiheit)
- α_s wird größer bei fallender Energie / kleinerem Q² / größeren Abständen (⁴) Confinement)

Elektroschwache Wechselwirkung WSG-Modell: Vereinheitlichung von schwacher & elektromagnet. Wechselwirkung mit Vorhersage: schwacher neutraler Strom (Z⁰ mit M = 91.2 GeV)

Vektorbosonen am CERN

 die intermediären Vektorbosonen W⁺, W⁻ & Z⁰ des GSW-Modells wurden in Proton-Antiproton Kollisionen bei Energien E = 400 GeV nachgewiesen,
 Erzeugung durch:

- der Nachweis der reellen Bosonen erfolgt über Zerfallsprozesse in hochenergetische Leptonen:
 $W^+ \rightarrow e^+ + v_e$ $W^+ \rightarrow \mu^+ + v_\mu$
 - 1 HE-Lepton & fehlender Transversalimpuls (v)
 - $\textcircled{T} Z^{0} \rightarrow e^{+} + e^{-} \qquad Z^{0} \rightarrow \mu^{+} + \mu^{-}$

Nachweis von W[±] & Z⁰ am CERN

- 1983: der experimentelle Nachweis der intermediären Vektorbosonen erfolgte am CERN SPS Beschleuniger in den Experimenten UA1 und UA2
- UA1, April 1983: erster beobachteter Z⁰ Zerfall in ein hochenergetisches Leptonenpaar (e+,e⁻) jedes Lepton hat E ~ 45 GeV

Nobel

Carlo Rubbia, S. van der Meer

Zerfälle von W[±] & Z⁰

1989-2000: nach Inbetriebnahme des LEP (Large Electron-Positron Collider) werden am CERN die W[±] und Z⁰ Zerfallsmoden detailliert untersucht:

W[±] Zerfallsmoden

$$\begin{split} W^{\pm} &\to e^{\pm} + {}^{(}\bar{\nu}_{e}^{\,)} : & (10.9 \pm 0.4) \,\% \\ & \mu^{\pm} + {}^{(}\bar{\nu}_{\mu}^{\,)} : & (10.2 \pm 0.5) \,\% \\ & \tau^{\pm} + {}^{(}\bar{\nu}_{\tau}^{\,)} : & (11.3 \pm 0.8) \,\% \\ & \text{Hadronen} : & \sim 68\% \end{split}$$

je 1/9 Leptonpaar, 6/9 = 2/3 in Hadronen das W-Boson koppelt an alle (linkshändigen) Fermionen mit gleicher Stärke an, z.B. für W⁻:

1:1:1:3:3

- 3 Lepton-Dubletts (v_e, e^-), (v_μ, μ^-), ...
- aber nur 2 Quark-Dubletts, da das top-Quark zu schwer: (u,d), (c,s)

Z⁰ Zerfallsmoden

6 leptonische Kanäle: (v_e, \overline{v}_e) , $(v_\mu, \overline{v}_\mu)$, $(v_\tau, \overline{v}_\tau)$, (e^+, e^-) , (μ^+, μ^-) , (τ^+, τ^-) 5 hadronische Kanäle: (u, \overline{u}) , (d, \overline{d}) , (s, \overline{s}) , (c, \overline{c}) , (b, \overline{b}) (zusammen ~70%) Z⁰ koppelt auch an elektr. Ladung, daher 3.35% pro (ℓ^+, ℓ^-) & 6.7% pro (v, \overline{v})

6. Beschleuniger und Detektoren

6.1 Wechselwirkung von Strahlung mit Materie

6.2 Beschleunigertypen 6.3 Moderne Teilchendetektoren

ATLAS am LHC

toroidale Magnete Solenoid Magnet SCT Tracker Pixeldetektor TRT Tracker

Teilcheneigenschaften

"WE'VE PROVEN, WITHOUT A DOUBT, THAT THIS PARTICLE HAS A NECLATIVE CHARGE. UNFORTUNATELY AN ACCELERATOR IN SWITZERLANDIES PROVEN, WITHOUT A DOUBT, THAT ITHE A POSITIVE CHARGE."

6.1 Wechselwirkung von Strahlung & Materie

 die Wechselwirkung von Strahlung (geladene & ungeladene Teilchen) mit Materie ist wichtig für das Verständnis & die Optimierung von modernen
 Detektorsystemen & Teilchen-Beschleunigern
 Å detaillierte Modellierung der Prozesse erforderlich

Wechselwirkung von Strahlung & Materie

verschiedene Wechselwirkungseffekte dominieren je nach Teilchenart, Energiebereich & Nachweismedium

Teilchenart

geladene Teilchen (z = Ladung des Projektils)

 α , e⁺, μ^- , ⁹²⁺U-Ion, Ω^{--} , p, π^- , ... (elektromagnet. Wechselwirkung dominant) Beispiele: Ionisation, atomare Anregung, Cherenkov-Strahlung, ...

