Kerne und Teilchen

Moderne Physik III

Vorlesung #11

5. Wechselwirkung von Strahlung mit Materie

- Bethe-Bloch: Ionisationsverluste
- radiative Prozesse leichter Teilchen
- Landau-Vavilov Verteilung

5. Wechselwirkung von Strahlung & Materie

Die Wechselwirkung von Strahlung (geladene & ungeladene Teilchen) mit Materie ist wichtig für das Verständnis & die Optimierung von modernen Detektorsystemen & Teilchen-Beschleunigern
♦ detaillierte Modellierung der Prozesse erforderlich

Wechselwirkung von Strahlung & Materie

Verschiedene Wechselwirkungseffekte dominieren je nach Teilchenart, Energiebereich & Nachweismedium

Teilchenart

Geladene Teilchen (z = Ladung des Projektils)

α, e⁺, μ⁻, ⁹²⁺U-lon, Ω^{--} , p, π^{-} , ... (elektromagnet. Wechselwirkung dominant) Beispiele: Ionisation, atomare Anregung, Cherenkov-Strahlung, ...

- leichte Teilchen: e⁻, e⁺, ...

- schwere Teilchen: μ^{\pm} , π^{\pm} , ρ^{\pm} , p, (c, b-Quarks), Schwerionen (⁹²⁺U), ... Ungeladene Teilchen (z = 0)

 γ , n, ν , π^0 , ρ^0 , neutrale Atome, ...

Beispiele: Comptoneffekt, Photoeffekt, Streuung an Elektronen/Kernen

- nur schwache Wechselwirkung: Neutrinos
- starke/elektromagnetische Wechselwirkung: neutrale Pionen, ρ⁰
- nur elektromagnetische Wechselwirkung: γ

Verschiedene Wechselwirkungseffekte dominieren je nach Teilchenart, Energiebereich & Nachweismedium

Energiebereich

- eV: thermische Neutronen, Licht, Sekundär-Elektronen aus Ionisation
- keV: Elektronen aus dem ß-Zerfall, Röntgenstrahlung
- **MeV**: Alpha-Teilchen, γ-Strahlung von Kernen, Zyklotrons
- **GeV**: Teilchen aus Synchrotrons
- **TeV**: Teilchen an Hochenergiebeschleunigern LHC, Tevatron, TeV-γ's
- >TeV: Teilchen aus kosm. Beschleunigern: Quasare, SNR

Nachweismedium

Eigenschaften des Mediums:

- Kernladung, Dichte, Temperatur (Phase: kondensiert, gasförmig)
- Magnetfeld, elektrisches Potential, supraleitend, normal/halbleitend

geladene & neutrale Teilchen

Wohldefinierte Reichweite

Keine definierte Reichweite

Geladene Teilchen

Prozesse

Ionisation:dominanter ProzessAbsorption:KernwechselwirkungStreuung:Moliere-TheorieKaskade:hadronische Schauer

Wohldefinierte Reichweite

Wechselwirkung von geladenen Teilchen

Ionisationsprozesse

- Prozess: inelastische Teilchenstöße mit den Hüllenelektronen
- Resultat: Ionisation & Anregung der Atomhülle (Ionisationspotenzial)
- Teilchenart: dominiert bei allen schweren Teilchen (Myonen, Protonen, …)
 ⇒ spezifischer Energieverlust dE/dx eines Teilchens
- Nachweis: Drift der Ladungsträger (Elektronen & Ionen) zu Elektroden, Erzeugung von Elektron-Lochpaaren, Erzeugung von Gasbläschen, …
- Physik: Spurrekonstruktion, Reichweite, Ereignistopologie

Strahlungsverluste

- Prozess: Wechselwirkung mit elektromagnet. Feldern, Medium
- Resultat Emission von elektromagnetischer Strahlung (µeV GeV)
 ⇒ Brems-, Synchrotron-, Cherenkov- & Übergangs- Strahlung
- Teilchenart: dominant bei leichten Teilchen
- Nachweis: abhängig von λ: Radio-, optischer, Röntgen-, Gamma-Bereich
- Physik: Energiespektrum der e+/e⁻, Magnetfelder

