

Kern- und Teilchenphysik

Johannes Blümer

SS2012 Vorlesung-Website

KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Die höchsten Energien im Universum

Kosmische Strahlung: 100 Jahre in 10 Minuten

- V. Hess C. Anderson J. Linsley P. Auger
- 1912 1936 1938 1963
- Elektrometer Nebelkammer Luftschauer Volcano Ranch Auger-Obs.

J. Cronin 1992

Teilchen mit mehr als 100 EeV

- Heitler-Modelle
- Modellierungen
- 1964: John Linsley, Penzias& Wilson, Greisen-Zatzepin-Kuzmin
- WW von p mit CMB: Pionproduktion; GZK-Photonen, GZK-Neutrinos
- AGASA, Exotica
- Pierre Auger-Observatorium
- Teilchenphysik bei 300 TeV im c.m.s.?
 - Messung des pp-Wirkungsquerschnitts mit Auger
- Multi-messenger Astroteilchenphysik
- Neue Projekte

DISTANCE (m)

One can evaluate how much energy a primary particle has to have in order to produce a given shower by considering the total amount of ionization that is produced. This is Greisen's method of the "track length integral." Finding the size of the shower is equivalent to determining the lateral distribution of ionization. Longitudinal-

1962. The circles represent 3.3-m² scintillation detectors. The numbers near the circles are the shower densities (particles/ m^2) registered in this event, No. 2-4834. Point "A" is the estimated location of the shower core. The circular contours about that point aid in verifying the core location by inspection.

IKP in KCETA

e.m. Luftschauer

Jim Matthews, Astroparticle Physics 22 (2005) 387–397

Fig. 7-5 A shower developing through a number of brass plates 1.25 cm thick placed across a cloud chamber. The shower was initiated in the top plate by an incident high-energy electron or photon. The photograph was taken by the MIT cosmic-ray group.

e.m. Luftschauer

Jim Matthews, Astroparticle Physics 22 (2005) 387–397

 $N_{max} \propto E_0$ Linearität des Signals $X_{max} \propto ln(E_0) log.$ Größenskala

Fig. 7-5 A shower developing through a number of brass plates 1.25 cm thick placed across a cloud chamber. The shower was initiated in the top plate by an incident high-energy electron or photon. The photograph was taken by the MIT cosmic-ray group.

Extensive air showers

Photon-Proton-Reaktion: GZK

END TO THE COSMIC-RAY SPECTRUM?

PRL 1966 Kenneth Greisen

Cornell University, Ithaca, New York (Received 1 April 1966)

The primary cosmic-ray spectrum has been measured up to an energy of 10^{20} eV,¹ and several groups have described projects under development or in mind² to investigate the spectrum further, into the energy range 10^{21} - 10^{22} eV. This note predicts that above 10^{20} eV the primary spectrum will steepen abruptly, and the experiments in preparation will at last observe it to have a cosmologically meaningful termi-

The cause of the catastrophic cutoff is the intense isotropic radiation first detected by

10³

One cannot save the day for superhigh-energy cosmic rays by calling on heavy nuclei. The threshold for photodisintegration against photons of 7×10^{-4} eV is only 5×10^{18} eV/nucleon, and at 10^{19} eV/nucleon most of the photons can excite the giant dipole resonance, for which the cross section is on the order of 10^{-25} cm². At this energy the mean path for photodisintegration is on the order of 2 $\times 10^{22}$ cm, much less than the size of the galaxy. Even nuclei 5 times less energetic would be decomposed in a time short compared with the expansion time of the universe, owing to the high-frequency tail of the black-body spectrum.

 $\sqrt{s} \, GeV$

10⁴

GZK: Frühe analytische Berechnungen...

FIG. 1. Total photomeson production cross section and inelasticity as a function of gamma-ray energy in the proton rest system.

FIG. 2. Characteristic lifetime and attenuation mean free path for high-energy protons as a function of energy.

GZK: Frühe analytische Berechnungen...

FIG. 1. Total photomeson production cross section and inelasticity as a function of gamma-ray energy in the proton rest system.

FIG. 2. Characteristic lifetime and attenuation mean free path for high-energy protons as a function of energy.

Greisen-Zatsepin-Kuzmin-Effekt

protons scatter with the CMB: threshold effect above 5×10¹⁹ eV: p+ $\gamma_{3K} \rightarrow \Delta(1232) \rightarrow p\pi^0 \rightarrow p \gamma\gamma \text{ or } n\pi^+ \rightarrow pe^+\nu$ $2E_p\epsilon > (m_{\Delta}^2 - m_p^2)$

Energiespektrum der kosmischen Strahlung

Pierre Auger-Observatorium

American Museum & Natural History 🏵

fluorescent detectors surface detectors

PIERRE AUGER OBSERVATORY

16

Energiespektrum und Schwerpunktsenergie

neue MC-Simulation zur Ausbreitung von Kernen

neue MC-Simulation zur Ausbreitung von Kernen

Zusammensetzung bis 40 EeV

Zusammensetzung bis 40 EeV

WQ-Messung aus Luftschauern

FIG. 1: Unbinned likelihood fit to obtain Λ_{η} (thick line). The X_{max} -distribution is unbiased by the fiducial geometry selection applied in the range of the fit.

