

Kern- und Teilchenphysik

Johannes Blümer

SS2012 Vorlesung-Website

KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

v16 19. Juni 2012 e+e--Kollisionen cont'd; Symmetrien und Erhaltungssätze

- e⁺e⁻-Streuung
 QZ der Quarks
 WQ und Referenzprozess
 Quarkfarben
 qg-WW, Gluonjets
 Resonanzen als q-anti_q-Systeme
 W, Z-Bosonen
 Multiplizitäten
 - Bemerkungen zum WQ u. a., Hinweise auf NEUES
- Symmetrien und Erhaltungssätze
 - Einführung
 - Diskrete Symmetrieoperationen: C, P, CP, CPT
 - ausführlicher: Sturz der Parität, Zeitumkehr, CP-Verletzung
 - CPT-Theorem
 - Symmetrieeigenschaften der 3 Wechselwirkungen

Multiplizität geladener Teilchen

e⁺e⁻-Wirkungsquerschnitt

e⁺e⁻-Wirkungsquerschnitt

e⁺e⁻-Wirkungsquerschnitt

Bemerkungen zu:

- 1/E² Verhalten des WQ
- Bhabha-Streuung http://www.physics.usu.edu/Wheeler/QFT/PicsII/QFT10Mar05Bhabha.pdf
- Lumínosítät von Kollídern

http://hepunx.rl.ac.uk/~adye/thesis/html/node9.html

- Leptonuníversalítät
- Gröbe der Leptonen < 10⁻¹⁸ m
- Hinweise auf NEUES?

$$\sigma(e^+e^- \to \mu^+\mu^-) = 21.7 \frac{nbarn}{(E^2/\text{GeV}^2)}$$

Vorwärts-Rückwärts-Asymmetrie in e⁺e⁻

Vorwärts-Rückwärts-Asymmetrie in e⁺e⁻

Vorwärts-Rückwärts-Asymmetrie in e⁺e⁻

IKP in KCETA

nach H. Weyl, R.P.Feynman:

"... a thing is symmetrical, if you can do something to it and after you have done it, it looks the same as before ..."

nach H. Weyl, R.P.Feynman:

nach H. Weyl, R.P.Feynman:

nach H. Weyl, R.P.Feynman:

Ordnungsprinzipien Vorhersagen Zusammenhang mit unbeobachtbaren Größen Erhaltungssätze Struktur der Wechselwirkungen Noether-Theorem

Rotationssymmetrie

60° Rotationssymmetrie einer Schneeflocke

Rotationssymmetrie

60° Rotationssymmetrie einer Schneeflocke

völlige Rotationssymmetrie: es gibt keine ausgezeichnete Richtung

Objekte mit "Händigkeit"

Symmetrien ↔ Erhaltungsgrößen

Symmetrieoperationen	unbeobachtbar	Erhaltungsgröße	
Translationen im Raum	absoluter Ort	Impuls	Klassische
Drehung im Raum	absolute Richtung	Drehimpuls	kontinuierliche
Translation in der Zeit	absolute Zeit	Energie	Beispiele
Eichtransformation (QM)	Phase der Wellenfunktion	el. Ladung	QM
Raumspiegelung	absolute Händigkeit	Parität P	Dielweete
Materie – Antimaterie	Materieart	C-Parität	Diskrete Operationen
Zeitumkehr	absolute Zeitrichtung	T-Parität	operationen

Symmetrien ↔ Erhaltungsgrößen

Symmetrieoperationen	unbeobachtbar	Erhaltungsgröße	
Translationen im Raum	absoluter Ort	Impuls	Klassische
Drehung im Raum	absolute Richtung	Drehimpuls	kontinuierliche
Translation in der Zeit	absolute Zeit	Energie	Beispiele
Eichtransformation (QM)	Phase der Wellenfunktion	el. Ladung	QM
Raumspiegelung	absolute Händigkeit	Parität P	Dielweete
Materie – Antimaterie	Materieart	C-Parität	Diskrete
Zeitumkehr	absolute Zeitrichtung	T-Parität	operationen