Anwendung der Strahlungsverluste: Synchrotronstrahlungsquellen

- Beschleuniger zum Erzeugen von Synchrotronstrahlung

Ionisationsverluste

- Geladene Teilchen ionisieren ein Nachweismedium durch inelastische Stöße mit den Hüllenelektronen (vorwiegend Einfachionisation, z.B. Ar⁺) Hoher Streuquerschnitt: σ_{inelast.} ~ 10⁻¹⁷ – 10⁻¹⁶ cm² ⁽⁴⁾ zahlreiche Stöße
- Maximaler Energieübertrag T_{max} an ruhendes Elektron mit m_e durch ein einlaufendes Teilchen mit Ruhemasse m und Geschwindigkeit ß:

$$T_{\max} = \frac{2m_e \cdot \beta^2 \cdot \gamma^2 \cdot m^2}{m^2 + m_e^2 + 2\gamma \cdot m \cdot m_e}$$
$$T_{\max} = 2m_e \cdot \beta^2 \cdot \gamma^2 \quad \text{für alle}$$
Primärt

für alle schweren Primärteilchen

In hinreichend dicken Absorbern wird ein Großteil der Teilchen-Primärenergie in ein Ionisationssignal umgewandelt

Ionisationsverluste: Bethe-Bloch

Bethe-Bloch Gleichung

Mittlerer Energieverlust dE/dx von geladenen (z) Teilchen mit $\beta = v/c$

- Targetparameter: Kernladung Z, Kernmasse A, effektives Ionisations-Potenzial **Teilchenparameter:**Geschwindigkeit ß, Ladung z
 - Konstanten: klass. Elektronenradius r Elektronmasse m_e, Avogadrozahl N₀

Hans Bethe **Felix Bloch**

 Anwendungsbereich von Bethe-Bloch: Teilchengeschwindigkeit ß > Geschwindigkeit der Hüllenelektronen der Targetatome (v ~ Z · α)

$$-\frac{dE}{dx} = 4\pi \cdot r_e^2 \cdot N_0 \cdot m_e c^2 \cdot \frac{Z}{A} \begin{pmatrix} 1 \\ \beta^2 \end{pmatrix} z^2 \cdot \left[\ln \left(\frac{2m_e c^2 \beta^2}{I \cdot (1 - \beta^2)} \right) - \beta^2 - \frac{\delta}{2} \right]$$

bei kleinem ß ist der Term 1/ß² in der
Bethe-Bloch Gleichung dominant
dE/dx hat ein Minimum bei ß · γ ~ 3-4
 \Leftrightarrow minimal ionisierende Teilchen (MIP)
bei hohen Impulsen erreicht
dE/dx ein Plateau (Sättigung)
Teilchenimpuls p

Der Energieverlust eines Teilchens ist unabhängig von seiner Masse!

dE/dx nur abhängig von der Teilchengeschwindigkeit ß, typischerweise wird dE/dx aber als Funktion des Impulses p dargestellt, wobei gilt: $p = \beta \cdot \gamma \cdot M \cdot c$

Im Bereich minimaler Ionisation gilt für MIP:

 $dE/dX \sim 2 \text{ MeV g}^{-1} \text{ cm}^2$

d.h. bei einer Targetdichte $\rho = 1 \text{ g/cm}^3$

dE/dx ~ 2 MeV/cm

Wichtiges Beispiel: kosmische Myonen

Teilchenidentifikation

Der Energieverlust dE/dx ist ein wichtiges Mittel zur Teilchenidentifikation (Particle Identification PID), wenn mehrere Teilchenarten vorliegen:

- dE/dx entspricht mit Bethe-Bloch implizit einer Messung des Parameters ß
- mit der Definition des relativistischen Impulses p

$$p = \beta \cdot \gamma \cdot M \cdot c = \frac{\beta}{\sqrt{1 - \beta^2}} \cdot M \cdot c$$

ergibt sich nach einer von dE/dx unabhängigen Messung des Impulses p die Teilchenmasse M und damit die Identifikation des untersuchten Teilchens