[Astroparticle Physics 34 (2010) 314-326]

[Astroparticle Physics 34 (2010) 314–326]

[Astroparticle Physics 34 (2010) 314-326]

composition at and above the GZK threshold?

alternative explanations like increasing cross section?

particle physics at $\sqrt{s} > 350$ TeV

Magnetfelder und extragalaktische Kosm. Strahlung

Y (Mpc)

	Klassif.	Energie	B-Feld	Rad- Feld	BeobReichw	Status	Quellen	Det	Proj	Fragen
e+e-		MeVGeV	!!!	!!!	lokal	\checkmark	Paarb	div		
Photonen	СМВ	meV	-	"GZK"	Kosm	\checkmark	Urknall	Sat	COBE, WMAP, PLANCK	Kosmologie
	Radio	10-100 meV	-	-	Kosm	\checkmark	Obj	Ant	LOFAR SKA	Frühes Universum
	vis	eV	-	"IR, Vis"	Kosm	\checkmark	Obj	Tel	div	viele
	X	keVGeV	-	-	e-gal	\checkmark	Obj	Sat	Fermi	viele; Obj
	γ	GeV100 TeV	-	!	e-Gal	\checkmark	Obj	Sat, ChTel	HESS MAGIC CTA	viele; Obj
	GZK	1>100 EeV	! paar	-	e-Gal <100 Mpc	-	GZK	Cher	Auger	∃ GZK?
Teilchen	Sol	<10 GeV	!!!	-	Sol	\checkmark	Sol	Sat	div	viele; Obj; Anw
	Gal.	<1 EeV	!!	-	Gal	\checkmark	SN?	Sat, Array	Kascade Grande, AMS	(Quellen); Spektren A, E
	eGal.	1>100 EeV	!	IR, GZK	e-Gal <100 Mpc	\checkmark	AGN?	Array (ISS Tel)	Auger	Quellen; Spektren A, E
Neutrinos	relic	1.9 K	-	-	Kosm	-	Urknall	?	?	∃?
	SN	10 MeV	-	-	Gal	20	SN	UG-kt	SNO, SuperK uvam	SN-Modellierung
	Sol	<10 MeV	-	-	Sol	\checkmark	Sol	UG-kt	Borexino	Sonnenmodell; v-Oszill.
	HE-Obj	TeVEeV	-	-	e-Gal	-	Obj	UG-Gt	IceCube	Existenz? Quellen, DM- Suche
	GZK	1>100 EeV	-	-	e-Gal	-	GZK	UG-Gt	Auger	Existenz? GZK
DM		?	-	_	?	-	Clust	UG-kgt		Existenz? Quellen? DM- Teilchen?
GW	10	n.a.	-	-	Gal	-	Kollapse	Intf.		Existenz? Quellen

Neue Projekte

- LHC, LHC, LHC
- SuperB
- Neutrinostrahlen, Neutrino-Factory
- Megatonnen-Detektoren
- CR-Observatorium mit 30 000 km²
- Weltraum-basierte Teleskope: JEM-EUSO o.ä.
- Gamma-Astronomie: H.E.S.S. (2), MAGIC, CTA
- HE-Neutrino-Astronomie: IceCube++, KM3NeT
- Suche nach Dunkler Materie mit ≥ 1 t Targetmaterial
 Doppelter Betazerfall
 - +++

The predictable future: LHC Time-line

2009	Start of LHC Run 1: 7 TeV centre of mass energy, luminosity ramping up to few 10 ³³ cm ⁻² s ⁻¹ , few fb ⁻¹ delivered	
2013/14	LHC shut-down to prepare machine for design energy and nominal luminosity	
	Run 2: Ramp up luminosity to nominal $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$, ~50 to 100 fb ⁻¹	
2017 or 18	Injector and LHC Phase-I upgrades to go to ultimate luminosity	
	Run 3: Ramp up luminosity to 2.2 x nominal, reaching ~100 fb ⁻¹ / year accumulate few hundred fb ⁻¹	
~2021/22	Phase-II: High-luminosity LHC. New focussing magnets and CRAB cavities for very high luminosity with levelling	
	Run 4: Collect data until > 3000 fb ⁻¹	
2030	ILC, High energy LHC, ?	