P:	$\vec{r} \rightarrow -\vec{r}$; $\vec{p} \rightarrow -\vec{p}$	
C :	$Q \rightarrow -Q$; $B \rightarrow -B$; $S \rightarrow -S$
T:	$t \rightarrow -t$; $\vec{r} \rightarrow \vec{r}$; $\vec{p} \rightarrow -\vec{p}$

Symmetrien ↔ Erhaltungsgrößen

Symmetrieoperationen	unbeobachtbar	Erhaltungsgröße	
Translationen im Raum	absoluter Ort	Impuls	Klassische
Drehung im Raum	absolute Richtung	Drehimpuls	kontinuierliche
Translation in der Zeit	absolute Zeit	Energie	Beispiele
Eichtransformation (QM)	Phase der Wellenfunktion	el. Ladung	QM
Raumspiegelung	absolute Händigkeit	Parität P	Dielwete
Materie – Antimaterie	Materieart	C-Parität	Operationen
Zeitumkehr	absolute Zeitrichtung	T-Parität	oporationen

P:	$\vec{r} \rightarrow -\vec{r}$; $\vec{p} \rightarrow -\vec{p}$	
C :	$Q \rightarrow -Q$; $B \rightarrow -B$; $S \rightarrow -S$
T:	$t \rightarrow -t$; $\vec{r} \rightarrow \vec{r}$; $\vec{p} \rightarrow -\vec{p}$

Bís ~1957 wurden díe Naturgesetze für symmetrisch unter P gehalten...

Das θ-τ-Puzzle

Parítätseigenwerte von Teilchen?

11 KT2012 Johannes Blümer

Das θ-τ-Puzzle

 K^+

 $K^+ \to \pi^+ \pi^0$

 $K^+ \to \pi^+ \pi^+ \pi^-$

gleiche Masse, Lebensdauer... verschiedene Paritäten im Endzustand?

Paritätsverhalten phys. Größen

mpuls (Polarvektor)
$$\hat{P} \vec{x} = -\vec{x}$$
1 Vektor $\hat{P} \vec{p} = -\vec{p}$

1⁺ Axialvektor

$$\vec{L} = \vec{r} \times \vec{p}$$

$$\hat{P} \vec{L} = \vec{L}$$

$$\hat{P} (\vec{r} \times \vec{p}) = (-\vec{r}) \times (-\vec{p}) = \vec{r} \times \vec{p} = \vec{L}$$

$$\hat{P}(E) = E$$

Energie (Skalar)

0⁺ Skalar

$$\begin{aligned} \lambda &= \vec{s} \cdot \vec{p} \\ \hat{P}(\lambda) &= P(\vec{s} \cdot \vec{p}) = P \vec{s} \cdot P \vec{p} = \vec{s} \cdot (-\vec{p}) \\ &= -\lambda \end{aligned}$$

13 KT2012 Johannes Blümer

Sturz der Parität

1956: T.D. Lee & C.N. Yang schlagen experimentelle Tests vor, ob die Parität P durch die schwache Wechselwirkung verletzt wird

"In strong interactions, ... there were indeed many experiments that established parity conservation to a high degree of accuracy..."

"to decide unequivocally whether parity is conserved in weak interactions, one must perform an experiment to determine whether weak interactions differentiate the right from the left"

Question of Parity Conservation in Weak Interactions T. D. Lee and C. N. Yang, Phys. Rev. 104 (1956) 254

"for their penetrating investigation of the so-called parity laws which has led to important discoveries regarding the elementary particles"

Tsung-Dao Lee Chen Ning Yang

Wu-Experiment zur Paritätsverletzung

 C.S. Wu et al. untersuchen den Kern-ß-Zerfall von ⁶⁰Co zum Test der Erhaltung der Parität in der schwachen Wechselwirkung
 Fragestellung: gibt es eine Vorzugsrichtung der beim ß-Zerfall emittierten Elektronen relativ zum Spin des ⁶⁰Co Kerns?
 ja: Parität ist verletzt, nein: Parität ist erhalten

$${}^{60}Co(5^+) \rightarrow {}^{60}Ni^*(4^+) + e^- + \overline{v}_e$$

(1912 - 1997)

techn. Herausforderung: Ausrichtung der ⁶⁰Co-Kerne bei sehr tiefen Temperaturen: Prinzip der "adiabatischen Entmagnetisierung"