- leichte Teilchen: e⁻, e⁺, ...
- schwere Teilchen: μ^{\pm} , π^{\pm} , ρ^{\pm} , p, (c, b-Quarks), Schwerionen (⁹²⁺U), ... ungeladene Teilchen (z = 0)
- γ , n, ν , π^0 , ρ^0 , neutrale Atome, ...

Beispiele: Comptoneffekt, Photoeffekt, Streuung an Elektronen/Kernen

- nur schwache Wechselwirkung: Neutrinos
- starke/elektromagnetische Wechselwirkung: neutrale Pionen, ρ^0
- nur elektromagnetische Wechselwirkung: γ

Wechselwirkung von Strahlung & Materie

verschiedene Wechselwirkungseffekte dominieren je nach Teilchenart, Energiebereich & Nachweismedium

Energiebereich

- eV: thermische Neutronen, Licht, Sekundär-Elektronen aus Ionisation
- keV: Elektronen aus dem ß-Zerfall, Röngtenstrahlung
- MeV: Alpha-Teilchen, γ-Strahlung von Kernen, Zyklotrone
- **GeV**: Teilchen aus Synchrotronen
- **TeV**: Teilchen an Hochenergiebeschleunigern LHC, Tevatron, TeV- γ 's
- **>TeV**: Teilchen aus kosm. Beschleunigern: µ-Quasare, SMBH, SNR

Nachweismedium

Eigenschaften des Mediums:

- Kernladung, Dichte, Temperatur (Phase: kondensiert, gasförmig)
- Magnetfeld, elektrisches Potenzial, supraleitend, normal/halbleitend

geladene & neutrale Teilchen

geladene Teilchen ß starke lonisation Ionisation + **Kernreaktion Bremsstrahlung** Prozesse Ionisation: dominanter Prozess Absorption: selten (nur bei Kernreaktion) Streuung: Molieretheorie (kleines $d\theta$) Kaskade: meist nur bei Elektronen

definierte Reichweite

Paarerzeugung

exponentielle Abschwächung keine definierte Reichweite

Kaskade:

Wechselwirkung von geladenen Teilchen

Ionisationsprozesse

- Prozess: inelastische Teilchenstöße mit den Hüllenelektronen
- Resultat: Ionisation & Anregung der Atomhülle (Ionisationspotenzial)
- Teilchenart: dominiert bei allen schweren Teilchen (Myonen, Protonen, …)
 ⇒ spezifischer Energieverlust dE/dx eines Teilchens
- Nachweis: Drift der Ladungsträger (Elektronen & Ionen) zu Elektroden, Drähten, Erzeugung von Gasbläschen, ...
- Physik: Spurrekonstruktion, Reichweite, Ereignistopologie

Wechselwirkung von geladenen Teilchen

Strahlungsverluste

- physikalischer Prozess: Wechselwirkung mit elektromagnet. Feldern, Medium
- Resultat: Emission von elektromagnetischer Strahlung (µeV GeV)
 - ⇒ Brems-, Synchrotron-, Cherenkov- & Übergangs- Strahlung
- Teilchenart: dominiert bei leichten Teilchen (e+ & e⁻ bei hohen Energien)
- Nachweis: abhängig von λ : Radio-, optischer, Röntgen-, Gamma-Bereich
- Physik: Energiespektrum der e+/e⁻, Magnetfelder

Wechselwirkung von geladenen Teilchen

Ionisationsverluste

- geladene Teilchen ionisieren ein Nachweismedium durch **inelastische Stöße** mit den Hüllenelektronen (vorwiegend Einfachionisation, z.B. Ar+) hoher Streuquerschnitt: $\sigma_{inelast.} \sim 10^{-17} - 10^{-16} \text{ cm}^2$ > zahlreiche Stöße
- maximaler Energieübertrag T_{max} an ruhendes Elektron mit m_e durch ein einlaufendes Teilchen mit Ruhemasse m und Geschwindigkeit ß:

$$T_{\max} = \frac{2m_e \cdot \beta^2 \cdot \gamma^2 \cdot m^2}{m^2 + m_e^2 + 2\gamma \cdot m \cdot m_e}$$

 $T_{\text{max}} = 2m_e \cdot \beta^2 \cdot \gamma^2$ für alle schweren Primärteilchen

in hinreichend dicken Absorbern wird ein Großteil der Teilchen-Primärenergie in ein Ionisationssignal umgewandelt

Ionisationsverluste: Bethe-Bloch

Bethe-Bloch Gleichung

mittlerer Energieverlust dE/dx von geladenen (q = z) Teilchen mit $\beta = v/c$

Targetparameter: Kernladung Z, Kernmasse A, effektives Ionisations-Potenzial /

Teilchenparameter: Geschwindigkeit ß, Ladung zKonstanten:klass. Elektronenradius r

