

Kerne und Teilchen

Moderne Physik III

Vorlesung # 07

3. Instabile Kerne

- radioaktiver Zerfall: Grundlagen
- Lebensdauer, Zerfallskonstante
- Verzweigung bei Zerfällen
- α-Zerfall: Grundlagen
- Zerfallsketten von primordialen Elementen
- Tunneleffekt: Transmissionswahrscheinlichkeit

3. Instabile Kerne

- Karlsruher Nuklidkarte (seit 1958) gibt einen umfassenden Überblick über alle bekannten stabilen und instabilen Kerne & ihre Zerfallsdaten:
- Isotopenhäufigkeit

3.1 radioaktiver Zerfall

0.0

in einem Ensemble (Quelle) mit einer großen Anzahl N instabiler Teilchen bzw. radioaktiver Kernen führen radioaktive Zerfälle in einem Zeitintervall dt zu einer Abnahme dN der Ensemble-/Kern-Anzahl

Zerfallskonstante λ **ist Teilchen- bzw. Kern-spezifisch**, λ **in [s**-1] Beispiel: α -Zerfall von ²²⁶Ra:

 $\lambda = 1.4 \cdot 10^{-11} / s$

Maß für statistische Wahrscheinlichkeit, im Zeitintervall

dt = 1s zu zerfallen

$$A = \frac{dN}{dt} = -\lambda \cdot N$$

Aktivität A einer Quelle (keine Konstante!) :

- ~ zur Zerfallskonstanten λ ,
- ~ Ensembleanzahl N (nimmt ab, damit auch A)

Exp. Zerfallsgesetz & Halbwertszeit t_{1/2}

in einem Ensemble N(t), das zum Zeitpunkt t = 0 aus N(0) Kernen besteht, beobachtet man eine **exponentielle Abnahme** der Zahl der Kerne

$$\int_{N_0}^{N} \frac{dN}{N} = -\lambda \cdot \int_{0}^{t} dt \qquad \square$$

$$N(t) = N(0) \cdot e^{-\lambda \cdot t}$$

exponentielles Zerfallsgesetz

bei exponentiellen Zerfällen mit einer Zerfallskonstanten λ lassen sich 2 charakteristische Zeiten definieren:

1. Halbwertszeit t_{1/2}:

nach dem Zeitintervall t = $t_{\frac{1}{2}}$ sind noch die Hälfte der ursprünglichen Kerne vorhanden, d.h. eine Hälfte N(0)/2 des Ensembles ist bereits zerfallen N($t_{\frac{1}{2}}$) = $\frac{1}{2} \cdot N(0) \leftrightarrow \frac{1}{2} = e^{(-\lambda \cdot t_{\frac{1}{2}})}$ t = 0 ist beliebig wählbar !

2. mittlere Lebensdauer τ:

nach einem Zeitintervall t = τ (d.h. der mittleren Lebensdauer) sind noch N(τ) = N(0)/e radioaktive Kerne vorhanden (1/e = 36.8%)

- mittlere Lebensdauer =
- Inverses der Zerfallskonstanten

 $\tau = 10^{-24} \text{ s} (\Delta^{++} \rightarrow p + \pi^{+}) \Rightarrow \dots \tau = 12.3 \text{ a} (\mathsf{T}_{2} \text{ } \beta\text{-Zerfall}) \Rightarrow \dots 10^{21} \text{ a} (2\nu \text{B}\text{B}) \dots$

$$t_{1/2} = \tau \cdot \ln 2 = 0.693 \cdot \tau$$

 $t_{1/2} = \ln 2/\lambda = 0.693/\lambda$ $\tau = 1.443 \cdot t_{1/2}$

Zerfallsbreite Γ :

ein instabiler Zustand (Resonanz) hat eine charakteristische Energie-Breite Γ

 $\Gamma = \frac{\hbar}{\tau} = \hbar \cdot \lambda$

Heisenbergsche Unschärferelation

Radioaktive Lebensdauer: SN1a Lichtkurve

SN1a: bei der thermonuklearen Detonation eines weißen Zwergs werden bei t = 0 große Mengen an ⁵⁶Ni erzeugt, das mit einer mittleren Lebensdauer τ (⁵⁶Ni) = 9 Tage durch Elektroneneinfang zerfällt, erzeugtes ⁵⁶Co zerfällt weiter radioaktives Zerfallsschema ⁵⁶Ni \rightarrow ⁵⁶Co \rightarrow ⁵⁶Fe

