

Kerne und Teilchen

Physik VI

Vorlesung # 21 29.6.2010

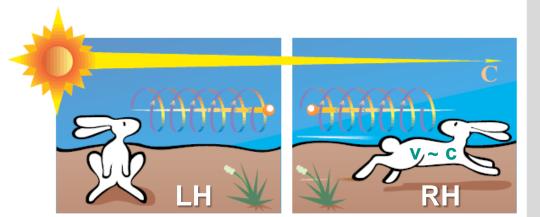
Guido Drexlin, Institut für Experimentelle Kernphysik

- Supersymmetrie: R-Parität & Multiplette
- Dunkle Materie: Neutralinos

Schwache Wechselwirkung

- Klassifikation: leptonisch/semileptonisch
- Punktwechselwirkung
- Fermi Kopplung G_F
- Fermi- und Gamov-Teller Übergänge

Verletzung von P und C


EDM

■ Verletzung der Parität im Pionzerfall $\pi^+ \to \mu^+ + \nu_{\mu}$ (µ/e-Verhältnis)

& im Myonzerfall $\mu^+ \rightarrow e^+ + \nu_{\mu} + \overline{\nu}_{\mu}$ (e+-Impuls entlang μ^+ -Spin)

Helizität h: - linkshändige Fermionen

- rechtshändige Antifermionen
- h abhängig von ß,

Ladungskonjugation C

neutrale Teilchen $(\gamma, \eta, \pi^0, \nu)$ & Fermion-Antifermion Paare (Mesonen: $c\bar{c}, ...$) sind Eigenzustände von C, Eigenwerte +1, -1, Beispiel: Photon: $J^{PC}(\gamma) = 1^{-1}$

Zeitumkehrinvarianz T

T-Invarianz wird von allen drei Wechselwirkungen eingehalten (aber CP) ein permanentes elektrisches Dipolmoment d würde T verletzen ~ 50-jährige Suche nach dem EDM von Neutron, Elektron, Deuteron (Physik jenseits des Standardmodells)

G. Drexlin – VL21 KIT-IEKP

29.6.2010

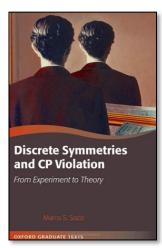
CP-Symmetrie, Supersymmetrie

CP-Symmetrie:

- CP-Verletzung bisher nur im System neutraler Mesonen (K⁰, B⁰)
- Sacharov: CP ist Grundvoraussetzung für # Materie-Antimaterie Asymmetrie

CP-Symmetrie von Neutrinos, Higgs:

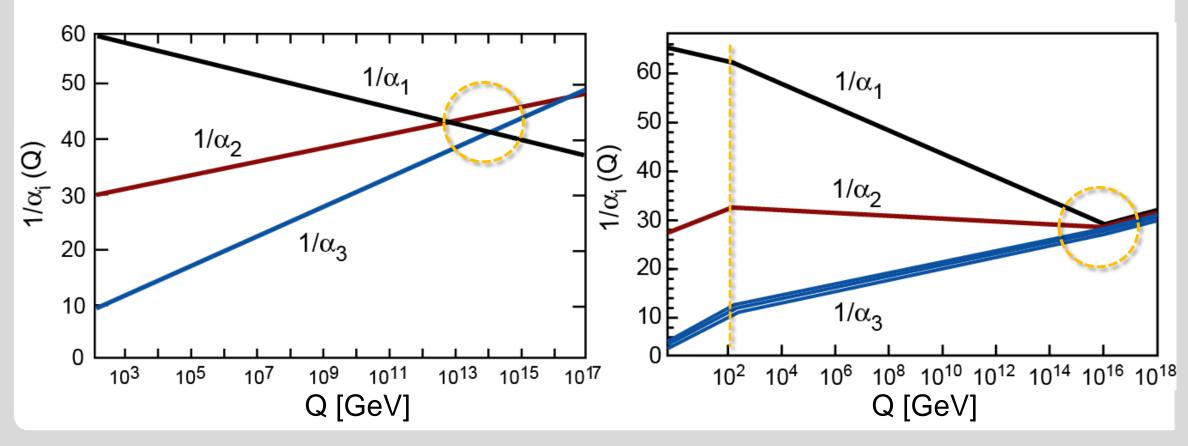
- masselose Neutrinos: rein LH Neutrinos, rein RH Antineutrinos
- massebehaftete v's:


Dirac-Fall – 4 Zustände: LH ν , RH ν , LH $\bar{\nu}$, RH $\bar{\nu}$ Majorana-Fall – 2 Zustände: LH ν , RH ν

