

Kerne und Teilchen

Physik VI

Vorlesung # 25 13.7.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Kaonen & Neutrinos

- v-Quellen: Beschleuniger
- v-Quellen: Kernreaktoren
- v-Quellen: Astrophysik
- Neutrino-Oszillationen:
 - 2v Mischung3v - Mischung

Kaon-Zustände

Eigenzustände der starken Wechselwirkung: K₀ & K₀

Zustände mit definierter Strangeness & starker Ww. $\frac{K^{0}}{K^{0}} = \begin{pmatrix} |\bar{d} s\rangle \\ |d\bar{s}\rangle \end{pmatrix}$ Massen von K⁰ und \bar{K}^{0} über CPT – Theorem identisch keine definierten CP-Werte

Eigenzustände der CP-Symmetrie: K₁ & K₂

$$\left| K_{1} \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle + \left| \overline{K}^{0} \right\rangle \right)$$
 CP = +

$$|K_2\rangle \equiv \frac{1}{\sqrt{2}} \left(|K^0\rangle - |\overline{K}^0\rangle \right)$$
 CP = -1

 $\begin{array}{c|c} \mathsf{K}_{\mathsf{S}} \rightarrow 2 \ \pi \end{array} \quad \tau_{\mathsf{S}} \sim 90 \ \mathsf{ps} \qquad \mathsf{K}_{\mathsf{L}} \rightarrow 3 \ \pi \qquad \tau_{\mathsf{L}} \sim 50 \ \mathsf{ns} \\ \mathsf{K}_{\mathsf{S}} = \mathsf{K}_{\mathsf{Short}} \qquad \mathsf{K}_{\mathsf{L}} = \mathsf{K}_{\mathsf{Long}} \end{array}$

- unterschiedliche Massen (Mischung K₀-K₀) & Lebensdauern

- unterschiedliche starke Wechselwirkung (Regeneration)
- Pionen als Marker der CP-Zustände: $2\pi \Leftrightarrow CP = +1$ $3\pi \Leftrightarrow CP = -1$

Eigenzustände der schwachen Wechselwirkung: K₁ & K_s

- Zerfall mit exponentiellem Zerfallsgesetz & festem λ_i
- bei CP-Erhaltung:

CP-Verletzung

Entdeckung der CP-Verletzung

- Nachweis des CP-verletzenden Zerfalls $K_L \to 2\,\pi$
- sehr kleine Rate R = 2.23 × 10⁻³

indirekte CP-Verletzung

- resultiert aus der K⁰ K⁰ Oszillation
 durch die schwache Wechselwirkung
- Parameter ε: kleine Beimischung von
 K₁ zur K₂ Komponente (ε = 2.23 · 10⁻³)
 ♦ dominanter Beitrag zur 𝔅

direkte CP-Verletzung

- CP direkt am schwachen Zerfallsvertex (Pinguin-Diagramm), kleiner Beitrag zu ØP
- Parameter ϵ ': experimentell Re $\epsilon'/\epsilon = 1.65 \cdot 10^{-3}$

CP-Verletzung & Materie

- *Q*P wichtige Voraussetzung für Materie/Antimaterie Asymmetrie

Ursprung der Asymmetrie

Sacharov-Kriterien für Entstehung einer Baryon-Antibaryon-Asymmetrie:

1 CP- und C-verletzende Prozesse

verschiedene Eigenschaften von Materie & Antimaterie, Beispiel: Zerfalls-Amplituden von neutralen Kaonen, B-Mesonen

ansonsten wäre die Teilchendichte nur abhängig von ihrer Masse & der Temperatur kT des Universums CPT: identische Massen $m(K^0) = m(\overline{K^0})$

Baryonenzahl B- verletzende Prozesse

Verletzung von B, L ist möglich in GUTs, aber (B−L) bleibt dabei erhalten!
♦ Leptogenese? (L-verletzender Zerfall von schweren Majorana-v´s)

10.2 Neutrinoquellen und -strahlen

Untersuchung der v-Eigenschaften (Mischung, ØP) mit intensiven v-Quellen: genau bekannte v-Energien & Flavour-Zusammensetzungen erforderlich

Beschleuniger-Neutrinoexperimente

- Erzeugung hochenergetischer Neutrinostrahlen am Beispiel des CNGS: 400 GeV Protonen aus dem SPS treffen auf leichtes Be-Target:
 1. Target: Erzeugung von Pionen (π[±], π⁰) & Kaonen (K[±], K⁰, K⁰)
 - 2. magnetisches Horn: Fokussierung & Ladungsselektion der Mesonen
 - 3. Zerfallstunnel: Pionzerfall $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ in einem evakuiertem Tunnel
 - 4. Abschirmung: Absorption von Myonen und Hadronen, Instrumentierung

AGS-Experiment – das zweite Neutrino v_{μ}

I 1962: L.M. Lederman, M. Schwartz, J. Steinberger: erster experim. Nachweis, dass v_µ ≠ v_e (Identität der Neutrinos aus dem Pionzerfall)

