

Kerne und Teilchen

Physik VI

Vorlesung # 15 8.6.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Beschleuniger und Detektoren

- Reichweite
- Bremsstrahlung, Strahlungslänge X₀
- Cherenkov-Strahlung
- Gamma-Wechselwirkungen:
 Photoeffekt, Compton-Streuung,
 Paarbildung

www.kit.edu

Vektorbosonen, Strahlung und Materie

- 1983: Erzeugung von reellen W[±] und Z⁰ Bosonen am SPS in pp-Kollisionen, Experimente UA1/UA2 (u + d → W⁺, u + u → Z⁰) Zerfall der Vektorbosonen in hochenergetische Lepton- und qq- Paare
 - Wechselwirkung von Strahlung und Materie:
 - geladene Teilchen: Ionisationsverluste sind durch hohen inelastischen Wq. (σ_{inelast.} ~ 10⁻¹⁷ – 10⁻¹⁶ cm²) dominant ⁽⁵/₅ zahlreiche Stöße
 - Ionisationsverluste geladener Teilchen: Bethe-Bloch-Gleichung

Wechselwirkung von Strahlung und Materie

dE/dx [MeV cm⁻¹]

für minimal ionisierende Teilchen (m.i.p.) gilt:

 $dE/dX \sim 2 \text{ MeV } \text{g}^{-1} \text{ cm}^2$

Energieverlust dE/dx ist nur abhängig von der Teilchengeschwindigkeit ß und eine wichtige exp. Messgröße zur Teilchenidentifikation (PID):

$$p = \beta \cdot \gamma \cdot M \cdot c = \frac{\beta}{\sqrt{1 - \beta^2}} \cdot M \cdot c$$

Fluktuationen des Energieverlust dE/dx in einem dünnen Absorber werden beschrieben durch die Landau-Vavilov-Verteilung:

$$\Delta \mathsf{E}_{\mathsf{mp}} \neq < \Delta \mathsf{E}_{\mathsf{BB}} >$$

Mittlere Reichweite

Reichweite:

die **mittlere Reichweite R** eines Teilchens [in g cm⁻²] in einem Medium (Absorber, Detektor) ergibt sich durch Integration der Bethe-Bloch Gleichung:

$$\overline{R} = \int_{E_0}^0 \left(\frac{dE}{dX}\right)^{-1} \cdot dE$$

Beispiele:

- 5.5 MeV Alphas in Luft: $\overline{R}/\rho \sim 4.2 \text{ cm}$

Bragg-Peak:

dE/dx erreicht am Ende des Weges ein Maximum (wichtig in Strahlentherapie)

Reichweiten-Straggling

Reichweiten-´Straggling´:

die **Reichweite R** eines Teilchens in einem Medium unterliegt durch die statistische Natur der Streuereignisse (d.h. durch **Vielfachstreuungen**) intrinsischen Fluktuationen

Beispiel:

18.6 keV Elektronen in Si: $R/\rho \sim 3 \mu m$ (1-5 μm)

Vielfachstreuung:

die Vielfachstreuung in einem Detektor begrenzt die Auflösung für:

- Ursprungskoordinaten (primäre Wechselwirkung)
- Energie (Integration von dE/dx entlang Spur)
 zur Vermeidung von Vielfachstreuung oft
 Materialien mit kleinem Z (Beispiel: Beryllium Z=4)

hm

S

^{18.6} keV e⁻ in Si

dicke Absorber & Vielfachstreuung

Energieverlust in einem dicken Absorber:

Summation über Vielfachstreuung in einem dicken Absorber ergibt mit zentralem Grenzwertsatz der Statistik eine gaußförmige Energieverlustverteilung mit Breite σ

- die Vielfachstreuung eines Teilchens in einem dicken Absorber führt nach Summation über viele Auslenkwinkel zu gaußförmiger Winkelverteilung
 - mittlerer Auslenkwinkel σ_{Streu} [rad] ~ p⁻¹ · \sqrt{L}

$$\sqrt{\left\langle \theta_{Streu}^{2} \right\rangle} = \frac{19.2}{\beta \cdot p \left[MeV / c \right]} \cdot z \cdot \sqrt{\frac{L}{X_{0}}}$$

Benutzung des Mittelwerts des quadratischen Streuwinkels

X₀ = Strahlungslänge (stoffspezifische Größe)

Energieverlust von Elektronen

Energieverlust von Elektronen

- Ionisationsverluste von Elektronen & Positronen:
 - die identische Massen von Target (m_e) & Projektil (m_e) erfordern eine leichte Modifikation der Bethe-Bloch-Gleichung
- Bremsstrahlung:
 - radiative Energieverluste dominieren bei sehr hohen Energien:

Energieverlust von Elektronen

Karlsruhe Institute of Technology

Bremsstrahlungsspektren:

- kontinuierliches Spektrum bis zur maximalen Elektronenenergie E₀
- überlagert von monoenergetischen Linien:

Strahlungslänge X₀

Strahlungslänge X₀ ist eine material-abhängige Größe:

- wird im allgemeinen in [g/cm²] angegeben
- mit der Absorber-Dichte ρ ergibt sich X_0/ρ in [cm]
- nimmt ab mit Kernladung Z ($X_0 \sim 1/Z^2$)
- wichtig zur Beschreibung von elektromagnetischen Schauern: gibt an, nach welcher Strecke die Energie eines relativistischen e- auf 1/e abgefallen ist & wie groß die freie Weglänge Λ eines hochenergetischen γ 's ist

Material	X ₀ [g / cm²]	krit. Energie E _c
H ₂	63	340 MeV
Ar	18.9	35 MeV
Xe	8.5	14.5 MeV
Fe	13.8	24 MeV
Pb	6.37	6.9 MeV
NaJ (TI)	9.5	12.5 MeV

kritische Energie E_c

Definition der kritischen Energie E_c:

bei $E = E_c$: identische Energieverluste durch lonisation und Bremsstrahlung

empirische Formel für Z-Abhängigkeit von E_c:

im ultra-relativistischen Bereich $E >> E_{c}$ verlieren

20 GeV e- auf Ne

Elektronen ihre Energie durch Photonenemission, es gilt:

 $E(x) = E_0 \cdot e^{-\frac{X}{X_0}}$

nach einer Absorberdicke $\mathbf{x} \cdot \boldsymbol{\rho} = \mathbf{X}_0$ ist die Energie E₀ von hoch-relativistischen Elektronen auf 1/e abgefallen

Energieverlustprozesse geladener Teilchen

Gesamtübersicht über Energieverluste: von sub-MeV bis multi-TeV Energien

Vavilov-Cherenkow-Strahlung

- bewegen sich Teilchen mit v = ß · c > c / n (c/n = Phasengeschwindigkeit) durch ein dielektrisches Medium, emittieren sie Cherenkow-Strahlung
 - klassisch: asymmetrische Polarisation des Mediums, führt zu einem kontinuierlichen Photonenspektrum mit $I(\lambda) \sim \lambda^{-2}$
 - konstruktive Interferenz der vom Medium (Radiator) abgestrahlten Photonen erzeugt eine ´photonische Schockwelle´
- Öffnungswinkel θ des Lichtkonus:

Cherenkow-Strahlung

Teilchen müssen sich mit einer minimalen Geschwindigkeit ß > 1/n durch das Medium bewegen, um Cherenkow-Strahlung zu emittieren: Möglichkeit der Teilchendiskriminierung: Schwellen-Cherenkow-Zähler

$$\gamma_{thres} = \frac{1}{\sqrt{1 - 1/n^2}}$$

Plexiglas (n=1.48): $\gamma_{thres} = 1.36$ $\beta_{thres} = 0.68$ Wasser (n=1.33): $\gamma_{thres} = 1.52$ $\beta_{thres} = 0.75$

Eigenschaften der Cherenkow-Strahlung: geringe Intensität

es werden nur wenige Photonen pro Einheitsstrecke dx im Medium erzeugt:

z.B. für Elektronen ~ einige Hundert Photonen pro 1 MeV Energieverlust (~10⁻³ der Teilchenenergie wird in sichtbares Licht konvertiert)

- spektrale Verteilung

Kontinuum mit Verteilung ~ $1/(\lambda^2)$

Wechselwirkung von Gammas & X-rays

die Wechselwirkung von Photonen erfolgt über 3 fundamentale Prozesse:

Photoeffekt

- Photoeffekt führt zur Absorption des Photons & zur Emission eines Hüllenelektrons & ist wichtig für niederenergetische Gammas E_γ ≤ 1 MeV, Resultat: monoenergetische Elektronen mit E(e⁻) = hv - E_b
 - für **niedrige** γ -Energien (K-Kante < E $_{\gamma}$ < 0.5 MeV) gilt näherungsweise:

in organischen Szintillatoren C_nH_{2n} (Z ~ 6) praktisch kein Photoeffekt!