- Wechselwirkung mit Higgs-Boson ändert Händigkeit

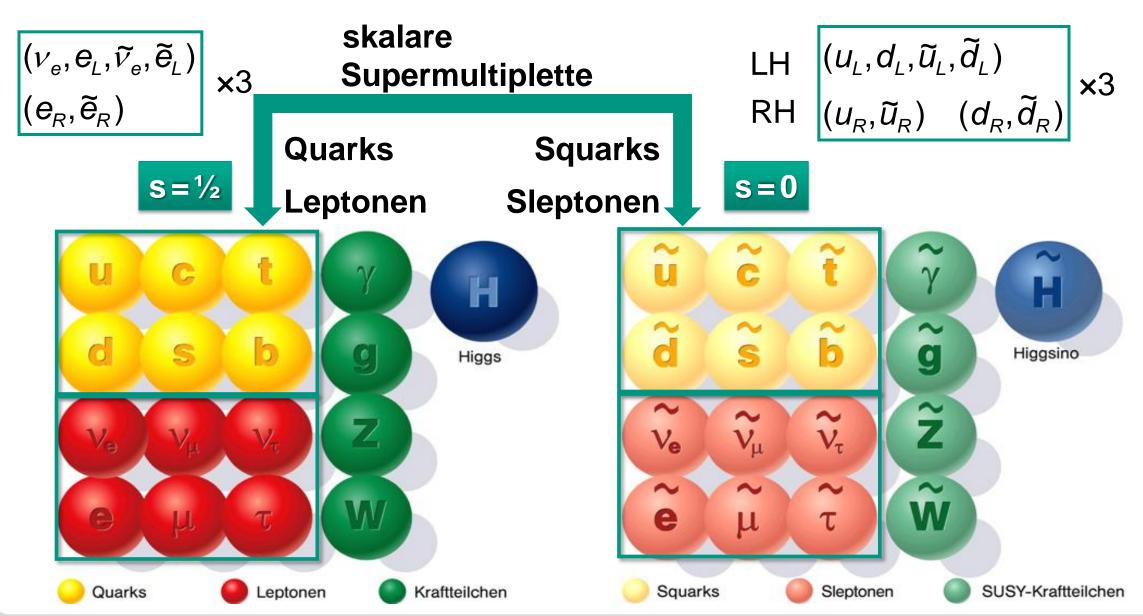
Supersymmetrie (SUSY):

- Boson-Fermion Symmetrie: Operator Q
- spontan gebrochene Raumzeit-Symmetrie
- wesentliche Beiträge von Julius Wess (U Karlsruhe, ITP)
 durch das Wess-Zumino-Modell



Julius Wess (1934-2007)

SUSY & Vereinheitlichung der Kräfte


- Grand Unified Theorien (GUTs) erwarten Vereinheitlichung der Stärke der elektromagnetischen, starken & schwachen Eichkopplungen bei $M_{GUT} < M_{Pl}$ Standardmodell (SM): kein Schnittpunkt der 3 Eichkopplungen α_i
- MSSM: minimales supersymmetrisches Standardmodell: Eichkopplungen α_1 : elektromagnetisch α_2 : schwach α_3 : stark vereinigt bei $M_{GUT} = 2 \times 10^{16}$ GeV

Supermultiplette – Quarks & Leptonen

■ Supermultiplette: SM-Teilchen & Superpartner, N_{Fermionen} = N_{Bosonen}

Supersymmetrie - Supermultiplette

Supermultiplette: SM-Eichbosonen & Superpartner-Eichfermionen

S=1

Higgs

s=1

Kraftteilchen

$$egin{aligned} (g,\widetilde{g}) & (\gamma,\widetilde{\gamma}) \ (W^\pm,\widetilde{W}^\pm,Z^0,\widetilde{Z}^0) \end{aligned}$$

Gauginos wechselwirken über die Eichsymmetrien

Eichbosonen Gauginos

 $S = \frac{1}{2}$

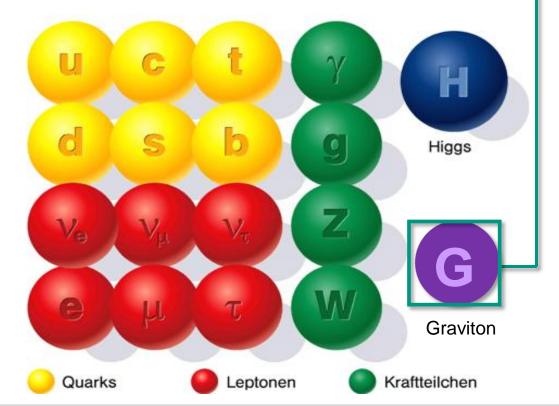
1 Photino
U(1)
8 Gluinos
SU(3)_c
1 Zino
SU(2)
2 Winos
SU(2)_L