SN-Lichtkurven folgen τ des Zerfalls

Aktivität A(t) = -dN/dt beschreibt die Zahl dN der Zerfälle pro Zeiteinheit dt $A(t) = A(0) \cdot e^{-\lambda \cdot t}$ mit wichtiger (s.o.) Relation $A(t) = \lambda \cdot N(t)$
die Aktivität einer Quelle nimmt exponentiell ab1 Bq = 1 Zerfall / s1 Becquerel = $2.70 \cdot 10^{-11}$ Ci (nach Henri Becquerel)1 Ci = $3.7 \cdot 10^{10}$ Zerfälle / salte Einheit Curie, = Aktivität 1 g Radium (²²⁶Ra)
(nach Pierre Curie)

abgeleitete Größen:

- spezifische Aktivität [Bq/kg], Aktivitätskonzentration [Bq/m³]

- Beispiele: ³H hat 3.6 · 10¹⁴ Bq/g, ¹⁴C hat 1.7 · 10¹¹ Bq/g ¹³³Xe hat 6.8 · 10¹⁵ Bq/g, ^{nat}U hat 2.5 · 10⁴ Bq/g

Energiedosis einer Quelle, neue Einheit: 1 Gray = absorbierte Energie einer Quelle in einer Materialprobe mit dem Volumen V und der Dichte ρ alte Einheit: 1 rad = 10⁻² J/kg

Beispiele für Aktivitäten:

- extrem untergrundarme Materialien für Astroteilchenphysik:

~100 nBq/kg für die Suche nach der dunklen Materie, 0vßß-Zerfall (Neutrino-Physik)

- menschlicher Körper: A ~ 3.7 kBq (⁴⁰K, ¹⁴C)
- Haus: Luft A ~ 1kBq durch Radon (²²²Rn), 100 m² Wände mit ~10⁻⁶ (²³²Th)/g \Rightarrow 10¹⁰ γ 's/Jahr
- Laborquellen/Praktikum: A ~ einige mCi
- KATRIN &-Zerfallsquelle: A ~ 10¹¹ &-Zerfälle/s (~ 4 Ci)
- Eichquellen für solare Neutrinos: MCi, GCi

Zerfallsarten – Übersicht

ein instabiler Kern (Mutternuklid) kann sich über verschiedene Zerfallsarten in das Tochternuklid umwandeln:

α-Zerfall: Änderung der Kernladung $\Delta Z = -2$, $\Delta A = 4$, schwere Kerne β-Zerfall, Elektron-Einfang: Änderung $|\Delta Z| = 1$, $\Delta A = 0$

γ-Zerfall: Änderung $\Delta Z = 0$, $\Delta A = 0$ Spaltung: Änderung $\Delta Z >> 1$, $\Delta A >> 1$ Teilchenzerfall: Emission p, n

Zerfallsarten von Kernen

Zerfälle mit Verzweigung

radioaktive Zerfälle können in verschiedene Kanäle erfolgen Beispiele: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ oder $\pi^+ \rightarrow e^+ + \nu_e$ (Pionzerfall in Myon/Positron) ${}^{212}\text{Bi} \rightarrow {}^{212}\text{Po} + e^- + \nu_e$ (64%) oder ${}^{212}\text{Bi} \rightarrow {}^{208}\text{Tl} + \alpha$ (36%)

zeitliche Abnahme dN/dt des Mutterkerns/Ausgangsteilchens:

$$\frac{dN}{dt} = -\lambda_1 N - \lambda_2 N = N(0) \cdot e^{-(\lambda_1 + \lambda_2)t}$$

$$\lambda = \lambda_1 + \lambda_2$$

$$\lambda: \text{ totale Breite}$$

$$\lambda_i: \text{ Partialbreite}$$

Definition der Verzweigungsverhältnisse (branching ratios) f₁, f₂:

$$f_1 = \frac{\lambda_1}{\lambda}$$
 $f_2 = \frac{\lambda_2}{\lambda}$

β-Aktivität: $A_{\beta}(t) = N \cdot \lambda \cdot f_1 = N \cdot \lambda_1$ **α-Aktivität:** $A_{\alpha}(t) = N \cdot \lambda \cdot f_2 = N \cdot \lambda_2$

3.2 Alpha – Zerfall

10-24

schwere Kerne mit A > 150 (Sm) können durch α -Emission zerfallen – falls: Q_{α} = B(Z - 2, A - 4) - B(Z, A) + B_{α}(28.3 MeV) > 0

der Q-Wert Q_{α} ist entscheidend für die Halbwertszeit $t_{1/2}$ des Isotops:

- langsamster α -Zerfall: ²³²Th \rightarrow ²²⁸Ra + α t_{1/2} = 1.4 · 10¹⁰ a
- schnellster α -Zerfall: ²¹²Po \rightarrow ²⁰⁸Pb + α t_{1/2} = 3.5 · 10⁻⁷ s $\stackrel{<}{\leftarrow}$

 α -Teilchen sind mono-energetisch (typischer Wert: E_{kin} ~ einige MeV)

- Visualisierung in Nebelkammer-Aufnahmen: gleiche Reichweite
- Alpha-Teilchen haben eine hohe Ionisationsrate & geringe Reichweite:
 katiologische Konsequenzen, Verwendung von Radionuklidbatterien

