

Kerne und Teilchen

Physik VI

Vorlesung # 26 15.7.2010

Guido Drexlin, Institut für Experimentelle Kernphysik

Kaonen und Neutrinos

- solare Neutrinoexperimente
- atmosphär. Resultate
- Neutrinomassen
- ß-Zerfall & 0vßß-Suche

Querverbindungen & Ausblick

- Astroteilchenphysik

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

Neutrinostrahlen

Beschleuniger-v-Experimente:

- Target: Erzeugung von Pionen & Kaonen
- magnetisches Horn: Fokussierung & Ladungsselektion
- Zerfallstunnel: Pionzerfall $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ in Tunnel
- Abschirmung: Absorption von Myonen und Hadronen
- kurze Abstände: v's als Sonden für Proton, Kerne
- große Abstände: Untersuchung von v-Oszillationen

Reaktor-v-Experimente:

- Quelle: ß-Zerfälle von neutronenreichen Spaltprodukten
- Fluss: ~10²¹ $\overline{\nu}_{e}$ /s bei 8 GW_{therm} Leistung, $\Phi_{\nu}(r)$ ~ 1/r²

astrophysikalische v-Quellen:

- Sonne: MeV v_e aus der pp-Fusion 4 p + 2 e⁻ \rightarrow ⁴He + 2 v_e
- Atmosphäre: GeV v_{μ} , v_{e} aus π^{+} μ^{+} Zerfall im Verhältnis 2:1

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta \cdot \sin^{2} \left(1.27 \cdot \Delta m^{2} \cdot \frac{L_{\nu}}{E_{\nu}} \right) \quad \begin{array}{c} \mathsf{L}_{\nu} \text{ in km} \\ \mathsf{E}_{\nu} \text{ in GeV} \end{array}$$

periodisches Auftauchen eines neuen Neutrinoflavourzustands

Neutrino-Oszillationen: L/E und Δm^2

- Überdeckung des Δm²-Parameterbereichs mit unterschiedlichen Experimenten
 Ziele: Bestimmung der Parameter Δm_{ij}², sin² 2θ_{ij}
 Nachweis des L /F. Oszillations-Patterns
 - Nachweis des L_v/E_v Oszillations-Patterns

Solare Neutrinos – Energiespektren

detaillierte theoret. Modellrechnungen zum solaren v–Spektrum

0.1

Grundgleichungen

- hydrodynamisches
 Gleichgewicht
- Energietransport: Strahlung & Konvektion
- Energieerzeugung:
 pp-Kernfusion (+CNO)
- SSM: Standard-Sonnen-Modell

Pionier des heutigen Standard-Sonnenmodells: John Bahcall (1934-2005)

10

Neutrino-Energie [MeV]

Solare Neutrinos – ⁸B

Wasser-Cherenkov-Detektoren: 'real-time' Nachweis von ⁸B-v's Messung der spektralen Form, CC-Rate, NC-Rate, Tag-Nacht-Effekte,...

Solare Neutrinos – ⁷Be

■ radiochemische Detektoren: CI-37 $v_e + {}^{37}CI \leftrightarrow {}^{37}Ar + e^-$ (Q = 814 keV)

Messungen über 3 Jahrzehnte: solares v-Problem

Solare Neutrinos – pp

radiochemische Detektoren: Gallex & SAGE messen erstmals die pp-v's

 $v_e + {^{71}Ga} \leftrightarrow {^{71}Ge} + e^- (Q = 233 \text{ keV})$

Resultate der Sonnen-Neutrinoexperimente

Solares Neutrinodefizit:

alle Experimente (radiochemisch, realtime) auf der Basis von CC-Reaktionen zeigen ein signifikantes, schwellenabhängiges Defizit

Sudbury Neutrino Observatory SNO

das SNO-Experiment löst das solare Neutrino-Problem durch die erste Beobachtung einer NC Reaktion an ²H (Deuteron):

- die exp. NC Rate entspricht dem theoretischen SSM-Wert
- solare v's oszillieren auf dem Flugweg vom Sonneninnern zur Erde in andere, nicht mit **CC-Reaktionen nachweisbare** Flavourzustände v_{μ} , v_{τ}

SAGE

Homestake Kamiokande

Neutron

Deuteron

Proton

GALLEX

Solare Neutrinos – MSW Effekt

- solare ν-Oszillationen: durch die Analyse von allen Experimenten lässt sich der erlaubte Parameterbereich für θ₁₂ und Δm²₁₂ eingrenzen
- MSW Effekt: für den speziellen Parameterbereich der Oszillation von
solaren Neutrinos kommt des durch kohärente
Streuung im Sonneninnern zu einer Verstärkung $sin^2 2\theta_{12} = 0.87$
 $\Delta m^2_{12} = 7.6 \times 10^{-5} eV^2$

Sonnen v-Fluss auf Erde: ~ 1/3 v_e ~ 1/3 v_{μ} ~ 1/3 v_{τ}

kohärente elastische ve-Vorwärtsstreuung

 $-_{v} = 1.5 \times 10^{8} \, \mathrm{km}$

Propagation/Oszillation

S.P. Mikheyev

MSW-Effekt

Wolfenstein:

Mikheyev, Smirnov,

Materie beeinflusst

Alexej Y. Smirnov

Lincoln Wolfenstein

vee

KamLAND – Resultate

Überprüfung der Resultate der solaren v´s mit Reaktorneutrinos im v_e → x ´disappearance´ Modus Gesamtleistung: 70 GW (~ 7 % der Weltenergie) im Abstand d = 130 – 220 km, < E_v > ~ 2 – 3 MeV

Super-Kamiokande: Evidenz für Oszillation

Super-Kamiokande findet den ersten Hinweis auf Physik jenseits des SM

6.6.1998: Evidenz für Oszillationen von atmosphärischen Neutrinos!

15 pytho TTOHMEROPH

<i>'historische' Folie von Takaaki Kajita Neutrino 1998 Konferenz in Takayama, Japan

The New York Times 6.6.1998 - Titelseite

Mass Found in Elusive Particle: Universe May Never Be the Same

Neutrinos

Discovery on Neutrino Rattles Basic Theory About All Matter

By MALCOLM W. BROWNE TAKAYAMA, Japan, June 5 - In what colleagues hailed as a historic landmark, 128 physicists from 23 research institutions in Japan and the United States announced today that they had found the existence of mass in a notorizosily elasive subatomic

particle called the neutrino The neutrino, a particle that carries no electric charge, is so light that it was assumed for many years to have no mans at all. After today's announcement, cosmologista will have to confront the possibility that a significant part of the mass of the unteense might be in the form of neutrinos. The discovery will also compel scientists to revise a highly successful theory of the composition of matter known as the Standard

Model. Word of the discovery had drawn some 360 physicists here to discuss neutrino research. Among other things, the finding of neutrino mass might affect theories about the fornation and evolution of galaxies and

pass through the Earth's surface to a tank filled with 12.5 million gailons of ultra-pure water. and ook lide with other particles . - CHORENO-

ing a conetracerte flash of light.

seconded by

11,200 20-

inch light.

amplifiers

that cover

the tank.

the inside of

And Detecting Their Mass

Atmosphärische Neutrino-Oszillationen

- die Evidenz f
 ür die Oszillation von atmosph
 ärischen v
 ´s basiert auf einer oben-unten Asymmetrie f
 ür hochenergetische Myon-Neutrinos: die nach oben laufenden v_µ sind in v_τ oszilliert
- aus der Anpassung des beobachteten Winkelspektrums ergibt sich:
 atmosphärische Neutrinos oszillieren maximal

Long-Baseline Oszillationsexperimente

Iong-baseline v-Oszillations-Experimente in Japan, USA & Europa: Überprüfung der Oszillation von atmosphärischen v´s im Labor

Long-Baseline Beschleuniger Experimente: Übersicht									
LB-v-Strahl	Ort	Entfernung	Energie	L/E	Beginn	Detektor	Kanal		
K2K	J	235 km	1.4 GeV	~150	1999	Super-Kamiokande	ν _μ - x		
NuMI	US	735 km	1-30 GeV	50-350	2005	MINOS	ν_{μ} - ν_{μ}		
CNGS	EU	732 km	30 GeV	50-350	2007	OPERA	$ u_{\mu}$ - $ u_{ au}$		
T2K	J	295 km	GeV		2010	Super-Kamiokande	$ u_{\mu}$ - $ u_{e}$		

10.4 Neutrino-Ruhemasse & ßß-Zerfall

v-Oszillationen (solare, atmosphärische, LBL v´s):

- Neutrinos sind massebehaftet!
- Mischungswinkel θ_{ij}

15

- Differenz der Massenquadrate Δm²_{ii}
- keine Absolutskala der v-Massen!

Neutrinomassen in der Teilchenphysik

ß-Zerfall – Energiespektrum

- β -Zerfallskinematik am Endpunkt E₀: modellunabhängige Messung von m(v_e)
 - basiert nur auf kinematischen Größen & Energieerhaltung

ß-Zerfall – Energiespektrum

ß-Zerfallskinematik am Endpunkt E₀: modellunabhängige Messung von m(v_e)
 basiert nur auf kinematischen Größen & Energieerhaltung

Neutrinomasse – experimentelle Methoden

KATRIN Experiment - Überblick

ultrapräzise ß-Spektroskopie von T₂:

- hochintensive molekulare Tritiumquelle mit ~10¹¹ Bq
- hochauflösende elektrostatische Spektrometer mit $\Delta E = 0.93 \text{ eV}$

Suche nach dem Ovßß

neutrinobehafteter Doppelbetazerfall (2vßß): Prozess der

schwachen Wechselwirkung in 2. Ordnung \clubsuit extrem geringe Reaktionsrate & lange Halbwertszeiten T_{1/2} ~ 10¹⁹ – 10²¹ Jahre, E₀ teilt sich auf 4 Leptonen auf

Doppelbetazerfall – 0vßß Mechanismus

neutrinoloser ßß-Zerfall (0vßß): im Standardmodell verboten, da $\Delta L = 2$ (Leptonenzahlverletzung), 0vßß nur möglich falls Neutrino = Majoranateilchen ($v = \overline{v}$) Vertex 1: Emission als RH Anti-Neutrino \overline{v}_{e} aus Neutron-Zerfall Vertex 2: Absorption als LH Neutrino v_e an einem Neutron ausgetauschtes massebehaftetes Majorana-v = virtuelles Teilchen! р Majorana-Neutrino v^{M} Emission n Lorentz е ν_{R} Austausch eines *Spinflip* massebehafteten virtuellen Neutrinos ٧L e⁻ Absorption n CPT 2 р

Doppelbetazerfall – Targetkerne

Liste von ßß-Isotopen zur Suche nach 0vßß: Übergangs-Q-Wert & natürlicher Isotopenanteil

ßß-Zerfall	Q-Wert [MeV]	Anteil [%]
$^{48}Ca \rightarrow ^{48}Ti$	4.271	0.187
$^{76}\text{Ge} ightarrow ^{76}\text{Se}$	2.040	7.8
$^{82}\text{Se} ightarrow ^{82}\text{Kr}$	2.995	9.2
96 Zr $ ightarrow$ 96 Mo	3.350	2.8
$^{100}MO \rightarrow ^{100}Ru$	3.034	9.6
$^{110}Pd \rightarrow ^{110}Cd$	2.013	11.8
$^{116}Cd \rightarrow ^{116}Sn$	2.802	7.5
$^{124}Sn \rightarrow ^{124}Te$	2.228	5.64
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2.530	33.8
136 Xe \rightarrow 136 Ba	2.479	8.9
$^{150}Nd \rightarrow ^{150}Sm$	3.367	5.6

11. Querverbindungen & Ausblick

- seit wenigen Jahren: neue Arbeitsgebiete an der Schnittstelle von Kernphysik, Teilchenphysik, Astrophysik & Kosmologie
- Nukleare Astrophysik Schnittstelle von Kernphysik, Astrophysik & Kosmologie:
 - Nukleosynthese-Reaktionen
 - Quark Gluon Plasma

Astroteilchenphysik

Schnittstelle von Teilchenphysik, Astrophysik & Kosmologie: v-Massen, kosmische Strahlung, dunkle Materie, v-Astronomie,...

Astroteilchenphysik - Definition

Astroteilchenphysik =

Verbindung zwischen Mikro- und Makrokosmos

Astroteilchenphysik - Definition

Astroteilchenphysik = Verbindung zwischen Mikro- und Makrokosmos

...von den Quarks zum Kosmos...

3 Quarks in einem Proton

10¹¹ Galaxien im Kosmos

Stringtheorie & die "Landscape"

- Vakuumzustand der Stringtheorie: ~10⁵⁰⁰ unterschiedliche Vakua-Zustände als mögliche Erklärung des ´fine-tunings´ der Kopplungskonstanten?
- Universum oder Multiversum?

Theorie (ITP, TTP) und Experiment (IEKP)

Kerne & Teilchen – es geht weiter...

Super-LHC, ILC, v-Massen, CP & L-Verletzung, dunkle Materie, dunkle Energie, Leptogenese