

Kerne und Teilchen

Moderne Physik III

Vorlesung # 2

2. Eigenschaften stabiler Kerne

- Wirkungsquerschnitt: Definition, totaler Wq. σ_{tot}
- differentieller Wq. d\sigma/d\Omega
- Mott-Streuung
- Formfaktor F(q²) &

Ladungsverteilung $\rho(r)$ von Kernen

2. Eigenschaften stabiler Kerne

Radius & Form

- Größe: Kernradius (R = 1.2 fm \cdot A^{1/3})
- Form: sphärisch / Deformation (prolat/oblat)

Dichte & Masse

- Kernmaterie mit konstanter Dichte ($\rho = 10^{17} \text{ kg/m}^3$)
- Kernmassen & Stabilitätstal

Zustände

- Quantenzahlen Spin S, Parität P, magnetisches Moment µ
- Schalenstruktur: "Leucht"-Nukleonen, kollektive Anregung

Reaktionen

- Bindungsenergien: Fusion & Spaltung, nukl. Astrophysik
- spezielle Reaktionen: Austausch/Transfer

Einheiten

neue Wechselwirkungen begrenzter Reichweite: starke & schwache Ww.

Typischer Aufbau eines Streuexperiments: (Bs. Rutherfordexperiment) ein Teilchenstrahl trifft senkrecht auf ein dünnes Target (´fixed target´ Aufbau)

Rate W_r an Streuereignissen [s⁻¹] ~ totalem Wirkungsquerschnitt σ_{tot}

der Wirkungsquerschnitt hat die Dimension einer Fläche

 σ_{tot} ist ein Maß für Wahrscheinlichkeit einer (Streu-)Reaktion

 $\sigma_{tot} = \frac{Zahl der Reaktionen pro Sekunde pro Streuzentrum (Targetkern)}{Zahl einfallender Teilchen pro Sekunde pro cm² (Fluss-/Stromdichte)$

Wirkungsquerschnitt als Streufläche

Einheit des Wirkungsquerschnitts σ_{tot} : $1 \text{ barn} = 1 \text{ b} = 10^{-24} \text{ cm}^2$ [barn = Scheunentor] 1 mb = 10^{-27} cm², Teilchenphysik: 1 pb = 10^{-36} cm², 1 fb = 10^{-39} cm² σ_{tot} stellt eine effektive Fläche dar für Streuprozesse/Wechselwirkungen geometrischer Streuquerschnitt: $\sigma_{geom} = \pi \cdot (R + r)^2$ Beispiel für Streuung eines 6 MeV α -Teilchens an ¹⁹⁷Au: $R(^{197}Au) = 7 \text{ fm} = 7 \cdot 10^{-15} \text{ m}$ $A = \pi r^2 = 154 \text{ fm}^2 = 1.54 \cdot 10^{-28} \text{ m}^2$ $R_0 = 1.2 \text{ fm } A^{1/3}$ geometrischer Streuquerschnitt $\sigma_{tot,geom}$ = 1.54 b $[1 \text{ barn} = 100 \text{ fm}^2]$ d.h. ein α -Teilchen mit Stoßparameter b = 7 fm hat einen Wirkungsquerschnitt σ_{tot} = 1.54 b für elastische Streuung an ¹⁹⁷ Au (Streuwinkel $\theta \sim 140^{\circ}$) - für Neutronen-Reaktionen wird auch beobachtet: $\sigma_{tot} > \sigma_{geom}$

- für Niederenergie-Neutrino-Reaktionen an Kernen $\sigma_{tot} \sim 10^{-18}$ b (~10⁻⁶ pb)

Wirkungsquerschnitt - Beispiele

zur Messung von σ_{tot} erforderlich:

- Zahl einlaufender Teilchen/s
- Messdauer t
- Detektor-Raumwinkelelement d Ω
- Streuwinkel θ
- Zahl gestreuter Teilchen
- Targetdicke
- Targetdichte
- Kernmasse der Targetatome
- Avogadrozahl

Energieabhängigkeit von σ_{tot}

kann z.B. zum Nachweis neuer Teilchen (**Resonanzen**) führen, hier bei Reaktion $\gamma + p \rightarrow \pi^0 + p$