α – Zerfall: kinetische Energien

- vor dem α -Zerfall: ruhender Mutterkern E_{kin}(MK) = 0
- nach dem α -Zerfall: kinetische Energie α -Teilchen E_{kin}(α)

Rückstoß-Energie des Tochterkerns Ekin(TK)

mit Massenverhältnis

$$\frac{M_{\alpha}}{M_{TK}} \cong \frac{4}{A-4}$$

ergeben sich folgende kinetische Energien:

$$E_{kin}(TK) \cong \frac{4}{A} \cdot Q_{\alpha}$$
 $E_{kin}(\alpha) \cong \frac{A-4}{A} \cdot Q_{\alpha}$

 $E_{kin}(\alpha) >> E_{kin}(TK)$

α-Zerfälle können auf angeregte Niveaus des Tochterkerns führen

²²⁶Ra Zerfallsschema

verschiedene α-Energien

α-Zerfallsketten

die Emission eines α-Teilchens aus einem Kern beruht auf dem quantenmechanischen Tunneleffekt (1929: G. Gamov & E. Condon)

- Beschränkung auf 1 dim. Schrödinger-Gleichung (effektive 1-dim. Potenziale)

numerisches Beispiel: $^{232}Th \rightarrow ^{228}Ra + ^{4}He$ $T_{\alpha} = 4.05 \text{ MeV} (kinet. Energie des \alpha)$ $\tau(^{232}Th) = 1.39 \cdot 10^{10} \text{ a}$ R = 7.4 fm $V_{0} = 14 \text{ MeV} (Z \sim 90, \text{ Coulombbarriere})$ $U_{0} = 40 \text{ MeV} [\text{Tiefe des Kernpotenzials}]$ Bestimmung der Transmissions-

Wahrscheinlichkeit T durch die Coulombbarriere V_c(r)

Lösungen der 1-dim. Schrödinger-Gleichung: Wellenfunktionen Ψ_1, Ψ_2, Ψ_3 $\Psi_1 = \alpha_1 \cdot e^{ik_1x} + \beta_1 \cdot e^{-ik_1x}, \quad k_1 = \sqrt{2mT_\alpha}$ aus-/einlaufende Welle vor Barriere $\Psi_2 = \alpha_2 \cdot e^{-k_2 x} + \beta_2 \cdot e^{k_2 x}, \quad k_2 = \sqrt{2m \cdot (U_0 - T_\alpha)}$ in Barriere $\Psi_3 = \alpha_3 \cdot e^{ik_3x}$, $k_3 = \sqrt{2mT_\alpha}$ auslaufende Welle nach Barriere (für α -Zerfälle mit $\Delta \ell = 0$) Stetigkeitsbedingungen bei Energie [MeV] $x=0: \Psi_{1}=\Psi_{2} \quad \Psi'_{1}=\Psi'_{2}$ $x=d: \Psi_2=\Psi_3 \quad \Psi_2'=\Psi_3'$ α2 **Transmissionskoeffizient T** $T = \left| \frac{\alpha_3}{\alpha_1} \right|^2 = (1 + \frac{U_0^2}{U_0^2 - (2T_\alpha - U_0)^2 \cdot \sinh^2 k_2 d})^{-1}$ 10 T_α ß₂ 20 30 0 10 ß1 Abstand x [fm]

Lösungen der 3-dim. Schrödinger-Gleichung: Wellenfunktionen Ψ_1, Ψ_2, Ψ_3 Zerlegung der Coulomb-Schwellen V_c(r) mit Breite dr

$$T \propto e^{-G}$$
 mit

Transmissionswahrscheinlichkeit

 $G = 2 \cdot \pi \cdot Z \cdot \alpha \cdot \sqrt{\frac{2 \cdot m_{\alpha}}{T_{\alpha}}}$ α -To Mas kine

Gamov-Faktor für α -Teilchen mit z = 2 Masse m_{α} und kinetischer Energie T_{α}

Berechnung der Zerfallskonstanten
$$\lambda$$

$$\lambda = \lambda_0 \cdot \frac{\mathsf{v}}{2R} \cdot T$$

λ₀: Wahrscheinlichkeit der Bildung eines α
 v/2R: Anzahl der Tunnelversuche / Zeiteinheit
 T: Transmissionswahrscheinlichkeit

$$\lambda = C(T_{\alpha}, R) \cdot e^{-G}$$

Geiger – Nuttall Regel

der Gamov-Faktor G wird mit ansteigender α -Energie T_{α} rasch kleiner, dadurch reduziert sich die Halbwertszeit t_{1/2} für den Zerfall sehr stark Auftragung der Lebensdauer/Halbwertszeit über Faktor Z / $\sqrt{T_{\alpha}}$