DONUT-Experiment – das dritte Neutrino v_{τ}

 2000 : erster experimenteller Nachweis des ν_τ durch das DONUT Experiment (Direct Observation of NU Tau) am Fermilab (Chicago)
 Experiment: 800 GeV Protonen treffen auf ein Wolfram-Target
 Sp_s-Mesonen (cs̄) Zerfall Sv_τ mit E_ν = 50 GeV
 Suche nach CC-ν_τ-Wechselwirkungen an Stahlplatten

Resultate: **4 Ereignisse** mit der Topologie eines v_{τ} identifiziert: τ -*kink* τ -Lebensdauer: $\tau = 3 \times 10^{-13}$ s, Reichweite $c\tau = einige$ mm

Reaktor-Neutrinos

- Kernreaktoren = stärkste terrestrische v–Quellen (isotroper Fluss $\Phi_v \sim 1/r^2$) Neutrinos aus ß-Zerfällen neutronen-reicher Spaltprodukte
 - Spaltisotope aus Kernspaltung von ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
 - ca. 6 \bar{v}_{e} pro Spaltung mit (E_v) ~ 1 MeV

$$\begin{array}{l} n + {}^{238}\text{U} & \rightarrow {}^{239}\text{U} \rightarrow {}^{239}\text{Np} \rightarrow {}^{239}\text{Pu} \; (t_{1/_2} = 24\;100\;\text{J}) \\ n + {}^{239}\text{Pu} \rightarrow {}^{240}\text{Pu} + n & \rightarrow {}^{241}\text{Pu} \; (t_{1/_2} = 14.1\;\text{J}) \end{array}$$

- pro Spaltung werden ~200 MeV Energie freigesetzt - v-Rate R_v aus einem $P_{therm} = 8.4$ GW Reaktor:

$$R_{\nu} = \frac{6 \cdot P_{th}}{204 MeV} = \frac{6 \times 8.4 \cdot 10^9 \times 6.24 \cdot 10^{12}}{204} \overline{\nu}_e / s = 1.5 \cdot 10^{21} \overline{\nu}_e / s$$

$$\frac{6.24 \cdot 10^{12}}{\overline{v}_{e}} / s = 1.5 \cdot 10^{21} \overline{v}_{e} / s$$

$$\frac{241 \text{Pu}}{1 \text{ MeV}} = 1.602 \cdot 10^{-13} \text{ Ws}$$

$$1 \text{ W} = 6.24 \cdot 10^{12} \text{ MeV/s}$$

lsotop

235 J

238 []

239Pu

241 Du

Energie [MeV]

 201.7 ± 0.6

 205.0 ± 0.9

 210.0 ± 0.9

Reaktor-Neutrinos: Energiespektren

- theoretisch berechnete v-Energiespektren f
 ür unterschiedliche Spaltprodukte
 - gewichtet mit der Häufigkeit im Reaktorkern (& zeitabhängige Anteile!)
 - Normierung auf gemessene thermische Reaktor-Leistung P_{th}
- nachgewiesene Antineutrinos: Faltung mit energieabhängigem Wq.
 - Anwachsen mit der Energie: $\sigma(E_v) \sim (E_v Q)^2$

Neutrinoquellen – astrophysikalisch

Erzeugung von astrophysikal. Neutrinos mit Energien von 10⁻⁶ eV bis 10²⁰ eV

astrophysikalische v–Quellen	Energien	Erzeugungs-Reaktionen
Urknall (thermisch, $T_v = 1.9 \text{ K}$)	einige µeV	$e^+ + e^- \rightarrow v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau}$
Sonne (Kernfusion, pp, ⁷ Be, ⁸ B)	< 15 MeV	$4 p + 2 e^{-} \rightarrow {}^{4}\text{He} + 2 v_{e}$
Supernova (thermisch, Protoneutronstern)	< 50 MeV	$e^+ + e^- \rightarrow v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau}$
Atmosphäre (kosmische Strahlung)	< 104 GeV	$\pi^{\pm} \rightarrow \stackrel{(-)}{\nu_{\mu}} + \mu^{\pm} \rightarrow e^{\pm} + \stackrel{(-)}{\nu_{\mu}} + \stackrel{(-)}{\nu_{e}}$
kosmische Beschleuniger (µ-Quasare, AGN)	< 10 ¹⁰ GeV	$\pi^{\pm} \rightarrow \mu^{\pm} + \stackrel{(-)}{\nu_{\mu}}$

Sonnenneutrinos

- solare Neutrinos: E_v < 10 MeV (pp, ⁷Be, ⁸B, hep), L_v ~ 150 Mio km aus den pp-Fusionsreaktionsketten: 4 p + 2 e⁻ → ⁴He + 2 v_e
- Standardsonnenmodell SSM (basierend auf solaren Parameter)

integraler Sonnen-v-Fluss: $\Phi_v = 6.6 \times 10^{10}$ / cm² s

Atmosphärische Neutrinos

Erzeugung durch kosmische Strahlung in der obere Atmosphäre (h ~ 20 km)
 Wechselwirkungen mit ¹⁶O, ¹²N Kernen: ⁴ Pionen (π⁺, π⁰, π⁻) Kaonen
 Zerfallskette der Pionen/Kaonen ⁴ atmosphärische v´s im GeV-Bereich