Differentieller Wirkungsquerschnitt d σ /d Ω

ein Detektor(-element) deckt oft nur einen sehr kleinen Teil des gesamten Raumwinkels ab (d.h. ein Raumwinkel-Element d Ω = F/r² ab): der Detektor misst dann den

differentiellen Wirkungsquerschnitt d σ /d Ω :

 $\frac{d\sigma}{d\Omega} = \frac{Zahl \text{ der nach } d\Omega \text{ gestreuten Teilchen pro Sekunde pro Streuzentrum}}{Zahl einfallender Teilchen pro Sekunde pro cm² (Fluss-/Stromdichte)}$

Einheit des differentiellen Wirkungsquerschnitts: $[cm^2/sr bzw. b/sr]$ gesamter Raumwinkel um Target: $d\Omega = 4 \pi sr$ i.a. gilt $d\sigma/d\Omega = d\sigma/d\Omega(\theta,\phi)$, diff. Wq. ist abhängig von Polar- & Azimuthwinkel oft gilt azimutale Symmetrie, d.h. $d\sigma/d\Omega = d\sigma/d\Omega(\theta)$

ein paralleler Teilchenstrahl (z.B. α 's) fliegt in einem dünnen Target durch Kreisring mit der **Fläche d** σ = $2\pi \cdot b \cdot |db|$ (mit Streuparametern [b, b+db]) werde durch elastische Streuprozesse in den Raumwinkel d Ω gestreut (mit Streuwinkeln [θ , θ -d θ])

differentieller Wirkungsquerschnitt $d\sigma/d\Omega$: beschreibt die Winkelverteilung

gestreuter Teilchen in den Raumwinkel d Ω

Rate R gestreuter Teilchen in einem Detektor mit Fläche F im Abstand d:

Beispiel: Rutherford-Streuung

Rutherford-Streuung:

elastische Streuung eines α -Teilchens am Coulomb-Feld eines schweren Au-Kerns (keine Rückstoß-Energie) \Rightarrow Impulsänderung (-transfer) Δp

für die Rutherfordstreuung am konservativen Coulombfeld erhält man:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \left(\frac{1}{4\pi\varepsilon_0} \cdot \frac{z \cdot Z \cdot e^2}{4E_{kin}}\right)^2 \cdot \frac{1}{\sin^4(\Theta/2)}$$

mit den natürlichen Einheiten $\hbar = c = 1$ erhält man:

$$\left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} = \left(\frac{z \cdot Z \cdot \alpha}{4E_{kin}}\right)^2 \cdot \frac{1}{\sin^4(\Theta/2)}$$

mit Feinstrukturkonstante $\alpha = 1/137$

mit dimensionsbehafteten Einheiten [E in MeV] erhält man:

$$\frac{d\sigma}{d\Omega}[b] \approx 1.3 \cdot 10^{-3} \cdot \left(\frac{z \cdot Z}{E_0[MeV]}\right)^2 \cdot \frac{1}{\sin^4(\theta/2)}$$

divergenter Verlauf $d\sigma/d\Omega \rightarrow \infty$ für $\theta \rightarrow 0$: Stoßparameter b wird größer als Elektronenhülle (Screening des Potenzials), bei vollständig ionisiertem Kern: Divergenz ist Effekt der elektromagnet. Ww. mit langreichweitigem V(r) ~ 1/r

Wirkungsquerschnitt ottot & Luminosität

der totale Wirkungsquerschnitt σ_{tot} ergibt sich aus der Integration von d σ /d Ω :

$$\sigma_{tot} = \int_0^{2\pi} d\Phi \cdot \int_{-1}^1 d\cos\theta \left(\frac{d\sigma(\theta,\phi)}{d\Omega}\right)$$

 Φ : Azimutwinkel, θ : Streuwinkel

für Streuungen mit einer azimutalen Symmetrie gilt:

$$\sigma_{tot} = 2\pi \cdot \int_0^{\pi} d\theta \cdot \sin \theta \cdot \left(\frac{d\sigma(\theta)}{d\Omega}\right)$$

Teilchenphysik: Zusammenfassung von Strahl- & Target-Eigenschaften: Luminosität

$$L = \Phi \cdot N_{Target} \implies W_r = L \cdot \sigma_{tot} \implies N = \sigma_{tot} \cdot \int L dt$$

Einheit [cm⁻² s⁻¹] Rate [s⁻¹] integrierte Luminosität

Rutherfordstreuung – elastische, nicht-relativistische Streuung von α -Teilchen (S=0) am Coulombfeld des punktförmigen Kerns

bei höheren Energien E_{kin} bzw. anderen Teilchenarten mit Spin (e, μ , p, ν ...) entstehen Abweichungen durch:

- relativistische Effekte
- Effekte der starken Wechselwirkung (anderes Potentialverhalten)
- endliche Ausdehnung des Kerns: Ladungsverteilung $\rho(r)$

- interner **Spin** des Projektils (Dirac-Gl.)

