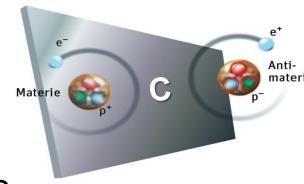
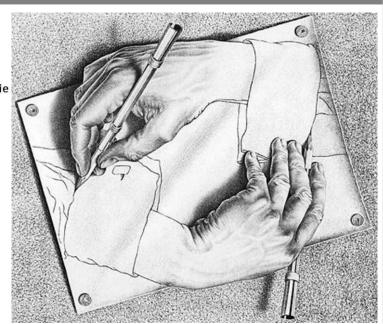


Kerne und Teilchen

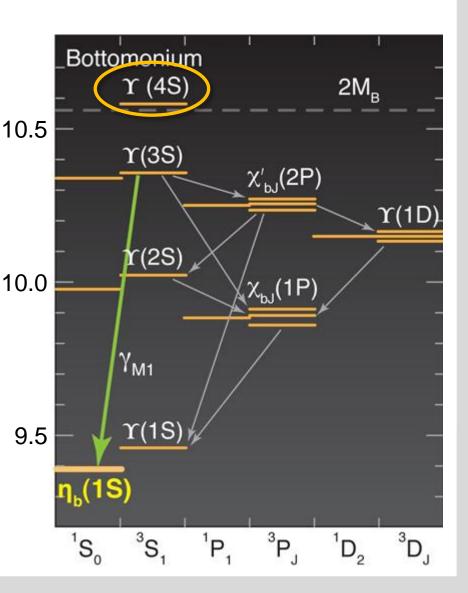
Physik VI


Vorlesung # 20 24.6.2010



Guido Drexlin, Institut für Experimentelle Kernphysik

Symmetrien


- Ladungskonjugation C
- Zeitumkehrinvarianz T
- CP Symmetrie
- Neutrino-Zustände & CP
- Supersymmetrie SUSY
- Hierarchie-Problem

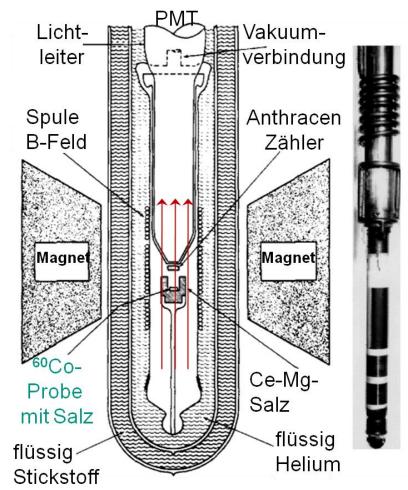
Bottomonium, B-Fabriken, Top & Rhadr

- Bottomonium-Spektroskopie (bb-System), Y(1S) = 9.46 GeV enge Analogie zum Charmonium-(cc)-System
 - wichtig: die kinematische Schwelle für den Zerfall in BB-Mesonen liegt zwischen der Y(3S) und Y(4S) Resonanz
- B-Fabriken: e⁺e⁻ bei Y(4S) Resonanz $E_{CMS} = 10.58 \text{ GeV (Belle, BaBar)}$ $4S \rightarrow B^+ B^-, 4S \rightarrow B^0 \overline{B}^0$
- Top-Quark: τ ~ 10⁻²⁵ s
 ♦ t → b + W+ (Zerfall noch vor der Hadronisation)
- R_{hadronisch}: bei e+e⁻ Annihilation in Hadronen (qq) und μ+μ⁻ Paare beobachtet man Verhältnis R ~ Q_F² (Quarkflavour-Freiheitsgrade)

Eigenschaften & Sturz der Parität

■ Parität P:

- räumliche Spiegelung am Ursprung
- Unterscheidung der Händigkeit
- Transformation polarer (\vec{p}, \vec{r}) & axialer (\vec{L}, \vec{B}) Vektoren
- Zustände mit positiver/negativer Parität


Helizität h:

- pseudoskalare Größe: Projektion von S auf p
- 4 Teilchen: LH/RH Teilchen/Antiteilchen

