

Kerne und Teilchen

Physik VI

Vorlesung # 18 17.6.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Quarkmodell der Hadronen

- SU(3) Symmetrie
- mesonische Multiplette
- baryonische Multiplette
- November revolution: das J/ $\!\Psi$
- Charmonium: Grundlagen
- Charmonium-Spektroskopie

moderne Detektorsysteme

Szintillatoren:

- anorganische Szintillatoren: NaJ, CsJ, hohe Lichtausbeute, lange Abklingzeiten
- organische Szintillatoren: (CH)_n mittlere Lichtausbeute, kurze Abklingzeiten, große Volumina

Cherenkow-Detektoren:

- Auswahl eines speziellen Radiators (Aerogel), Spiegelsysteme & PMTs
- Detektoren f
 ür Hochenergiephysik (CMS, CDF):
 - zentraler Si-Tracker: Spurrekonstruktion, Ereignistopologie
 - elektromagnetisches Kalorimeter: Energie von e^{-} , e^{+} , γ (Parameter: X_{0})
 - hadronisches Kalorimeter: Energie von π^{\pm} , ρ , n, p, ... (Parameter Λ)
 - Solenoid: B-Feld zur Impulsbestimmung
 - Myonkammern: Impuls von Myonen

Isospin & Hyperladung, Flavoursymmetrie

Isospin I:

Basis: Ladungsunabhängigkeit der Kernkräfte und nahezu identische Massen von (u,d)-Quarks (u,d)-Quark-Isospin-Dublett mit Isospin $I_3 = +\frac{1}{2}$ (u), $-\frac{1}{2}$ (d) Wechselwirkungen & Quantenzahl I: stark: Erhaltung von I und I_3 elmagn.: Erhaltung von I, Verletzung von I_3 schwach: Verletzung von I und I_3

Flavoursymmetrien:

Basis: Erweiterung der Flavourbasis auf (u,d,s) Hyperladung Y = Baryonenzahl B + Strangeness S SU(3) – Flavoursymmetrie mit Multipletten mit Flavourzustand Charm: SU(4)

Strangeness S:

assoziierte Strangeness-Produktion $\to \Lambda~\text{K}^{0}$

-2/3

+1/3

-1/2

+1/2

 $Q = I_3 + \frac{1}{2}Y$

Mesonen – Multiplett

Mesonen: mit Isospin (I₃) und Hyperladung (Y): Gruppierung in ein Nonett

Mesonen – Nonetts

Mesonen-Nonett mit J^P = ½+ in der SU(3) Darstellung, Isomultipletts:
 2 Singuletts (η, η[´]), 2 Dubletts (K⁰, K⁺) & (K⁻, K⁰), 1 Triplett (π⁺, π⁰, π⁻)

Mesonen – Nonetts

 die SU(3)-Flavoursymmetrie der Mesonen wird durch die unterschiedlichen Quarkmassen (u ~ 2 MeV, d ~ 4.8 MeV, s ~ 92 MeV) gebrochen:
 stark unterschiedliche Massen der pseudoskalaren Mesonen

Mesonen – Nonetts

- es existieren 3 neutrale Mesonen mit $I_3 = 0$ und S = 0:
 - ein Flavour-symmetrischer Zustand η_1 als SU(3) Singulett
 - zwei Flavour-antisymmetrische Zustände η , π^0 als Teil des SU(3)- Oktetts

SU(3) Singulett

- η' Meson ist nahezu identisch mit dem SU(3) Singulett η_1 :

$$\eta \approx \eta_1 = \frac{1}{\sqrt{3}} \left| u\overline{u} + d\overline{d} + s\overline{s} \right\rangle$$

SU(3) Oktett

- η Meson ist nahezu identisch mit dem SU(3) Oktett-Mitglied η₈:

$$\eta \approx \eta_8 = \frac{1}{\sqrt{6}} \left| u\overline{u} + d\overline{d} - 2s\overline{s} \right\rangle$$

- neutrales Pion π^0

$$\pi^{0} = \frac{1}{\sqrt{2}} \left| d\overline{d} - u\overline{u} \right\rangle$$

$$3 \otimes \overline{\overline{3}} = 8 + 1$$

Baryonen – Multiplette

Isomultipletts:

da Baryonen aus 3 Quarks aufgebaut werden, gibt es

 $3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

- ein Baryonen-Dekuplett (J = 3/2) 12
- zwei Baryonen-Oktette
 - 1 Oktett symmetrisch / 1 Oktett antisymmetrisch unter Austausch von qq
- ein Baryonen-Singulett