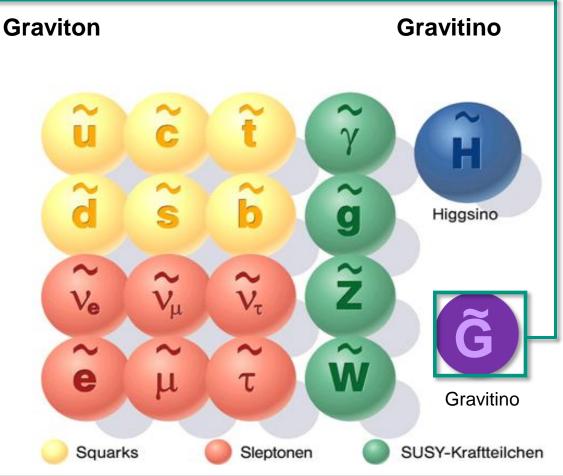
SUSY-Kraftteilchen

n

Supersymmetrie - SUGRA

Supergravitation: unter Einbeziehung der Gravitation wird die SUSY von einer globalen in den Status einer lokalen Eichsymmetrie erhoben


Gravitino \tilde{G} (s=3/2) mit Masse $m_{3/2}$ ist


Superpartner des Gravitons G (s=2)

S=2 (G,\widetilde{G})

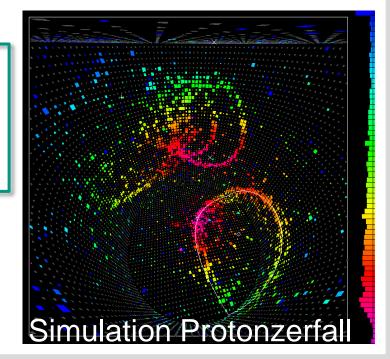
s=3/2

Supersymmetrie: R-Parität

SUSY führt eine neue multiplikative Quantenzahl ein: R-Parität Rp

$$R_p = (-1)^{3B+L+2S}$$

bzw.
$$R_p = (-1)^{3(B-L)+2S}$$

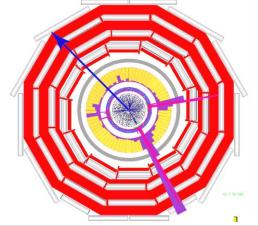

R_p verknüpft mit B: Baryonenzahl, L: Leptonzahl, S: Spin

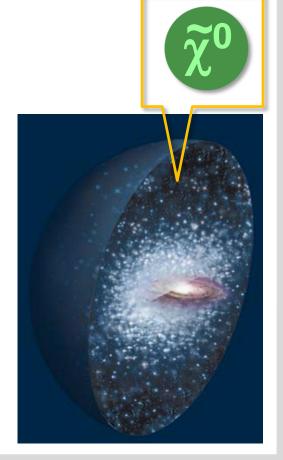
SM-Teilchen: $R_p = +1$ (gerade), Superpartner: $R_p = -1$ (ungerade)