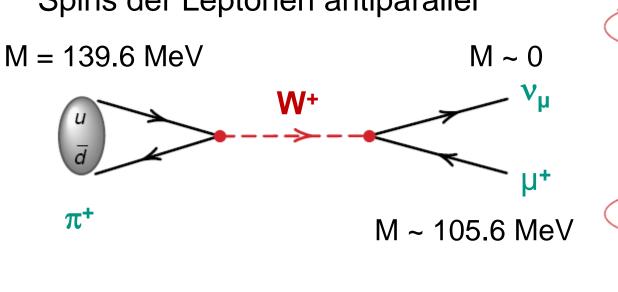
■ Sturz der Parität

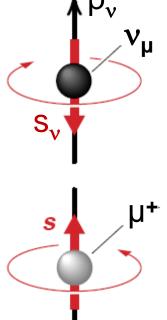
- Lee & Yang: Parität in der schwachen Ww.?
- Wu-Experiment:

Beobachtung einer Vorzugsrichtung der ß-Zerfallselektronen relativ zu ⁶⁰Co Spin ⇔ endlicher Erwartungswert für $\overrightarrow{J}_{Kern}$ · \overrightarrow{p}_{e} waximale Verletzung der Parität

rechtshändig

Parität


linkshändig


Pionzerfall in Myon und Neutrino

beim Pionzerfall über die schwache Wechselwirkung wird ebenfalls eine maximale Verletzung der Parität P beobachtet:

Anfangszustand des π^+ : Impuls $\overrightarrow{p} = 0$, Drehimpuls $\overrightarrow{J} = 0$ Spins der Leptonen antiparallel

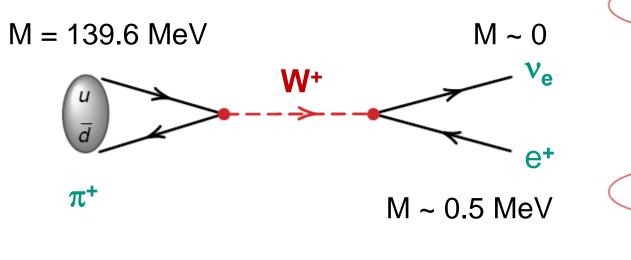
$$J_z = S_z = -\frac{1}{2}$$

'masseloses' vmit LH Helizität $p_v = E_v = 29.8 \text{ MeV}$

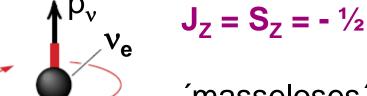
$$J_z = S_z = + \frac{1}{2}$$

massebehaftetes μ^+ mit LH Helizität $p_u = 29.8 \text{ MeV } E_u = 4 \text{ MeV}$

das Myon aus dem Pionzerfall muss mit 'falschen' Helizität erzeugt werden


das nicht-relativistische Myon besitzt einen großen Anteil der 'falschen' Helizität: $P(\mu$ -Kanal) ~ $(1 - \beta_{\mu}) = 0.72$

Pionzerfall in Elektron & Neutrino


beim Pionzerfall über die schwache Wechselwirkung wird ebenfalls eine maximale Verletzung der Parität P beobachtet:

Anfangszustand des π^+ : Impuls $\overrightarrow{p} = 0$, Drehimpuls $\overrightarrow{J} = 0$ Spins der Leptonen antiparallel

das Elektron aus dem Pionzerfall muss

mit der 'falschen' Helizität erzeugt werden

e+

'masseloses' vmit LH Helizität $p_v = E_v = 70 \text{ MeV}$

$$J_z = S_z = + \frac{1}{2}$$

massebehaftetes e+ mit LH Helizität $p_e \approx E_e = 70 \text{ MeV}$

das hoch relativistische, leichte Elektron besitzt einen sehr kleinen Anteil der 'falschen' Helizität: $P(e-Kanal) \sim (1 - \beta_e) = 3 \cdot 10^{-5}$