Pauli-Prinzip:

Gesamtwellenfunktion des Baryons muss antisymmetrisch sein

- Orts-, Spin-, Flavour-, Farb- Anteile der Wellenfunktion
- Beispiel J = ½ Baryonen (ûû↓)

 \textcircled keine flavour-symmetrischen J = $\frac{1}{2}$ Zustände (uuu), (ddd), (sss)

Baryonen – Oktetts

Isomultipletts: Baryonenoktett mit J^P = ½⁺ in der SU(3) Darstellung mit den Quantenzahlen Isospin I₃ und Hyperladung Y (bzw. Strangeness S = Y - B)
 8-fold way (M. Gell-Mann): 1 Singulett (Λ), 2 Dubletts (N, Ξ), 1 Triplett (Σ)

Baryonen – Oktetts

Isomultipletts: Baryonenoktett mit J^P = ½⁺ in der SU(3)
 die SU(3)-Flavoursymmetrie der Baryonen wird durch die unterschiedlichen
 Quarkmassen (u ~ 2 MeV, d ~ 4.8 MeV, s ~ 92 MeV) gebrochen

Baryonen – Dekuplett

Isomultipletts: Baryonendekuplett mit $J^P = \frac{3}{2}^+$ in der SU(3) Darstellung 1 Singulett (Ω^-), 1 Dubletts (Ξ), 1 Triplett (Σ), 1 Quadruplett (Δ)

Baryonen – Dekuplett

Isomultipletts: Baryonendekuplett mit $J^P = \frac{3}{2}^+$ in der SU(3) Darstellung 1 Singulett (Ω^-), 1 Dubletts (Ξ), 1 Triplett (Σ), 1 Quadruplett (Δ)

13 17.6.2010 G. Drexlin – VL18

7.2 schwere Quarks (Quarkonia)

die schweren Quarks c, b und t werden bei Prozessen der starken & elektromagnetischen Wechselwirkung stets in qq-Paaren erzeugt

Charm-Quark:

theoretisch postuliert
experimenteller Nachweis

- experimenteller Nachweis 1974 (B. Richter, S. Ting) m(c) = (1.27 ± 0.1) GeV, q = +2/3, τ (c-Mesonen) ~ 10⁻¹³ s

- Bottom-Quark (beauty-Quark) :
 - theoretisch postuliert 1973 (M. Kobayashi, T. Masakawa)
 - experimenteller Nachweis 1977 (L. Lederman)

m(b) = (4.2 + 0.17 - 0.7) GeV, q = -1/3, τ (b-Mesonen) ~ 10⁻¹² s

Top-Quark:

theoretisch postuliert 1973 (M. Kobayashi, T. Masakawa)

- experimenteller Nachweis 1995 Tevatron (CDF, D0)

m(t) = (173.1 ± 1.3) GeV, q =+ 2/3, τ = 4.2 \cdot 10⁻²⁵ s

Nobelpreis 2008

1970 (S. Glashow, J. Iliopoulos, L. Maiani)

Entdeckung des Ψ

Entdeckung einer langlebigen, schmalen Mesonenresonanz (cc-Paar)
 11/1974: erster Nachweis des J/Ψ (M = 3.1 GeV) am

- SLAC: SPEAR $e^+ e^-$ Speicherring (E = 1.3 2.4 GeV)
- MARK I-Detektor: drahtbasierte Funkenkammer in Elektromagnet Erzeugung eines gebundenen (cc)-Systems über ein virtuelles Photon

Entdeckung des J

BNL-AGS: hochenergetische 28 GeV Protonen treffen auf Be-Target LETTERS 2 DECEMBER 1974 Beobachtung Wq.- Maximum bei p + Be $\rightarrow e^- + e^+ + X$ 5000 (a) Nachweis des J/ Ψ Zerfalls: e⁻ e⁺ / $\mu^ \mu^+$ / q q Paare 2000 1000 Massenpeak bei M = 3.1 GeV 500 V LETTERS 2 DECEMBER 1974 (qu) 200 80 r 100 242 Events-50 Myonischer Zerfallskanal SPECTROMETER 70 20 At normal current 10 -10% current (b)-60 500 200 σ (nb) 50 100 EVENTS / 25 MeV 50 40 20 10 30 200 (c 100 50 20 (dn) 20 10 10 5 2 С Sam Ting • 3.0 3.25 3.5 肇中 3.10 3.12 3.14 m_e+_e-[GeV] Ec.m. (GeV) *1936 FIG. 2. Mass spectrum showing the existence of J. MG. 1. Cross section versus energy for (a) multisults from two spectrometer settings are plotted iron final states, (b) e^+e^- final states, and (c) $\mu^+\mu^-$, Nobelpreis 1976 wing that the peak is independent of spectrometer

