

Kern- und Teilchenphysik

SS2012 Vorlesung-Website

Johannes Blümer

KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA

www.kit.edu

v8 15. Mai 2012 – Kernmodelle Forts.; Radioaktivität

Kernmodelle

- Tröpfchenmodell ($\sqrt{}$)
- Fermigas-Modell
- Schalenmodell
- Radioaktivität
 - Zerfallsgesetz
 - Partialbreite, totale Breite, Breit-Wigner-Verteilung
 - Poissonstatistik
 - Alpha-Zerfall
 - Beta-Zerfall
 - Gamma-Zerfall

Tröpfchenmodell Bethe-Weizsacker 30

 $M(A, Z) = NM_n + ZM_p + Zm_e$ $- a_v A + A_s A^{2/3} + a_c \frac{Z^2}{A^{1/3}}$ $+ a_a \frac{(N - Z)^2}{4A} + \frac{\delta}{A^{1/2}}$

konstante Díchte kurze Reíchweite Sättigung Deformierbarkeit Oberflächenspannung

Stabílítät, spontane Spaltung

míttl. freíe Weglänge der Nukleonen? Fermígas!

Fermigas-Modell z.B. Povh Kap. 17.1

Fermibewegung der Nukleonen

 $p_F^N \simeq 250 \text{ MeV/c}$! $\langle E_{\text{Min}} \rangle \simeq 20 \text{ MeV}$

IKP in KCETA

Schalenmodell

Kernspektroskopie

Beispiel einer inelastischen Kernreaktion: Bestimmung der Energien angeregter Niveaus

31.16 30.29

26.8 ++++++

Schalenmodell

- Zerfallsgesetz
- Partialbreite, totale Breite, Breit-Wigner-Verteilung

RADIOACTIVITY, NEW PROPERTY OF MATTER

Abb. 2.1 Die Fotoplatte mit den ersten Spuren der Radioaktivität (Quelle: Henri Becquerels Nobelpreis-Rede 1903)

10 KT2012 Johannes Blümer

Entdeckung des radioaktiven Zerfallsgesetzes

 $dN = -\lambda N dt \qquad \lambda 2e falls konstante$ $N(t) = N_0 e^{-\lambda t} \qquad T = \frac{1}{\lambda} \quad mittl. \ lebenodaues$ $t_{12} = T ln 2 \quad Halbwerts \ge eit$

Aktivität auch I(t) = Ioe^{- It} [I] = 1 Becquel = 1 Zefall/s

Partialbreite, totale Breite, Breit-Wigner-Verteilung

Zefallswahrscheinlichheit $f(t) = a(t)^2 Z$ -Amplitude $a(t) \rightarrow A(\omega) duch Fourierbransformation$ $A(\omega) = \sqrt{\lambda} \int e^{-\lambda t/2} e^{i\omega t} dt = \frac{\sqrt{\lambda}}{\frac{\lambda}{2} - i\omega}$ $\overline{I}(E) = \frac{\Gamma}{2\pi} \frac{1}{(E - E_0)^2 + \frac{\tau^2}{4}} \quad mit \int_{0}^{\infty} \overline{I}(E) dE = 1$ Brut - Wigner - Verteilung $\Gamma \equiv \lambda$ bescheitt vadioaht. Zefall durch einen unschaften Enstand mit Breite $\Delta E = \Gamma$