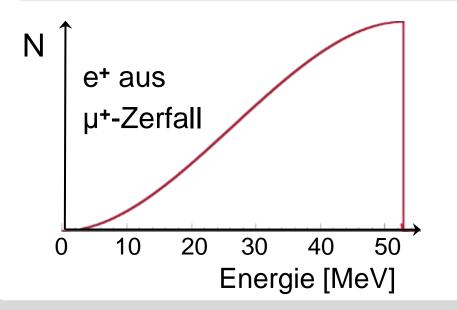
Pionzerfall in Lepton & Neutrino

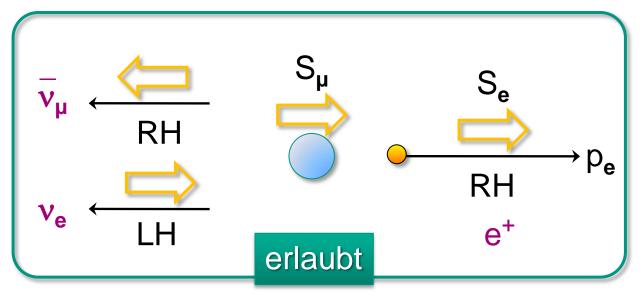
beim Pionzerfall über die schwache Wechselwirkung beobachtet man eine starke Bevorzugung des $\pi^+ \to \mu^+ + \nu_\mu$ Kanals gegenüber $\pi^+ \to e^+ + \nu_e$:

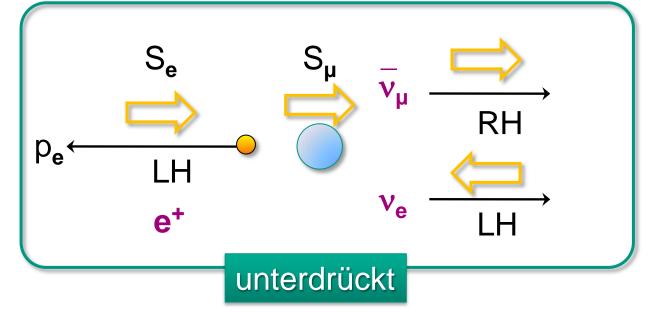
$$R_{theo} = \frac{\Gamma(\pi^+ \to e^+ + \nu_e)}{\Gamma(\pi^+ \to \mu^+ + \nu_\mu)} = \frac{m_e^2}{m_\mu^2} \cdot \left(\frac{m_\pi^2 - m_e^2}{m_\pi^2 - m_\mu^2}\right)^2 = 1.275 \cdot 10^{-4}$$

$$R_{\rm exp} = (1.267 \pm 0.023) \cdot 10^{-4}$$

- gute Übereinstimmung zwischen Theorie und Experiment zeigt:
 - Neutrinos sind ausschließlich linkshändige Fermionen ($h_v = -1$)
 - Antineutrinos sind ausschließlich rechtshändige Fermionen (h, = +1)
 - die 'normale' Helizität eines massebehafteten Leptons ist h = -v/c
 - die 'normale' Helizität eines massebehafteten Antileptons ist h = +v/c
 - die Häufigkeit, Positronen mit der 'falschen' Helizität zu produzieren ist
 P ~ 1 v/c, daher ist dieser Zerfall stark unterdrückt
 - e & μ koppeln ansonsten mit gleicher Stärke an das W (μ-e Universalität)


Myonzerfall




Paritätsverletzung beim Myonzerfall: die beiden Helizitäten h = -1 von v_e &

h = +1 von $\bar{\nu}_{\mu}$ sind definiert, daher wird das Positron mit maximaler Energie (E = $m_{\mu}/2$) in die Richtung des Myonspins emittiert (Gegenrichtung ist verboten), P-Verletzung!

Positronimpuls zeigt den µ-Spin

Ladungskonjugation C

- Ladungskonjugation C (C-Parität): diskrete Symmetrie ⇔ multiplikative Quantenzahl, C angewandt auf Felder/Kräfte: B → B, E → -E, F → F
 Teilchen-Antiteilchen Transformation mit der Änderung von allen ladungsartigen Quantenzahlen: +Q ↔ -Q, +µ ↔ -µ, +B ↔ -B, +S ↔ -S, ...
 ♣ alle Teilchen mit B, S, Q ≠ 0 sind keine Eigenzustände von C
- selbst-konjugierte Zustände

neutrale Teilchen (Q = B = S = L = 0) sind Eigenzustände von C mit der Eigenparität +1, -1 da $C^2 | \Psi \rangle = | \Psi \rangle$

Photon γ:

C
$$|\gamma\rangle = -|\gamma\rangle$$
 da Potenziale $(\phi \rightarrow -\phi, \overrightarrow{A} \rightarrow -\overrightarrow{A})$ bei $+Q \rightarrow -Q$

$$J^{PC}(\gamma) = 1^{--}$$

neutrales π^0 :

C
$$|\pi^0\rangle$$
 = + $|\pi^0\rangle$ da $\pi^0 \rightarrow \gamma \gamma$ (kein $\pi^0 \rightarrow \gamma \gamma \gamma$, b.r. < 3 · 10⁻⁸) JPC (π^0) = 0 -+

Ladungskonjugation C

C-Parität von Teilchen - Antiteilchenpaaren :

in Teilchenreaktionen werden oft Teilchen-Antiteilchen-Paare TT erzeugt, diese sind selbstkonjugiert und Eigenzustände von C

$$C(T\overline{T}) = (-1)^{\ell+s}$$

relativer Bahndrehimpuls ℓ, Spin s

$$\left|\pi^{0}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|u\;\overline{u}\right\rangle + \left|d\;\overline{d}\right\rangle\right)$$

 $\left|\pi^{0}\right\rangle = \frac{1}{\sqrt{2}}\left(\left|u\,\overline{u}\right\rangle + \left|d\,\overline{d}\right\rangle\right)$ pseudoskalares Pion mit s = 0, ℓ = 0 C = $(-1)^{0}$ = +1

$$\omega = \frac{1}{\sqrt{2}} \left| d\overline{d} + u\overline{u} \right\rangle$$

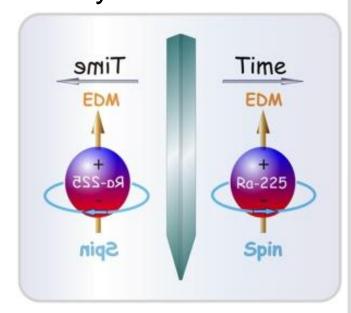
ω-Vektormeson mit s = 1, ℓ = 0 C = $(-1)^1$ = -1

■ C-Parität & Wechselwirkungen

- starke Wechselwirkung: Erhaltung der C-Parität
- schwache Wechselwirkung: maximale Verletzung der C-Parität (Wu et al.)

Zeitumkehrinvarianz T

Zeitumkehrinvarianz :


bei Teilchenreaktionen a + b \rightarrow c + d ist bei T-Symmetrie der differentielle Wirkungsquerschnitt der 'Rückreaktion' c + d \rightarrow a + b identisch Auswirkungen des T-Operators: Felder/Kräfte: $\overrightarrow{B} \rightarrow -\overrightarrow{B}$, $\overrightarrow{E} \rightarrow \overrightarrow{E}$, $\overrightarrow{F} \rightarrow \overrightarrow{F}$, $\overrightarrow{V} \rightarrow -\overrightarrow{V}$

- Zeitumkehrinvarianz & Wechselwirkungen: die T-Invarianz wird von allen 3 Wechselwirkungen eingehalten Ausnahmen: Verletzung der CP-Invarianz im K⁰-K⁰ und B⁰-B⁰ System impliziert auch Verletzung der T-Invarianz in diesen beiden Systemen
- Elektrisches Dipolmoment (EDM) & T-Invarianz: Energie eines magnetischen Dipols μ

$$\vec{s} \cdot \vec{B} \stackrel{T}{\Longleftrightarrow} \vec{s} \cdot \vec{B}$$

Energie eines elektrischen Dipols d

$$\vec{s} \cdot \vec{E} \stackrel{T}{\Leftrightarrow} -\vec{s} \cdot \vec{E}$$

Symmetriebrechung durch ein EDM

Elektrisches Dipolmoment :

- erzeugt asymmetrische Ladungsverteilung entlang der Spinachse μ

- die Spinachse μ ist die einzige ausgezeichnete Achse im Kern

 das elektrische Dipolmoment d eines Teilchens muss bei T-Invarianz verschwinden

 Atome und Moleküle können ein elektrisches Dipolmoment durch eine asymmetrische Ladungsverteilung aufweisen (diese definiert die Achse, nicht der Spin!)