Experimental Test of Parity Conservation in Beta Decay

C. S. Wu et al., Phys. Rev. 105 (1957) 1413

Wu-Experiment

Wu-Experiment

µ⁺ -Zerfall

µ⁺ -Zerfall

µ⁺ -Zerfall

Energie [MeV]

Spektrum: "e⁺ geht bevorzugt mít max. Energíe entgegen den Neutrínos weg"

Pionzerfall

Ladungskonjugation

Ladungskonjugation C (C-Parität) : diskrete Symmetrie \Leftrightarrow multiplikative Quantenzahl, C angewandt auf Felder/Kräfte: $\vec{B} \rightarrow -\vec{B}, \vec{E} \rightarrow -\vec{E}, \vec{F} \rightarrow \vec{F}$ **Teilchen-Antiteilchen Transformation** mit der Änderung von allen ladungsartigen Quantenzahlen: $+Q \leftrightarrow -Q, +\mu \leftrightarrow -\mu, +B \leftrightarrow -B, +S \leftrightarrow -S, ...$ \Leftrightarrow alle Teilchen mit B, S, Q \neq 0 sind keine Eigenzustände von C

selbst-konjugierte Zustände

neutrale Teilchen (Q = B = S = L = 0) sind Eigenzustände von C mit der Eigenparität +1, -1 da C² $|\Psi\rangle$ = $|\Psi\rangle$

Photon γ :

C
$$|\gamma\rangle = -|\gamma\rangle$$
 da Potenziale ($\phi \rightarrow -\phi, \overrightarrow{A} \rightarrow -\overrightarrow{A}$) bei +Q $\rightarrow -Q$
J^{PC} (γ) = 1⁻⁻

neutrales π^0 :

C
$$|\pi^0\rangle = + |\pi^0\rangle$$
 da $\pi^0 \rightarrow \gamma \gamma$ (kein $\pi^0 \rightarrow \gamma \gamma \gamma$, b.r. < 3 · 10⁻⁸)
J^{PC} $(\pi^0) = 0^{-+}$

 \overline{p}

Ladungskonjugation

C-Parität von Teilchen - Antiteilchenpaaren :

in Teilchenreaktionen werden oft Teilchen-Antiteilchen-Paare TT erzeugt, diese sind selbstkonjugiert und Eigenzustände von C

relativer Bahndrehimpuls *l*, Spin s

$$\left|\pi^{0}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|u\,\overline{u}\right\rangle + \left|d\,\overline{d}\right\rangle\right)$$

 $C(TT) = (-1)^{\ell+s}$

pseudoskalares Pion mit s = 0, ℓ = 0 C = (-1)⁰ = +1

ω-Vektormeson mit s = 1,
$$l = 0$$
 C = $(-1)^1 = -1$

Zeitumkehr (1): in e.m. und starker WW erhalten

 $^{27}Al(p, \alpha) \in E_p, MeV \rightarrow$ 10.10 10.60 10.20 10.50 10.30 10.40 [Perkíns] 100 -10 s | a 10 da $\rightarrow Mg(x, p) \rightarrow$ ²⁷AI(p, x) 24 Mg(a, p) 27 Al 27 AI(p, a) 24 Mg 0.1 θ_{с.м.} = 168.1° 0.1 -0.01 13.30 13.40 13.50 13.60 13.70 $^{24}Mg(\alpha, p) \quad E_{\alpha}[MeV] \rightarrow$

Abbildung 3.9 Der differentielle Wirkungsquerschnitt für die Reaktion $^{24}Mg(\alpha,p)^{27}Al$ und die Umkehrreaktion, gemessen von Von Witsch et al., (1968).

T-verletzende-Amplitude < 0.3% der T-erhaltenden Amplitude

ein elektrisches Dipolmoment (EDM) eines kugelsymmetrischen Teilchens wäre Tverletzend, Limit für Neutronen < 3e–26 e cm