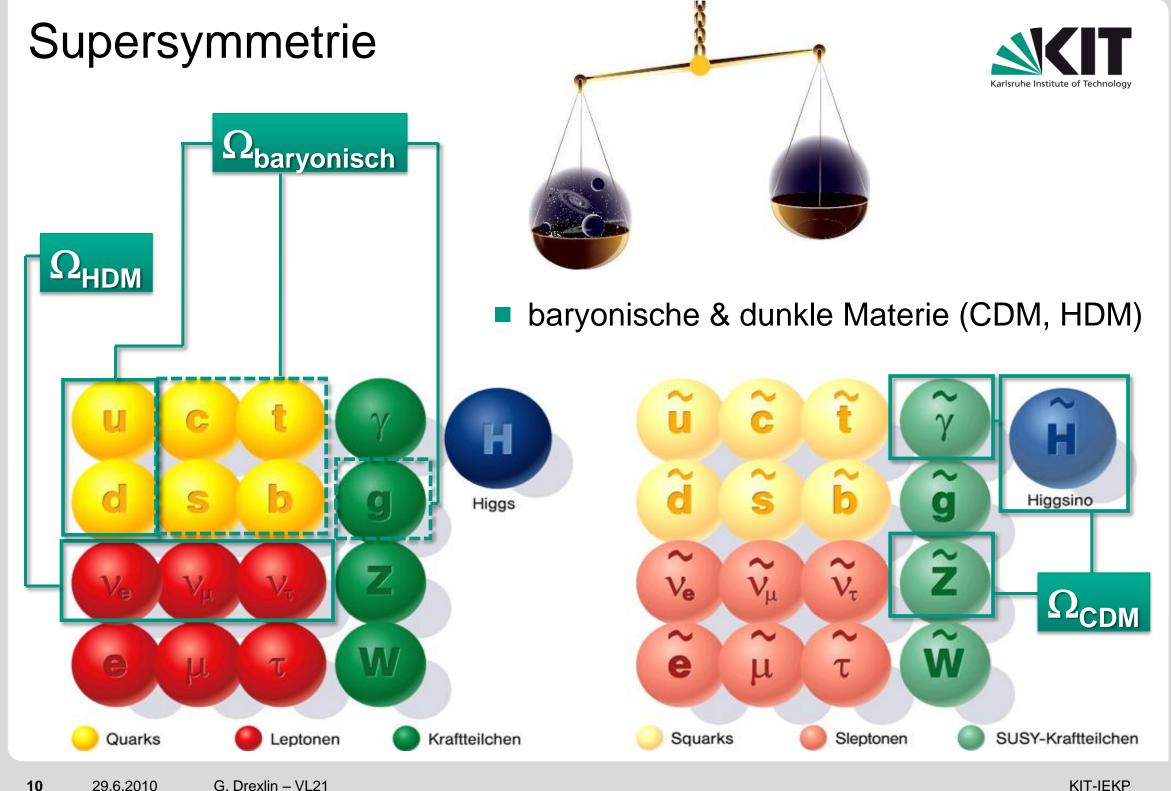
Superpartner zerfallen nur in Superpartner

leichtestes SUSY Teilchen mit $R_p = -1$ ist stabil: LSP (Lightest Supersymmetric Particle) stabiles LSP ist Kandidat für dunkle Materie

R-Parität wurde zunächst eingeführt um einen schnellen Protonzerfall zu verhindern (p $\rightarrow \pi^0 + e^+$) experimentelle Untergrenze: T_{1/2} > 10³² Jahre



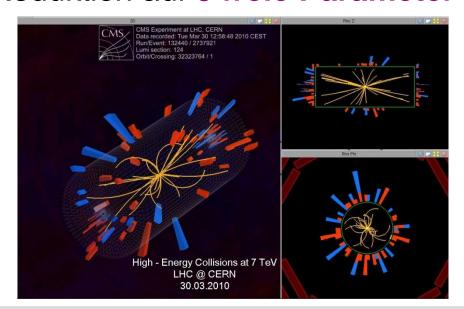

Supersymmetrie & dunkle Materie



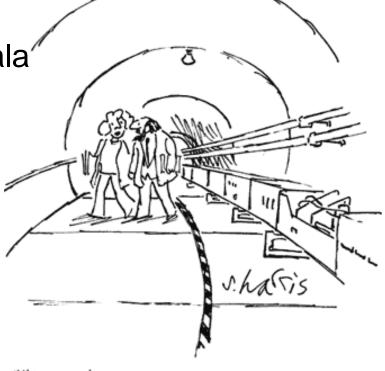
- das leichteste SUSY-Teilchen sollte durch die R-Parität über kosmologisch Zeiträume stabil sein – kalte dunkle Materie (Cold Dark Matter, CDM)
 - CDM-Eigenschaften: neutral, $\Omega_{\text{CDM}} = 0.22$, nur schwach wechselwirkend
 - SUSY-Teilchen mit diesen Eigenschaften: Neutralino χ⁰
 - Neutralinos sind die Masseneigenzustände der Gauginos
 - erwarteter Massenbereich M(χ^0): 10 GeV 1 TeV
 - Suche nach Neutralinos:
 - 1. LHC fehlende Energie & Transversalimpuls
 - 2. Cherenkov-Teleskope Vernichtung der χ^0 im Halo
 - 3. direkter Nachweis Dark Matter Experimente (LXe, ...)

G. Drexlin - VL21 KIT-IEKP

Supersymmetrie


MSSM (Minimales Supersymmetrisches Standard Modell):

105 neue physikal. Parameter:


- Massen (Skalare, Gauginos,...)
- CP-Phasen
- Mischungswinkel (Neutralinos & Charginos), ...
- **CMSSM** (Constrained MSSM) –

vereinheitlichte Teilchen-Massen bei der GUT-Skala

- Reduktion auf 5 freie Parameter

"WHAT IF WE SPEND ALL THESE BILLIONS, AND THERE JUST AREN'T ANY MORE PARTICLES TO FIND ?"