Elektronmassem_e, Avogadrozahl N₀

Hans Bethe Felix Bloch

Ionisationsverluste: Bethe-Bloch

 Anwendungsbereich von Bethe-Bloch: Teilchengeschwindigkeit ß > Geschwindigkeit der Hüllenelektronen der Targetatome (v ~ Z · α)

$$-\frac{dE}{dx} = 4\pi \cdot r_e^2 \cdot N_0 \cdot m_e c^2 \cdot \frac{Z}{A} \cdot \frac{1}{\beta^2} \cdot z^2 \cdot \left[\ln\left(\frac{2m_e c^2 \beta^2}{I \cdot (1-\beta^2)}\right) - \beta^2 - \frac{\delta}{2}\right]$$

bei kleinem ß ist der Term 1/ß² in der Bethe-Bloch Gleichung dominant

dE/dx hat ein Minimum bei β·γ~3-4 minimal ionisierende Teilchen

> bei hohen Impulsen erreicht dE/dx ein Plateau (Sättigung)

> > Teilchenimpuls p

-dE/dx [MeV cm⁻¹]

Ionisationsverluste: Bethe-Bloch Kurve

der Energieverlust eines Teilchens ist unabhängig von seiner Masse!

dE/dx nur abhängig von der Teilchengeschwindigkeit ß, typischerweise wird dE/dx aber als Funktion des Impulses p dargestellt, wobei gilt: $\mathbf{p} = \mathbf{\beta} \cdot \boldsymbol{\gamma} \cdot \mathbf{M} \cdot \mathbf{c}$

im Bereich minimaler Ionisation gilt für
 m.i.p. = minimum ionizing particles

 $dE/dX \sim 2 \text{ MeV g}^{-1} \text{ cm}^2$

d.h. bei einer Targetdichte $\rho = 1 \text{ g/cm}^3$

dE/dx ~ 2 MeV/cm

wichtiges Beispiel: kosmische Myonen

Bremsvermögen & Abschirmung

Massenbelegung X

bei der Diskussion von Energieverlustprozessen wird statt der Schichtdicke x des Materials [cm] oft auch die **Massenbelegung X = \rho \cdot x** in **[g/cm²]** mit der stoff-spezifischen Dichte ρ in [g/cm³] benutzt

Bremsvermögen dE/dX

mit der differenziellen Relation $dX = \rho \cdot dx$ ergibt sich für das **Bremsvermögen dE/dX** in [MeV g⁻¹ cm²]:

Bremsvermögen dE/dX in [MeV g⁻¹ cm²]

Energieverlust dE/dx in [MeV cm⁻¹]

Bremsvermögen dE/dX ist für alle Medien (außer H) nahezu identisch, da in BB-GI. der Term Z/A ~ const.

der lonisationsverlust dE/dx von Teilchen kann auch zur Abschirmung benutzt werden (Bsp: v-Strahlen)

Teilchenidentifikation

- der Energieverlust dE/dx ist ein wichtiges Mittel zur Teilchenidentifikation (Particle Identification PID), wenn mehrere Teilchenarten vorliegen:
 - dE/dx entspricht mit Bethe-Bloch implizit einer Messung des Parameters ß
 - mit der Definition des relativistischen Impulses p

$$p = \beta \cdot \gamma \cdot M \cdot c = \frac{\beta}{\sqrt{1 - \beta^2}} \cdot M \cdot c$$

ergibt sich nach einer von **dE/dx** unabhängigen Messung des **Impulses p** die **Teilchenmasse M** und damit die Identifikation des untersuchten Teilchens

der Energieverlust dE/dx eines
 Teilchens ist immer statistischen
 Fluktuationen unterworfen (PID!)

Bethe-Bloch Formel:

- beschreibt den mittleren Energieverlust <E> eines Teilchens
- inelastische Streuungen an Hüllenelektronen sind statistische Prozesse: zentrale Stöße (großes ΔE) sind seltener als periphere Stöße (kleines ΔE)

Landau-Vavilov Verteilung:

- beschreibt Energieverlustverteilung für einen dünnen Absorber
- **asymmetrische Verteilung** mit einem Ausläufer hin zu hohen dE/dx Werten
- Asymmetrie durch Stöße mit kleinem
 Stoßparameter ("δ-Elektronen")

Energieverlustverteilung: Landaukurve

 ΔX

Teilchen

Energieverlustverteilung: Landaukurve

Landau-Vavilov Verteilung:

 eine analytische N\u00e4herung der Landau-Vavilov-Verteilung ergibt sich durch die Moyal-Funktion X(λ)

$$X(\lambda) = a \cdot e^{-\frac{1}{2}(\lambda - e^{-\lambda})}$$
 a = Höhe
b = Breite

Energieparameter $\lambda = (\Delta E - \Delta E_{mp}) / b$ $\Delta E_{mp} =$ wahrscheinlichster Energieverlust

- **Standardabweichung** σ der Energieverlustverteilung (falls 13.3 · $\beta^4 \cdot \gamma^2 << \Delta x$):

$$\sigma[MeV] \approx \gamma \cdot \sqrt{0.07 \cdot \Delta x [g \cdot cm^{-2}]}$$