rents. The run at reduced current was taken two

nths later than the normal run.

15 17.6.2010 G. Drexlin – VL18 **KIT-IEKP**

 π^* , and K^*K^* final states. The curve in (a) is the exp

cted shape of a δ -function resonance folded with the

ussian energy spread of the beams and including

J/Ψ - Charmonium

- Novemberrevolution (11.11.1974): Pressekonferenz B. Richter & S. Ting
- Mesonresonanz J/Ψ ist ein gebundenes qq System (Quarkonium) Charm-Quark/Charm-Antiquark: Charmonium
 - bei Erzeugung durch virtuelle Photonen (S=1) muss ($c\overline{c}$) S=1 haben

Charmonium: Zerfallskaskaden

- kurz nach J/Ψ-Entdeckung: viele weitere Resonanzen bei höheren Energien Beispiel: Ψ(2S) → J/Ψ (→ e⁺ + e⁻) + π⁺ + π⁻
- J/Ψ-Zustand hat lange Lebensdauer & geringe Breite: Erklärung durch Verletzung der OZI Regel (Okubo-Zweig-Iizuka): Feynman-Diagramme mit nicht durchlaufenden Quarklinien sind unterdrückt

Massen & Breiten von S = 1 Resonanzen

Resonanz	Masse [MeV]	Breite Γ [MeV]
J/Ψ (1S)	3097	0.087
Ψ (2S)	3686	0.277
Ψ (3770)	3770	24
Ψ (4040)	4040	52
Ψ (4160)	4160	78

radiale Anregungen n des S=1 ($c\overline{c}$)-Systems

Zerfallssignatur eines ψ im MARK I Detektor

Charmonium-Spektroskopie

Charmonium-Termschema : Messung des inklusiven Gammaspektrums von Ψ´Zerfällen (möglich da hadronische Zerfälle OZI- unterdrückt

Charmonium-Spektroskopie

Charmonium-Spektrum

Charmonium-Termschema : Rekonstruktion über das γ-Spektrum und weitere hadronische Zerfälle (Bsp: η_c(1S) mit 0⁻⁺ nicht durch e⁻ e⁺ !)

nichtrelativistische Bindungs-Zustände (cc):

- schwere c-Quark Masse
- Relation Anregungsenergie M(Ψ)
 zur Ruheenergie M(J/Ψ)

$$\frac{M(\Psi') - M(J/\Psi)}{M(J/\Psi)} \approx 0.19$$

 Bindungspotenzial aus QCD: kleine Abstände: asymptotische Freiheit große Abstände: Störungstheorie versagt

Termschemata: Charmonium – Positronium

Charmonium & QCD Potenzial

Charmonium-Positronium Termschema :

- Zustände mit n = 1 und n = 2 zeigen große Ähnlichkeit
- höher liegende (cc) Zustände stimmen nicht mehr gut mit dem 1/n² Verhalten bei Positronium überein
- QCD Potenzial bei kleinen Abständen (n = 1,2) sollte Coulomb-artig sein
- bei (cc) ist aber die Entartung der
 2 ³S und 1 ³P Zustände aufgehoben
 + linear anwachsendes Potenzial

$$V(r) = -\frac{4}{3} \cdot \frac{\alpha_s(r) \cdot \hbar c}{r} + \kappa \cdot r$$

kleines r : asymptotische Freiheit großes r : Confinement

Charmonium -Zerfälle

Charmonium-Zerfälle : starke/elektromagnet. Wechselwirkung

Anlagerung leichter qq Paare & Bildung von D-Mesonen mit offenem Charm Annihilation von cc zu reellen oder virtuellen Photonen oder Gluonen, J/Ψ zerfällt zu 70% über starke Ww. 30% über elektromagnet. Ww. in Hadronen/Leptonen