Photoeffekt wichtig bei niedriger γ -Energie und hoher Kernladung Z

Comptonstreuung

 $\lambda = 70.9 \text{ pm}$

Comptonstreuung bezeichnet die inelastische Streuung eines

- γ -Quants an den <u>quasi-freien</u> Hüllenelektronen
- wichtig im Energiebereich $E_{\gamma} \sim 1 \text{ MeV}$
- Korrelation zwischen Streuwinkel θ und der Wellenlänge Λ' des gestreuten Gammas
- führt zu einem kontinuierlichen Elektronenrückstreuspektrum von 0 - 'Compton-Kante'

Comptonstreuung: Kinematik

bei der Compton-Streuung mit E_γ ~ MeV sind die Bindungsenergien der Hüllenelektronen vernachlässigbar, damit ergibt sich die Änderung Δλ zu

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

 das Elektron erhält beim Stoß die kinetische Energie T_e :

$$T_{e} = \frac{E_{\gamma}^{2}}{m_{e}c^{2}} \cdot \frac{1 - \cos\theta}{1 + (E_{\gamma} / m_{e}c^{2}) \cdot (1 - \cos\theta)}$$

- maximale Energie $T_{e,max}$ bei $\theta = \pi$ (Gamma wird rückgestreut)

$$T_{e,\max} \to E_{\gamma} \cdot \left(1 - \frac{1}{2E_{\gamma} / m_e c^2}\right)$$

kontinuierliches Comptonspektrum

Comptonstreuung: Wirkungsquerschnitt

der Wirkungsquerschnitt σ_c wird durch die relativistische & quantenmechanisch korrekte Klein-Nishina-Gleichung beschrieben

$$\sigma_{Klein-Nishina} = \frac{m_e c^2}{E_{\gamma}} \cdot \pi \cdot r_e^2 \cdot \left[\frac{1}{2} + \ln\left(\frac{2E_{\gamma}}{m_e c^2}\right) + O\left(\frac{m_e c^2}{E_{\gamma}}\right)\right]$$

Compton-Streuquerschnitt s:

- fällt ab mit wachsender Energie E_v
- proportional zur Ordnungszahl Z
- Winkelverteilung der gestreuten γ's niedrige Energie: symmetrische vorwärts rückwärts Verteilung (Thomson-Streuung) hohe Energie: asymmetrische, vorwärtsgepeakte Verteilung (Compton-Streuung)

polare Darstellung der Compton-Streuverteilung für verschiedene E_{γ}

Paarbildung

Gamma-ray are Telescope

Paarbildung $\gamma \rightarrow e^- e^+$ dominiert σ_{tot} bei sehr hohen γ -Energien (einige MeV)

Kern

mit M_M

- Schwellenenergie $E_{\gamma} \sim 2 m_e = 1.02 \text{ MeV} [+ O(m_e^2/M_{\kappa})]$
- falls $E_{\gamma} > 1.02$ MeV geht die Überschussenergie in die kinetische Energie des e⁻ e⁺ Paares
- der Paarbildungsprozess kann nur im Coulombfeld eines Kernes erfolgen, VFlugstrecke Viele Mpc - Gpc der den Rückstoß absorbiert

Gamma Ray Burst (GRB)

Paarbildung

 der Wirkungsquerschnitt f
ür Paarbildung σ_{paar} w
ächst bei tiefen Energien E_γ (m_ec² < E_γ < (137/Z^{1/3}) · m_ec²) logarithmisch mit der Energie an:

$$\sigma_{paar} = \frac{4 \cdot \alpha^3 \cdot Z^2}{m_e^2} \cdot \left(\frac{7}{9} \cdot \ln\left(\frac{2E_{\gamma}}{m_e c^2}\right) - \frac{109}{54}\right)$$

für sehr hohe Energien (E_γ >> 137 · Z^{-1/3} · m_ec²) geht der Wq. σ_{paar} durch Sättigungseffekte gegen einen Grenzwert

$$\sigma_{paar} = \frac{4 \cdot \alpha^3 \cdot Z^2}{m_e^2} \cdot \left(\frac{7}{9} \cdot \ln\left(\frac{183}{Z^{1/3}}\right) - \frac{1}{54}\right)$$

damit ergibt sich näherungsweise:

Relation zwischen Mittlerer freier Weglänge Λ & Strahlungslänge X₀

Gamma-Wirkungsquerschnitte

- die Wirkungsquerschnitte der drei Prozesse ergeben in der Kombination:
 - Photoeffekt: dominiert bei kleinem E_γ & großer Kernladung Z
 Compton-Streuung: dominiert bei mittlerem E_γ & niedriger Kernladung Z
 - Compton-Stretuing, dominient bei **mittlerem** $E_{\gamma} \&$ **medriger Kernladung** - Paarbildung: dominiert bei **hohem** $E_{\gamma} \&$ **großer Kernladung Z**