26

KT2012

Johannes Blümer

			H Bachacon					
Ove	Oversimplified summary							
Unfortunately, no hint of New Physics in the LHC data (yet)								
		Lower Limit (95% C.L.)						
	SUSY ($m_{\tilde{q}} = m_{\tilde{g}}$)	1 TeV						
	Gauge bosons (SSM)	2 TeV						
	Excited quark	3 TeV						

HE-LHC – LHC modifications

Multi-TeV Linear Colliders challenges

- Accelerating structures: large accelerating fields with low breakdown rate
- RF power source: high peak power with high efficiency

- Beam acceleration: MW of beam power with high gradient and high efficiency
- Generation of ultra-low emittances: micron rad-m in H, nano rad-m in V
- Preservation of low emittances in strong wake field environment Alignment (micron range) Stability (nano-meter range)
- Small beam sizes at Interaction Point: Focusing to nm beam sizes
 Stability to sub nano-meter

July 23, 2011

S. Myers ECFA-EPS, Grenoble

Linear Collider layouts

http://www.linearcollider.org/cms http://clic-study.web.cern.ch/CLIC-Study/

The ILC – a step-by-step guide

How does the ILC work? Like any complex machine, the 31 kilometre-long accelerator is made up of several systems - each one an essential component for launching particles at close to the speed of light. This step-by-step guide explains how the ILC works.

Positrons

Electrons

To produce electrons we will direct high-intensity, twonanosecond light pulses from a laser at a target and knock out billions of electrons per pulse. We will gather the electrons using electric and magnetic fields to create bunches of particles and launch them into a 250-metre linear accelerator that boosts

Positrons, the antimatter partners of electrons, do

• The linacs

Two main linear accelerators (called linacs), one for electrons and one for positrons, each 12 kilometres long, will accelerate the bunches of particles toward the collision point. Each accelerator consists of hollow structures called superconducting cavities, nestled within a series of cooled vessels known as cryomodules. The modules use liquid helium to cool the cavities to –271 °C, only slightly above absolute zero, to make them superconducting. Electromagnetic waves fill the cavities to 'push' the particles, accelerating them to energies up to 250 GeV. Each electron and positron bunch will then contain an energy of about a kilojoule, which corresponds to an average beam power of roughly 10 megawatts. The whole process of production of electrons and positrons, damping, and acceleration will repeat five times every second.

not exist naturally on Earth. To produce them, we will send the high-energy electron beam through an undulator, a special arrangement of magnets in which electrons are sent on a 'roller coaster' course. Main Linac This turbulent motion will cause the electrons to emit a stream of X-ray photons. Just beyond the positrons undulator the electrons will return to the main accelerator, while the photons will hit a titanium-alloy target and produce pairs of electrons and positrons. **Electron Source** their energy to 5 GeV. The positrons will be collected and launched into Damping Rings their own 250-metre 5-GeV accelerator. Main Linac length = 310 fields 31 ^{km} Electrons The damping rings The beam delivery systems When created, neither the electron nor the positron In order to maximise the luminosity, the bunches bunches are compact enough to yield the high denof particles must be extremely small. A series of sity needed to produce copious collisions inside the magnets, arranged along two 2-kilometre beam Positron source

The detectors

Travelling towards each other at nearly the speed of light, the electron and positron bunches will collide with a total energy of up to around 500 GeV. We will record the spectacular collisions in two interchangeable giant particle detectors. These work like gigantic cameras, taking snapshots of the fleeting particles produced by the electron-positron collisions. The two detectors will incorporate different but complementary state-of-the-art technologies to capture this precious information about every particle produced in each interaction. Having these two detectors will allow vital cross-checking of the potentially subtle physics discovery signatures.

detectors. Two 6.7 kilometre-circumference damping rings, one for electrons and one for positrons, will solve this problem. In each ring, the bunches will repeatedly traverse a series of wigglers, devices that causes the beam trajectories to 'wiggle' in a way that makes the bunches more compact. Each bunch will spend approximately two tenths of a second in its damping ring, circling roughly 10,000 times before being kicked out. Magnets will keep the particles on track and focused in their circular orbits around the ring. Upon exiting the damping rings, the bunches will be a few millimetres long and thinner than a human hair.

delivery systems on each side of the collision point, will focus the beams to a few nanometres in height and a few hundred nanometres in width. The beam delivery systems will scrape off stray particles in the beams and protect the sensitive magnets and detectors. Magnets will steer the electrons and positrons into head-on collisions.

LAGUNA-Projekt

MEMPHYS

32 KT2012 Johannes Blümer

TRE

JEM-EUSO

Signals: Detectable shower energies with the EUSO camera are above 3×10^{19} eV.

HESS-2

Cherenkov Telescope Array CTA

KM3NeT