.) [🖉

Mott-Streuung

+ Formfaktoren

$$\lambda = \frac{2\pi \cdot \hbar}{p} = \frac{2\pi \cdot \hbar}{\gamma \cdot m \cdot v}$$

Nevill F. Mott (1905–1996)

de Broglie Wellenlänge λ des Projektils $\lambda \sim$ Kernradius R (1 fm⁻¹ = 200 MeV/c)

Impulsübertrag q

Definition für den Impulsübertrag \vec{q} bei einer elastischen Streuung:

 $\vec{q} = \vec{p}_i - \vec{p}_f$

Betrag des Impulstransfers q = |q|:

 $q^2 = p_i^2 + p_f^2 - 2 \cdot p_i \cdot p_f \cdot \cos \theta$

ohne Kernrückstoß gilt $p_i = p_f = p$

$$q^{2} = 2 \cdot p^{2} \cdot (1 - \cos \theta) = 4 \cdot p^{2} \cdot \sin^{2} \frac{\theta}{2} \qquad q = 2 p \cdot \sin(\theta/2)$$

damit nochmals die nichtrelativistische Rutherfordstreuung:

$$\frac{d\sigma}{d\Omega} = (2 \cdot m_e \cdot Z \cdot \alpha)^2 \cdot \frac{1}{q^4} \quad \text{mit } \mathsf{E}_{\mathsf{kin}} = \mathsf{p}^2 / 2 \,\mathsf{m}_e \quad \Longrightarrow \quad \frac{d\sigma/d\Omega \sim 1/q^4}{\sim} (\mathsf{Photon propagator } 1/q^2)^2$$

Mottstreuung

vorwärts

Mott-Streuquerschnitt für relativistische Projektile mit Spin (kein Rückstoß):

rückwärts

→ Rückwärtsstreuung stark unterdrückt

Berücksichtigung der endlichen Kernausdehnung, d.h. der ausgedehnten Ladungsverteilung $\rho(r)$ der Protonen im Kern, durch den Formfaktor F(q) Born´sche Näherung:

> für Kerne ist F(q²) eine oszillierende

> > **Funktion**

Beugung einer einfallenden ebene Welle an einer Scheibe

Formfaktor F(q²) = Fourier-Transformierte der Ladungsverteilung ρ(r)

$$F(q^{2}) = \int \rho(r) \cdot e^{i\vec{q}\cdot\vec{r}} d^{3}\vec{r}$$

mit $\int \rho(r) d^{3}\vec{r} = 1$

Modifikation des differentiellen Mott-Wirkungsquerschnitts

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{exp.}} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$

Formfaktoren sind wichtig ab einem Impulstransfer q ~ 1/R, d.h. q ~ 200 MeV/c

Beispiele für Ladungsverteilungen $\rho(r)$ & zugehörige Formfaktoren F(q²)

punktförmig $\delta(r)$

$$\rho(r) = \frac{1}{4\pi} \cdot \delta(\vec{r}) \implies F(q^2) = 1$$

weit entfernte Flugbahnen, Kern erscheint punktförmig, keine Beeinflussung

homogene Kugel

a = Kernradius

$$\rho(r) = \rho_0 = \frac{3}{4\pi} \cdot \frac{1}{a^3} \implies F(q^2) = \frac{3}{(aq)^3} \cdot [\sin(aq) - aq \cdot \cos(aq)]$$

oszillierender Formfaktor

aus den Beugungsminima kann die Größe des Kerns bestimmt werden

Kernladungsverteilungen

Anpassung von $\rho(r)$ an experimentelle Streudaten $(d\sigma/d\Omega)_{exp}$ ergibt die Saxon-Woods Verteilung für ausgedehnte Kerne:

Ladungsverteilung & Formfaktor