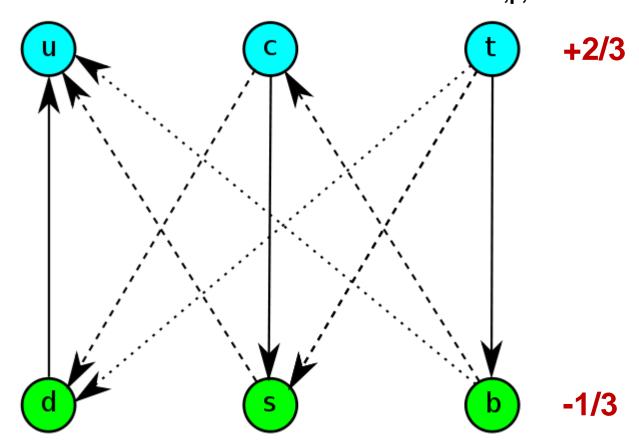
29.6.2010

G. Drexlin - VL21

KIT-IEKP

9. Schwache Wechselwirkung

schwache Wechselwirkung:


- flavourändernde Übergänge zwischen den Quarks (d \rightarrow u, c \rightarrow s, t \rightarrow b)

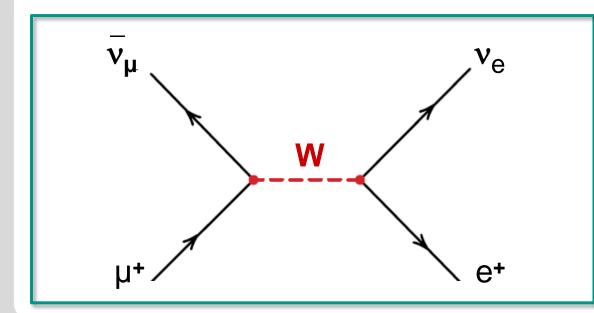
- geladene (W[±]) und neutrale (Z⁰) Ströme

- Verletzung von Erhaltungssätzen: Parität P (chirale Symmetrie),

Ladungskonjugation C, CP-Symmetrie, Familien-Leptonenzahl Le,u, ,

(Leptonenzahl L?)

9.1 Klassifikation schwacher Prozesse



rein leptonische Prozesse:

- ausschließlich Leptonen im Anfangs- und Endzustand
- wichtige Beispiele für rein leptonische Kanäle: $\mu\text{-Zerfall }\mu^{\text{-}} \to e^{\text{-}} + \nu_{\text{u}} + \nu_{\text{e}} \quad \tau\text{-Zerfall: }\tau^{\text{-}} \to \mu^{\text{-}} + \nu_{\text{u}} + \nu_{\tau},$
- Bestimmung der Kopplungsstärke G_F der schwachen Wechselwirkung
- keine Beeinflussung durch hadronische Prozesse (starke Ww.)

$$\ell + \overline{\nu}_{\ell} \longrightarrow \ell' + \overline{\nu}_{\ell'}$$

elementare Reaktion: Kopplung von 2 Strömen

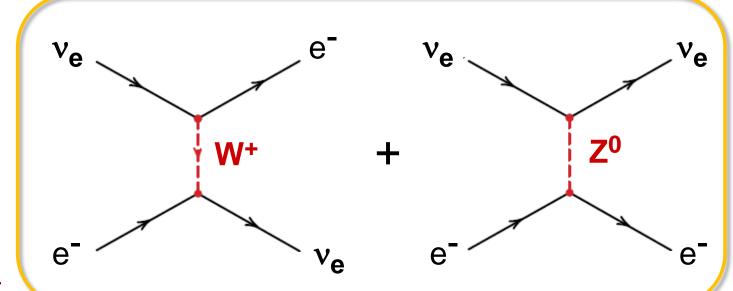
ß-Zerfall des Myons

$$\mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

$$\tau = 2.2 \,\mu s$$

semileptonische Reaktionen


rein leptonische Prozesse:

Neutrino-Elektron Streuung

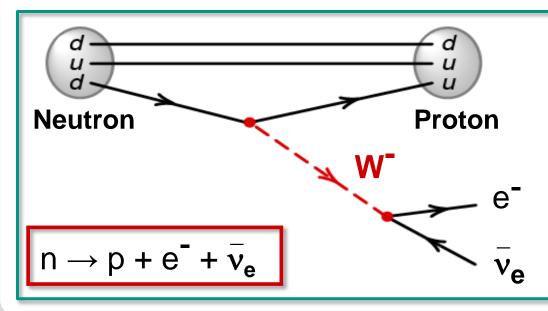
- Streuung zwischen punktförmigen rein schwach wechselwirkenden Teilchen
- CC: geladene Ströme (W-Bosonen)
- NC: neutrale Ströme (Z⁰-Bosonen)
- bei der v_e -e Streuung (und der \overline{v}_e -e Streuung) kommt es zu einer CC/NC