■ Suche nach dem EDM:

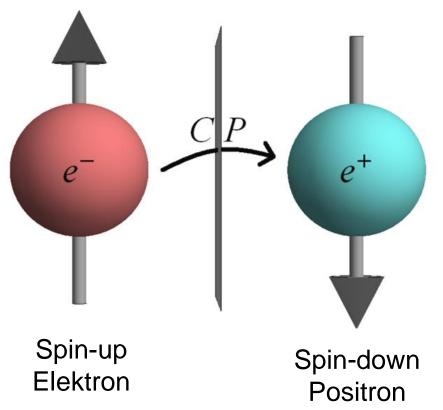
11

24.6.2010

wird bei einem kugelsymmetrischen
 Elementarteilchen ein EDM gefunden, ist T verletzt

- Intensive Suche nach dem EDM beim Elektron, Myon, Neutron

- NMR (Nukleare Magnetische Resonanz) an ultrakalten Neutronen Neutron: d_{exp} < 2.9 · 10⁻²⁶ e cm, d_{theo} = 10⁻³² e · cm


CP - Symmetrie

■ CP - Symmetrie:

12

- bei einer Verletzung der CP-Invarianz ist auch die T-Invarianz verletzt und umgekehrt
- CP-Verletzung bisher nachgewiesen nur im System der neutralen Kaonen (Cronin & Fitch, Nobelpreis 1980) und im System der neutralen B⁰-Mesonen ⇔ Prozesse der schwachen Wechselwirkung in 2. Ordnung (s. Kap. 10.1)

■ CP - Verletzung:

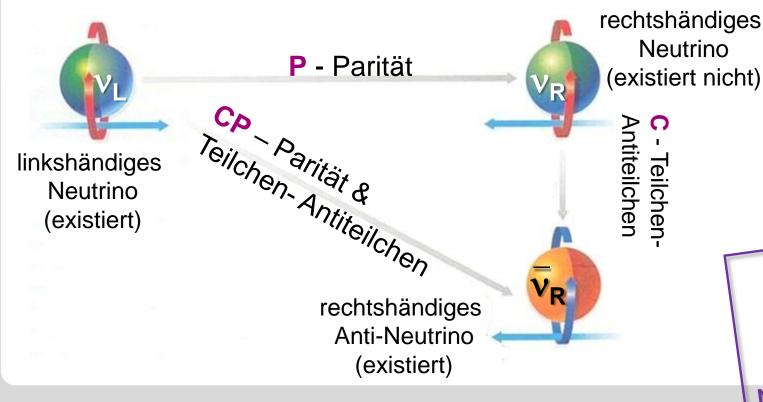
- Sacharov: CP-Verletzung ist notwendig für die Materie-Antimaterie-Asymmetrie im Universum (Baryogenese)
- ist die CP-Verletzung bei den Mesonen groß genug?
- gibt es CP-Verletzung bei den Leptonen?

KIT-IEKP

24.6.2010 G. Drexlin – VL20

Neutrinos: P, C und CP

■ CP – Symmetrie im leptonischen Sektor (Neutrinos):


- masseloses Neutrino: rein LH, (RH Neutrino existiert nicht)


- masseloses Antineutrino: rein RH, (LH Antineutrino existiert nicht)

- bei CP-Symmetrie sind die Eigenschaften des LH Neutrinos und des

RH Antineutrinos identisch!

- seit 1998: ν 's haben Masse, es gibt also ν_R !

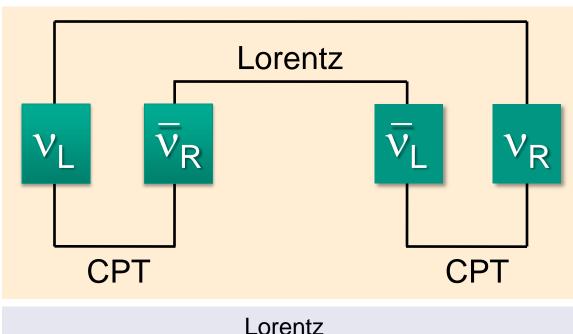
stop press Juni 2010: sind Mischungseffekte von Neutrinos & Anti-Neutrinos unterschiedlich?