 Φ_{max} bei $E_v = 0.25$ GeV, dann $\Phi_v \sim E^{-2.7}$ bei hohen Energien **Energien**: $\Phi_v \sim 1 \text{ cm}^{-2} \text{ s}^{-1}$ auf Meereshöhe Fluss: multi-kt-Detektoren kosmische (~ 1 Ereignis/kt) Strahlung Hadronischer. Schauer

10.3 Neutrino-Oszillationen

Neutrino-Oszillationen basieren auf einem quantenmechanischen Interferenzphänomen

Nichtidentität von

2-Flavour-v-**Mischung**:

enge Analogie zur
 CKM Mischung der
 linkshändigen Quarks

Bruno Pontecorvo: erstes Konzept $v - \overline{v}$ Oszillationen

Neutrino-Oszillationen – Formalismus

• Wahrscheinlichkeit P für die Oszillation eines v_{μ} in ein v_{e} nach Zeit t:

$$P(v_{\mu} \rightarrow v_{e}) = |\cos \theta \cdot \sin \theta \cdot (1 - e^{i\Delta m^{2}t/2E_{\nu}})|^{2}$$
 mit P = $|\langle v_{e}|v_{\mu}(t) \rangle|^{2}$

$$= \sin^{2} 2\theta \cdot \sin^{2}(\Delta m^{2}L_{\nu}/4E_{\nu})$$
 mit Massensplitting $\Delta m^{2} = |m_{1}^{2} - m_{2}^{2}|$

$$= \sin^{2} 2\theta \cdot \sin^{2}(1.27 \cdot \Delta m^{2} \cdot L_{\nu}/E_{\nu})$$
 L_v in Einheiten m bzw. km
E_v in Einheiten MeV bzw. GeV

$$\int_{\Delta osc} = \frac{2.5 E_{\nu}}{\Delta m^{2}}$$
 periodisches Auftauchen eines
neuen Neutrinoflavourzustands
periodische Ab- bzw. Zunahme
des ursprünglichen Neutrino-
flavourzustandes

$$\int_{\Delta osc} = \frac{2.5 E_{\nu}}{\Delta m^{2}}$$
 Oszillationslänge $\lambda \sim v$ -Energie !

$$\lambda_{osc} \sim 2.5 E_{\nu}/\Delta m^{2}$$

Neutrino-Oszillationen – Konzept

Neutrino-Oszillationen entstehen bei der Propagation der Massenzustände

Appearance & disappearance Kanal

disappearance Kanal $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta \cdot \sin^2 \left(1.27 \cdot \Delta m^2 \cdot \frac{L_{\nu}}{E_{\nu}} \right)$$

Statistik: große Ereignisanzahl (N > 10⁴) **Systematik:** v–Fluss & v–Energien ? ideal, falls **große** Mischungsamplitude

appearance Kanal $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \sin^2 2\theta \cdot \sin^2 \left(1.27 \cdot \Delta m^2 \cdot \frac{L_{\nu}}{E_{\nu}} \right)$$

Statistik: sehr kleine Ereigniszahl (N < 100) **Systematik:** v–Flavoursorten? ideal, falls **kleine** Mischungsamplitude

Beispiel: NuMI Strahl - MINOS

Appearance & disappearance Kanal

disappearance Kanal $v_{\mu} \rightarrow v_{\mu}$ disappearance $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^{2} 2\theta \cdot \sin^{2} \left(1.27 \cdot \Delta m^{2} \cdot \frac{L_{\nu}}{E_{\nu}} \right)$ Statistik: große Ereignisanzahl (N > 10⁴) Systematik: ν -Fluss & ν -Energien ? ideal, falls große Mischungsamplitude

appearance Kanal
$$v_{\mu} \rightarrow v_{\tau}$$
 appearance
 $P(v_{\mu} \rightarrow v_{\tau}) = \sin^2 2\theta \cdot \sin^2 \left(1.27 \cdot \Delta m^2 \cdot \frac{L_v}{E_v} \right)$
Statistik: sehr kleine Ereigniszahl (N < 100)
Systematik: v–Flavoursorten?

ideal, falls kleine Mischungsamplitude

3-Flavour Mischung

- Erweiterung der 2-Flavour-Oszillationen auf 3 Flavour-Oszillationen:
 - drei Mischungswinkel: θ_{12} , θ_{23} , θ_{13}
 - zwei unabhängige Δm^2 Skalen mit Relation:

 $\Delta m_{23}^2 = |m_2^2 - m_3^2| 2. \& 3. \text{ Generation}$ $\nu_{\tau} \qquad \Delta m_{13}^2 = |m_1^2 - m_3^2| 1. \& 3. \text{ Generation}$

Ieptonische Mischungsmatrix: Pontecorvo-Maki-Nakagawa-Sakata

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

U = unitäre 3×3 Mischungsmatrix

3-Flavour Mischung

3 Flavour-Mischung ´entkoppelt´ in drei separate Mischungs-Terme:

3-Flavour Mischung

3 Flavour-Mischung ´entkoppelt´ in drei separate Mischungs-Terme:

