

Kern- und Teilchenphysik

Johannes Blümer

SS2012 Do, 26.4.12 <u>Vorlesung-Website</u>

KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Was wollen wir messen?

 $P = (E, \vec{p})$ (tel. Sígual Energie: Vilchen Stoppen, Jonisation (Egroß: Schanes") Input p=qBR Lo Ottomensungen! bhalisiete Jon's. & Jonisatin, Cherenko, "TOF" A E, p u a Zeit M & Jonisation n.a. IKP in KCETA Johannes Blümer

Detektoren Übersicht

Indirekte Methoden für neutrale Teilchen						
Teilchen	Umwandlung	erzeugtes geladenes Teilchen	Registrierung	Spektrometrie		
Neutron	Kernreaktion	Proton, Alpha, Spaltprodukt	alle Detektoren	Szintillationszähler Proportionalzähler Photoplatten		
	Rückstoßproton	Proton	1943 A 12 4			
Gamma-Strahlung	Photoeffekt Сомртом-Effekt Paarbildung	Elektronen Elektronen Elektronen, Positronen		Szintillationszähler. Proportionalzähler Koinzidenzmethoden		
kurzlebige Elementarteilchen	Zerfall	Zerfallsprodukte	wie Spektrometer	Nebelkammer Blasenkammer Photoplatte		
Neutrino	schwache Wechselwirkung	Elektron, Müon	Szintillationszähler			
Energiemessung Bahn-, Zeitmessung	 reine Intensitätsmessung Energie-, Zeitmessung 	 Zeitmessung Bahn-, Energie-, Zeitmessung 	Bahn-, Energiemessung			

Ionisation: Bethe-Bloch-Gleichung

nícht-rel.

Summation über Elektronen

Integration über Stobparameter f b

Bethe-Bloch-Gleichung: dE/dx

$$-\frac{\mathrm{d}E}{\mathrm{d}x} = \frac{D \cdot Z \cdot \rho}{A} \cdot \frac{z^2}{\beta^2} \left[\frac{1}{2} \ln \left(\frac{2m_\mathrm{e}c^2 \beta^2 \gamma^2 \Delta T_{\mathrm{max}}}{I^2} \right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$
$$D = 4\pi \cdot N_\mathrm{A} \cdot r_\mathrm{e}^2 \cdot m_\mathrm{e}c^2 \approx 0.307 \frac{\mathrm{MeV}}{\mathrm{g/cm^2}} \qquad \Delta T_{\mathrm{max}} \quad \mathrm{max. Energieübertrag auf Hüllenelektron}$$

- z, β Ladungszahl, Geschwindigkeit des Teilchens
- Z, A, ρ Kernladungszahl, Massenzahl, Dichte des Mediums
- Effektives Ionisationspotenzial der Medienatome Τ

- für $M/\gamma >> m_{\rm e}$ gilt $\Delta T_{\rm max} \approx 2m_{\rm e}c^2\beta^2\gamma^2$
- Dichtekorrekturen bei grossen Energien δ
- CSchalenkorrekturen bei kleinen Energien
- Vorsicht: Modifikationen nötig für e⁺ und e⁻!

dE/dx

10

8

Figure 27.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included. These become significant for muons in iron for $\beta\gamma > 1000$, and at lower momenta for muons in higher-Z absorbers.

IKP in KCETA

1000

10000

Abb. 18.24. Spuren geladener Teilchen in einer elektronenempfindlichen Photoemulsion. (Zusammengestellt von *Leprince-Ringuet*, aus W. Finkelnburg: *Einführung in die Atomphysik*, 11./12. Aufl. (Springer, Berlin Heidelberg 1976))

dE/dx in Gas-Detektor

[rpp2010] Figure 28.15: The PEP4/9-TPC energy deposit measurements (185 samples, 8.5 atm Ar-CH4 80:20). The ionization rate at the Fermi plateau (at high β) is 1.4 times that for the minimum at lower β . This ratio increases to 1.6 at atmospheric pressure.

1988:

e^τ ~ 30 Gev

de/dx weiter Energiebereich

Coulombstreuung

The nonprojected (space) and projected (plane) angular distributions are given approximately by [33]

$$\frac{1}{2\pi\theta_0^2} \exp\left(-\frac{\theta_{\text{space}}^2}{2\theta_0^2}\right) d\Omega , \qquad (27.15)$$

$$\frac{1}{\sqrt{2\pi}\theta_0} \exp\left(-\frac{\theta_{\text{plane}}^2}{2\theta_0^2}\right) d\theta_{\text{plane}} , \qquad (27.16)$$

13 KT2012 Johannes Blümer

IKP in KCETA

Reichweite

für &- Teilchen in Gas gut definiet

Materialeigenschaften

Table 2.1. Energy loss for a minimum-ionising muon dE/dx, density and mean excitation energy $I = I_0 \times Z_M$ for various elements and compounds, for gases see Table 2.5

Element/	Z_M	Density	Ι	I_0	$\mathrm{d}E/\mathrm{d}x$
Compound		$[g/cm^3]$	[eV]	[eV]	$[MeV/gcm^{-2}]$
Be	4	1.85	63.7	15.9	1.6
C(graphite)	6	1.8	78	13.0	1.75
Al	13	2.67	166	12.7	1.61
Si	14	2.33	173	12.4	1.66
Fe	26	7.87	286	11.0	1.45
Cu	29	8.96	322	11.1	1.40
Ge	32	5.32	350	11.0	1.37
Sn	50	7.31	488	9.8	1.26
W	74	19.3	727	9.8	1.14
Pb	82	11.3	823	10.0	1.12
Sodium iodide (NaI)	46.5	3.67	452	14.1	1.31
Photograph. Emulsion		3.8			1.31
Plastic Scintillator ¹	5.7	1.03	64.7	11.3	1.94
Lucite, Plexiglas ²		1.19	74		1.93
Polyethylene	5.3	0.94	68	13	2.08
Water	7.5	1.0	75	10	2.0

¹ polyvenyltoluene; ² polymethylmethacrylate

Materialeigenschaften

Table 2.2. Radiation lengths X_0 , critical energies ϵ_c , Molière radii ρ_M , threshold energies E_{LPM} and nuclear interaction lengths λ_i for 100 GeV protons in elements and compounds. The densities for gases are given in [g/l] at STP

Material	Z_M	A_M	ρ	X_0	X_0	ϵ_c	ρ_M	E_{LPM}	λ_i
			$[g/cm^3]$	$[g/cm^2]$	[cm]	[MeV]	[cm]	[TeV]	$[g/cm^2]$
H_2	1	1,01	[0.0899]	62	731000	350	42000	6600	50.8
He	2	4	[0.1786]	94	530000	250	45000	5800	65.1
Air	7.3	14.4	[1.29]	37	30420	86	7400	234000	90.0
\mathbf{C}	6	12.01	2.265	43	18.8	82	4.8	151	86.3
H_2O	7.5	14.2	1.0	36	36	70	9.2	278	83.6
SiO_2	11.2	21.7	2.2	27	12	50	4.9	77	97.4
Al	13	27	2.70	24	8.9	40	4.4	68	70.6
Fe	26	55.85	7.87	14	1.76	21	1.7	13.6	82.8
Cu	29	63.55	8.96	13	1.43	19	1.6	11.2	85.6
W	74	183.9	19.3	6.8	0.35	8	0.9	2.7	110.3
\mathbf{Pb}	82	207.2	11.35	6.4	0.56	7.4	1.6	4.3	116.2

Bremsstrahlung

Strahlungslänge:

$$X_0 = \frac{716.4 \times A_M}{Z_M (Z_M + 1) \ln(287/\sqrt{Z_M})} \text{ g/cm}^2$$

Material	Z	x_0 [mm]	E_k [MeV]
H_2O	1, 8	361	92
Be	4	353	116
С	6	188	84
Al	13	89	43
Fe	26	17.6	22
Cu	29	14.3	20
W	74	3.5	8.1
Pb	82	5.6	7.3
U	92	3.2	6.5

Figure 27.13: Electron critical energy for the chemical elements, using Rossi's definition [2]. The fits shown are for solids and liquids (solid line) and gases (dashed line). The rms deviation is 2.2% for the solids and 4.0% for the gases. (Computed with code supplied by A. Fassó.)

Aurale Cherenkov - y's:

 $\frac{\mathrm{d}^2 N}{\mathrm{d}x \mathrm{d}E} = \frac{\alpha^2 z^2}{r_e \cdot m_e c^2} \times \sin^2 \Theta_c = 370 \times z^2 \sin^2 \Theta_c(E) / \mathrm{eVcm}$

$$\frac{\mathrm{d}^2 N}{\mathrm{d}x \mathrm{d}\lambda} = 2\pi \alpha z^2 \frac{\lambda_2 - \lambda_1}{\lambda_1 \lambda_2} s \frac{i n^2 \Theta_c}{\sigma_c}$$

 $\int 1 400 \dots 700 \text{ m} \rightarrow \frac{\mathrm{d}N}{\mathrm{d}x} = 480z^2 \sin^2 \Theta_c/\mathrm{cm}. \rightarrow 220 \text{ friss 1 m Warner}$ 20 KT2012 Johannes Blümer $\frac{\mathrm{d}N}{\mathrm{d}x} = 480z^2 \sin^2 \Theta_c/\mathrm{cm}. \rightarrow 30 \text{ friss 1 m Warner}$ $\frac{\mathrm{d}N}{\mathrm{d}x} = 480z^2 \sin^2 \Theta_c/\mathrm{cm}. \rightarrow 100 \text{ friss 1 m Warner}$ $\frac{\mathrm{d}N}{\mathrm{d}x} = 480z^2 \sin^2 \Theta_c/\mathrm{cm}. \rightarrow 100 \text{ friss 1 m Warner}$ $\frac{\mathrm{d}N}{\mathrm{d}x} = 480z^2 \sin^2 \Theta_c/\mathrm{cm}. \rightarrow 100 \text{ friss 1 m Warner}$ $\frac{\mathrm{d}N}{\mathrm{d}x} = 480z^2 \sin^2 \Theta_c/\mathrm{cm}. \rightarrow 100 \text{ friss 1 m Warner}$ $\frac{\mathrm{d}N}{\mathrm{d}x} = 480z^2 \sin^2 \Theta_c/\mathrm{cm}. \rightarrow 100 \text{ friss 1 m Warner}$ $\frac{\mathrm{d}N}{\mathrm{d}x} = 480z^2 \sin^2 \Theta_c/\mathrm{cm}. \rightarrow 100 \text{ friss 1 m Warner}$

Material	Density	X_0	n
	$g/cm^3/[g/l])$	$[g/cm^2]$	
H_2	[0.0899]	62	1.000139
He	[0.1786]	94	1.000035
Air	[1.29]	37	1.000273
Silica Aerogel	0.04 - 0.6	27	$1.0+0.21 \rho$
Water	1.0	36	1.33
SiO_2 (quartz)	2.2	27.0	1.46
Plast. scintillator	1.03	43.7	1.58
Lucite, Plexiglas	1.18 - 1.20	40.5	≈ 1.49
Teflon	2.2	34.8	1.33
BGO scintillator	7.1	8	2.15
NaI scintillator	3.67	9.5	1.77
Si	2.33	22	3.95
Ge	5.32	12.2	3.99
Pb glass (SF 5)	6.22	9.6	1.67