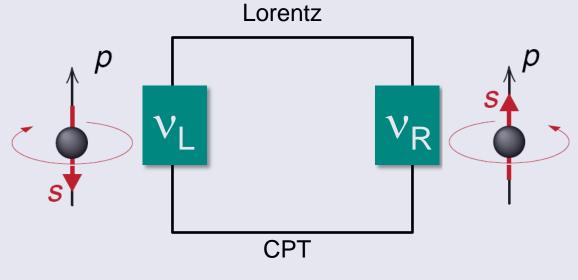
Majorana – und Dirac – Neutrinos

intrinsische Teilchen-Antiteilchen-Symmetrie von Neutrinos:

Dirac-Neutrino

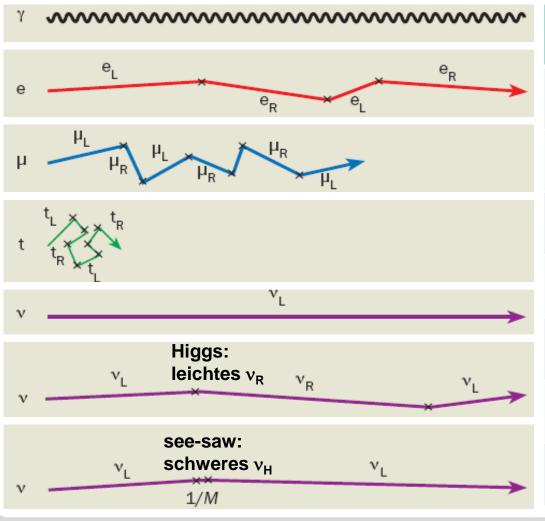
4 v-Zustände Leptonzahlerhaltung $\Delta L = 0$


Neutrino ≠ Antineutrino


Majorana-Neutrino

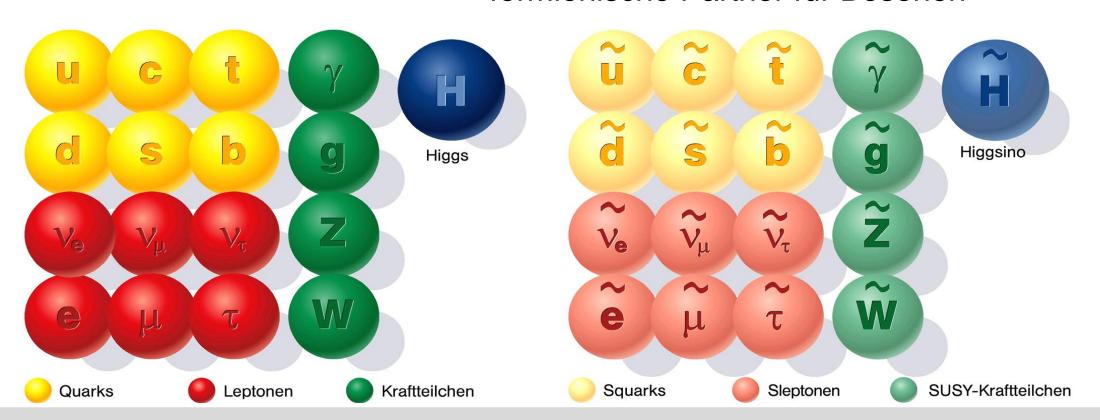
2 ν-Zustände Leptonzahlverletzung ΔL=2

 v^D und v^M nur unterscheidbar falls $m_v \neq 0$



Händigkeit & Massen in der Teilchenphysik

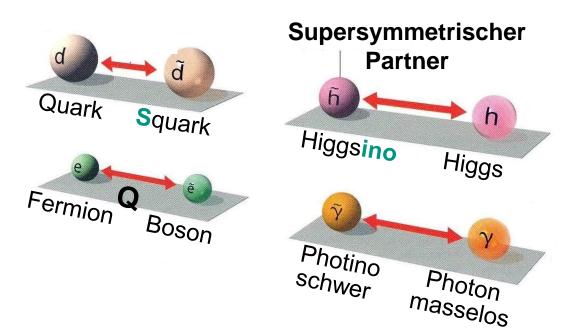
■ **Higgsmechanismus**: Teilchen erhalten Masse durch Wechselwirkung mit dem skalaren Higgs-Boson, dies führt zu einer Änderung der Händigkeit (linkshändiges \leftrightarrow rechtshändiges Fermion, d.h. $\nu_{L,R} \leftrightarrow \nu_{L,R}$)