 Der Energieverlust dE/dx eines Teilchens ist immer statistischen Fluktuationen unterworfen

Energieverlustverteilung: Landaukurve

- beschreibt den mittleren Energieverlust <E> eines Teilchens
- inelastische Streuungen an Hüllenelektronen sind statistische Prozesse: zentrale Stöße (großes ΔE) sind seltener als periphere Stöße (kleines ΔE)
- Landau-Vavilov Verteilung:
 - beschreibt Energieverlustverteilung für einen dünnen Absorber
 - **asymmetrische Verteilung** mit einem Ausläufer hin zu hohen dE/dx Werten
 - Asymmetrie durch Stöße mit kleinem
 Stoßparameter ("δ-Elektronen")

 δ-Elektron

 Pion π⁻

 primäres Teilchen

Mittlere Reichweite

Reichweite:

die **mittlere Reichweite R** eines Teilchens [in g cm⁻²] in einem Medium (Absorber, Detektor) ergibt sich durch Integration der Bethe-Bloch Gleichung:

$$\overline{R} = \int_{E_0}^0 \left(\frac{dE}{dX}\right)^{-1} \cdot dE$$

Beispiele:

- 100 MeV/c Pionen in Pb: R/ $\rho \sim 0.8 \text{ cm}$
- 5.5 MeV Alphas in Luft: $R/\rho \sim 4.2$ cm

Bragg-Peak:

dE/dx erreicht am Ende des Weges ein Maximum (wichtig in Strahlentherapie)

Dicke Absorber & Vielfachstreuung

Energieverlust in einem dicken Absorber: Summation über Vielfachstreuung in einem dicken Absorber ergibt gaußförmige Energieverlustverteilung mit Breite σ

$$\frac{\sigma}{\left<\Delta E\right>} \propto \frac{\sqrt{\Delta x}}{\Delta x} \propto \frac{1}{\sqrt{\Delta x}}$$

Die Vielfachstreuung eines Teilchens in einem dicken Absorber führt nach Summation über viele Auslenkwinkel zu gaußförmiger Winkelverteilung

- mittlerer Auslenkwinkel σ_{Streu} [rad] ~ p⁻¹ · \sqrt{L}

$$\sqrt{\left\langle \theta_{Streu}^{2} \right\rangle} = \frac{19.2}{\beta \cdot p \left[MeV / c \right]} \cdot z \cdot \sqrt{\frac{L}{X_{0}}}$$

Benutzung des Mittelwerts des quadratischen Streuwinkels

X₀ = Strahlungslänge (stoffspezifische Größe)

Spezialfall: Energieverlust von Elektronen

Ionisationsverluste von Elektronen & Positronen:

- die identische Massen von Target (m_e) & Projektil (m_e) erfordern eine leichte Modifikation der Bethe-Bloch-Gleichung

Bremsstrahlung:

- radiative Energieverluste dominieren bei sehr hohen Energien:

Bsp: Myon-Elektron Verhältnis dE/dx ~ $(m_e/m_\mu)^2 \approx 2.2 \cdot 10^{-5}$

Bremsstrahlungsspektren:

- kontinuierliches Spektrum bis zur maximalen Elektronenenergie E₀
- überlagert von monoenergetischen Linien:

Energieverlustprozesse geladener Teilchen

Gesamtübersicht über Energieverluste: von sub-MeV bis multi-TeV Energien Myonen in Cu Bremsvermögen [MeV cm² g⁻¹] Brems-100 strahlung **Bethe-Bloch** Anderson'-Ziegler **kritische** Energie Strahlungs-10 minimale E_{rad} = verluste $0.01E_{ion}$ Ionisation Kerneinfang ohne δ 1 **0.001 β**-γ **10**⁶ 0.1 **10**⁵ 0.01 10 100 1000 **10**⁴ 1 Myon-۶**1** 10 100 10 0.1 10 100 100 1 .1 impuls [MeV/c] [GeV/c] [TeV/c]