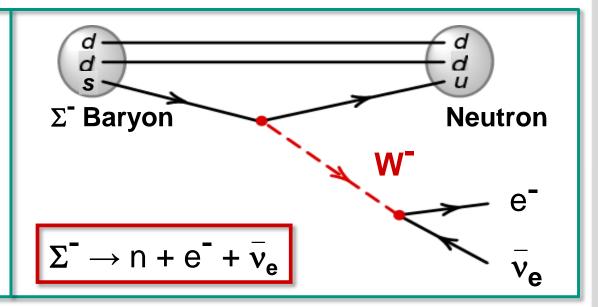
Interferenz der Ströme

NC: $\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$ ν_{μ} z^{0} e^{-}

CC+NC:
$$v_e + e^- \rightarrow v_e + e^-$$

semileptonische Reaktionen

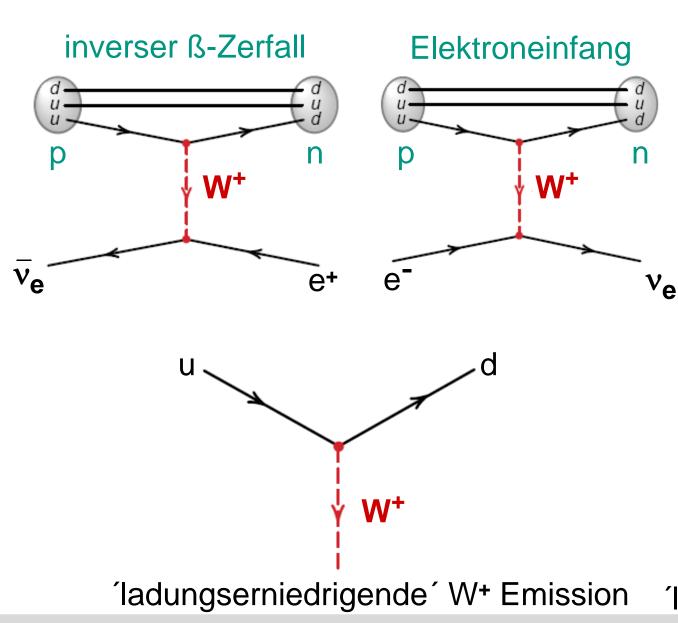

semi-leptonische Prozesse:

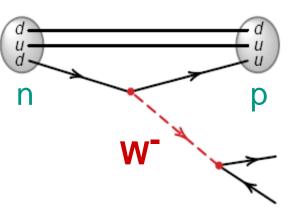

- neben Leptonen sind auch Hadronen im Anfangs- und Endzustand
- wichtige Beispiele semi-leptonischer Kanäle: n-Zerfall, Kaon-Zerfall: $K^+ \to \pi^0 + e^+ + \nu_e$
- für semileptonische Zerfälle von Hadronen mit Strangeness S ≠ 0 gilt

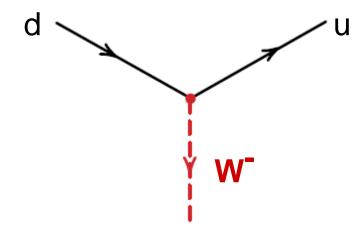
$$\Delta S = \Delta Q$$

Quarkflavours: $s \rightarrow W^- + u$, $\bar{s} \rightarrow W^+ + \bar{u}$

mit $|\Delta S| = 1$, Beispiel: $\Sigma \rightarrow n + e^{-} + \overline{\nu}_{e}$ mit $|\Delta S| = +1$ und $|\Delta Q| = +1$




semileptonische Reaktionen

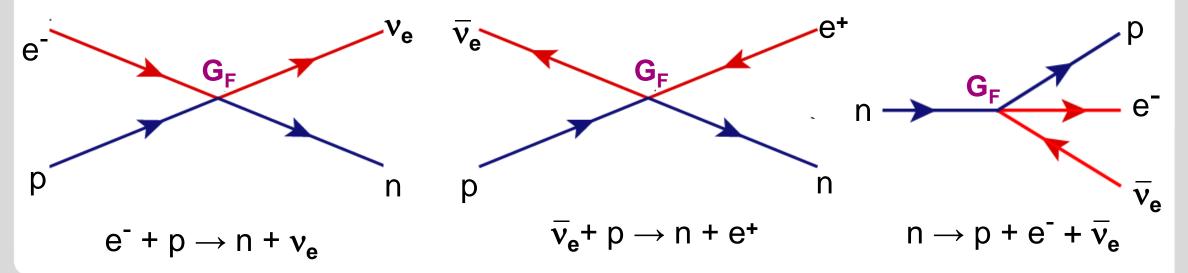


semileptonische Prozesse und fundamentaler W[±]-Vertex & (u,d) Quarks

ß-Zerfall des Neutrons

'ladungserhöhende' W⁻ Emission

29.6.2010 G. Drexlin – VL21 KIT-IEKP


ß-Zerfall als Punktwechselwirkung

Punktwechselwirkung:

- extrem geringe Reichweite der sehr massiven W[±] Bosonen
 R ~ 1/M_w ~ 0.002 fm (zum Vergleich: Ladungsradius Proton: 0.862 fm)
- schwache Wechselwirkung kann bei niedrigen Energien als Fermi'sche Punktwechselwirkung approximiert werden
- Stärke der 4-Fermion-Kopplung wird durch die dimensionsbehaftete Fermi-Konstante G_F beschrieben

$$\mathbf{M}_{\mathrm{fi}} = \mathbf{G}_{\mathrm{F}} \int \psi_{\mathrm{n}} \ \psi_{\mathrm{p}}^{*} \ \psi_{\mathrm{e}}^{*} \ \psi_{\mathrm{v}}^{*} \ d^{3}\vec{r} \quad \text{mit} \quad \psi_{\mathrm{e}} = e^{i\vec{p}_{\mathrm{e}}\cdot\vec{r}} \qquad \quad \psi_{\nu} = e^{i\vec{p}_{\nu}\cdot\vec{r}}$$

Fermi-Kopplungskonstante G_F

Fermi-Kopplungskonstante:

- die geringe Reichweite der massiven W-Bosonen (~1/M_w ~ 0.002 fm)
 kann als Fermi'sche Punktwechselwirkung approximiert werden
- Stärke der Fermi-Kopplungskonstante G_F der Punktwechselwirkung wird aus der Zerfallskonstante λ spezieller (Fermi)-Zerfälle bestimmt, wobei mit Fermi's Goldener Regel gilt: λ ~ G² · |M|²

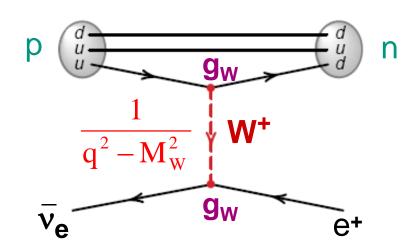
$$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{m_e^5 c^4}{2\pi^3 \hbar^7} \cdot f \cdot G_F^2 \cdot |M_{fi}|^2$$

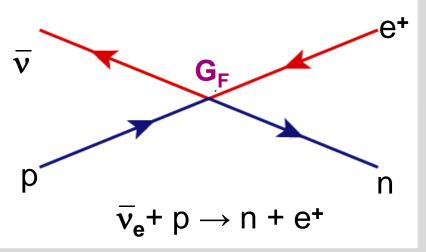
- für bestimmte (Fermi-) ß-Übergänge wie $^{14}O \rightarrow ^{14}N + e^- + \nu_e$ gilt $|M_F|^2 = 1$, damit ergibt sich G_F zu:

$$\frac{G_F}{(\hbar c)^3} = 1.16637 \times 10^{-5} \, \text{GeV}^{-2} = 8.96 \times 10^{-5} \, \text{MeV fm}^{-3}$$

Fermi-Kopplungskonstante und g

- die Konstante G_F ist dimensionsbehaftet & nur bei niedrigen Energien gültig, Verletzung der Unitarität bei E_{CMS} > 740 GeV inverser ß-Zerfall
- im Vergleich zur Darstellung mit dem entspr.
 Propagatorterm von Vektorbosonen ergibt sich


$$\frac{G_F}{(\hbar c)^3} = \frac{\sqrt{2}}{8} \cdot \frac{g^2}{M_W^2}$$

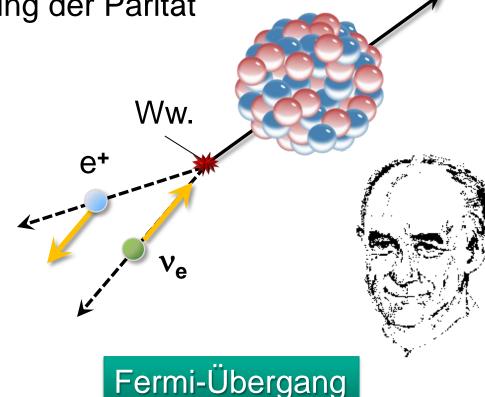

(Vorfaktoren sind historisch bedingt)

bei kleinem q² ist Fermi-Theorie eine effektive Theorie der schwachen Ww.:

Propagator $1/(q^2 - M_W^2) \rightarrow 1/M_W^2$ (punktförmig)

- dimensionslose Kopplung $\alpha_W = g^2/(\hbar c)$
 - analog Feinstrukturkonstante $\alpha_{em} = e^2/(\hbar c)$
 - mit $\alpha_{\rm W} \sim 1/30 \ \& \ \alpha_{\rm em} = 1/137 \ {\rm gilt} \ \alpha_{\rm W} > \alpha_{\rm em} \ !!$

Fermi- Übergänge

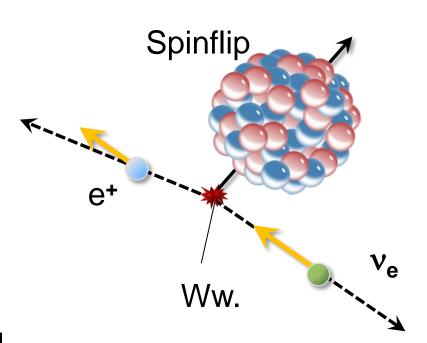

■ Fermi-Übergänge:

- die **Spins** der beiden Leptonen sind **antiparallel** \overrightarrow{s}_{e} $\Omega \overrightarrow{s}_{v}$ ($\Sigma \overrightarrow{s} = 0$)
- der Gesamtdrehimpuls j der Leptonen verschwindet (j = L + s = 0)
- die beiden Leptonen werden parallel emittiert \overrightarrow{p}_a Ω Ω
- die Spinrichtung des Nukleons im Kern (n \rightarrow p) ändert sich nicht

- für den Kernspin gilt: $J_f = J_i$, keine Änderung der Parität

Vektor-Wechselwirkung:

- Fermi'sche Theorie entstand in enger Analogie zur elektromagnet. Ww.
- Kopplung von 2 Strömen
- aus der Richtungskorrelation der beiden Leptonen und $h(v_e) = -1$: (e+ v_e) Paar mit $\overrightarrow{s_e}$ und $\overrightarrow{p_e}$ entspricht Vektor Fermiübergang = Vektorübergang mit Kopplung g_v , d.h. es gilt $G_F = g_v$


Gamow-Teller Ubergänge

- Gamow-Teller-(GT)-Übergang:
 - die Spins der beiden Leptonen sind parallel
 - Gesamtdrehimpuls j der Leptonen j = 1 (û û)
 - bei GT-Übergängen kommt es zu einem Spinflip des Nukleons

$$|J_f - J_i| \le j (=1) \le J_f + J_i$$

- bei GT: keine J_f = J_i Übergänge, d.h. $J_i = 0 \rightarrow J_f = 0$ ist reiner Fermi-Übergang
 - Beispiel eins Gamow-Teller Übergangs: $^{6}\text{He} \rightarrow {^{6}\text{Li}} + {\text{e}}^{\text{-}} + \overline{\nu_{\text{A}}} (0^{+} \rightarrow 1^{+})$

Gamow-Teller-Übergang

- Transformation entspricht einem Axialvektor: Leptonen-Spins parallel ûû, Leptonen-Emission erfolgt in die entgegengesetzte Richtung, d.h. v. & e+ zeigen antiparallele Impulse p, 1 4

21

Dirac-Gleichung & bilineare Formen

Dirac-Gleichung für freie Teilchen:

- bildet die Grundlage der relativistischen Quantenfeldtheorien:

$$\left(i\hbar\cdot\gamma^{\mu}\cdot\frac{\partial}{\partial x^{\mu}}-mc\right)\Psi(x^{\mu})=0$$

- Observable ergeben sich aus bilinearen Formen der Art $\overline{\Psi}\Omega\Psi$
- **Eingruppierung der Operatoren** Ω_i :
 - Grundlage ist Verhalten unter Paritätstransformation P

$$\begin{array}{ll} skalar & -\Omega_S: & S & \equiv \overline{\Psi}\,\Psi \\ \\ vektoriell - \Omega_V: & V^\mu \equiv \overline{\Psi}\,\gamma^\mu\Psi \\ \\ pseudoskalar - \Omega_P: & P \equiv \overline{\Psi}\,\gamma^5\Psi \\ \\ axialvektoriell - \Omega_A: A^\mu \equiv \overline{\Psi}\,\gamma^\mu\gamma^5\Psi \\ \\ tensoriell - \Omega_T: & T^{\mu\nu} & \equiv \overline{\Psi}\,(\gamma^\mu\gamma^\nu - \gamma^\nu\gamma^\mu)\Psi \end{array}$$

5 Lorentzinvariante Darstellungen