Teilchenart	Skala	m [MeV]
Photon γ	masselos	0
Elektron e	leicht	0.511
Myon µ	mittel	105.6
Top-Quark t	schwer	1.71 · 10 ⁵
SM-Neutrino v_L	masselos	0
Dirac v v ^D	sehr leicht	$10^{-8} - 10^{-6}$
Majorana v v ^M	sehr leicht	10 ⁻⁸ – 10 ⁻⁶

8.3 Supersymmetrie

- Supersymmetrie (SUSY):
 - ist eine Raum-Zeit Symmetrie, die Bosonen mit Fermionen verknüpft & durch supersymmetrische Partnerteilchen das bekannte Spektrum der Teilchen des Standardmodells (SM) verdoppelt
- Superpartner der SM-Teilchen: bosonische Partner für Fermionen fermionische Partner für Bosonen



24.6.2010 G. Drexlin – VL20 KIT-IEKP

Supersymmetrie

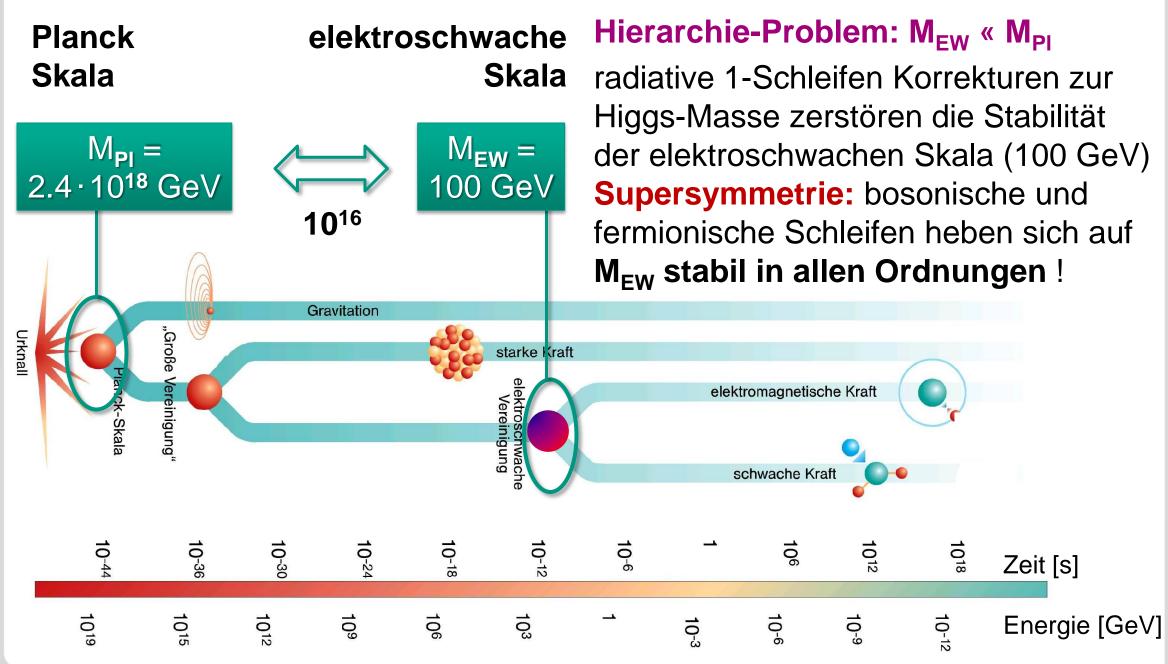
■ SUSY-Operator Q mit Spin ½ transformiert Boson ⇔ Fermion :

Q |Boson> = |Fermion> Q |Fermion> = |Boson>

Spin von SM-Teilchen und SUSY-Teilchen differiert um $\Delta s = \frac{1}{2}$

Supersymmetrie – eine spontan gebrochene Symmetrie:

Vakuum ist nicht invariant unter supersymmetrischen Transformationen


- Massenunterschiede zwischen SM und SUSY-Teilchen!
- ♦ Skala der Symmetriebrechung sollte bei E ~ 1 TeV liegen

Ursache der Symmetriebrechung?

– 'hidden sector'? (extra Dimensionen) – Gravitation? (Effekte bei M_{Planck})

Hierarchieproblem & SUSY

