Kerne und Teilchen

Moderne Physik III

Vorlesung # 14

6. Detektoren und Beschleuniger

6.2 Teilchenbeschleuniger

- Zyklotron
- Synchrotron
- Internationale Teilchenbeschleuniger

7. Grundlagen der Elementarteilchen-Physik7.1 Der Teilchenzoo

6.2 Teilchenbeschleuniger

- 1930: Ernest Orlando Lawrence (Berkeley) baut das erste Zyklotron mit
 Ø = 13 cm & beschleunigt Protonen auf E = 80 keV (500 \$ für weitere F&E)
- 2010: am CERN (Genf) erreicht der LHC als Protonen-Synchrotron mit Ø = 8.6 km die bisher höchste Energie E = 3.5 TeV (2012 4TeV, 2015 7TeV)

Elektrostatische Generatoren

- Van-de-Graaff-Generatoren: elektrostatisches Prinzip, kontinuierlicher Transport positiver Ladung auf Elektrode, damit: Ionenquelle auf positiver HV, maximale Energie ~12 MeV (mit Tandem-Prinzip 25 MeV)
- Cockcroft-Walton Generatoren: Prinzip der Spannungsvervielfachung mit Dioden & Kapazitäten, Konversion eines AC-Eingangssignals im Niederspannungsbereich in ein DC-Ausgangssignal

bei großer HV (bis 1 MV), dienen heute als Injektoren

AC Eingang Erde

1. Zyklotron

Zyklotron: geladene Teilchen (q) werden zwischen zwei Halbschalen (Dees) durch eine feste Wechselspannung U (10-1000 kV) mit fester Frequenz ω (Zyklotronfrequenz) beschleunigt, homogenes B-Feld eines Elektromagneten: spiralförmige Bahn, Anwachsen des Radius: r ~ m·v & Extraktion der Ionen

Schwache Fokussierung: Magnetfeld ist azimutal homogen, nimmt aber radial nach außen hin ab, daher rücktreibende Kraft für Ionen in die Sollebene, vertikale & horizontale Fokussierung

 $\gamma \cdot m$

Relativistische Effekte: Massenzuwachs limitiert Energie $E_p \sim 20 \text{ MeV}$ $\omega = -\frac{q}{B} \cdot B$ Synchrozyklotron: ω ist variabel

Β, 7

Medizintechnik: modernes Kompaktzyklotron: Einsatz zur Erzeugung medizinisch nutzbarer Radioisotope

2. Synchrotron

Synchrotron: das magnetische Führungsfeld B für die gepulsten Teilchenstrahlen wird synchron mit der anwachsenden Energie E hochgefahren (CERN-LHC: 13 min Beschleunigungszeit)

Dipolmagnet

Ablenkung der Teilchen mit festem Radius R

Quadrupolmagnet

Bahn-Fokussierung auf Soll-Trajektorien

supraleitende Kavität

Beschleunigung mit HF-Feldern, Ausgleich von Strahlungsverlusten

Synchrotron: Dipolmagnete

Dipolmagnete: homogenes Feld zur Ablenkung auf Sollradius r

$$p = r \cdot q \cdot B$$

$$q = e \cdot z$$

$$r \cdot p = c \cdot r \cdot z \cdot B$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

$$r = 3 \cdot 10^8 \text{ m/s} \cdot z \cdot B[T] \cdot r[m]$$

Synchrotron: Quadrupolmagnete

Quadrupolmagnete: Dipolfeldbeitrag verschwindet, die Feldstärke wächst mit wachsendem Abstand von der longitudinalen Achse rasch an

- ein Quadrupol: Fokussierung in x-Richtung, Defokussierung in y-Richtung
- **starke Fokussierung** durch alternierende Quadrupolmagnete: gegeneinander gedrehte Quadrupole sind in <u>beide</u> Richtungen fokussierend $B_x = B_0 \cdot \frac{1}{2}$

Synchrotron: Kavitäten

 Kavitäten: Anregung resonanter elektrischer Felder via HF-Einkopplung im Frequenzbereich 200 MHz – 3 GHz, enge Bandbreite, hohe Güte Q – normalleitend (300 K): Cu-Kavität SVerluste durch Wand und Strahl – supraleitend (1.8 K): Niob-Kavität Shohes Q (~ 5·10¹⁰), Beschleunigung durch die TM₀₁ Mode (Magnetfeld transversal, Elektr. Feld longitudinal)

3. Internationale Teilchenbeschleuniger

DESY – Deutsches Elektronen Synchrotron

- HERA: Hadron-Elektron Ring Anlage
 - Elektron (27.5 GeV) Proton (820 GeV) Kollisionen , \sqrt{s} = 320 GeV Umfang des Rings: 6.3 km, Messbetrieb: 1992-2007 (H1, Zeus, Hermes) - 650 supraleitende Magnete
- PETRA: Positron-Elektron Tandem Ring Anlage

- Energien bis 19 GeV
- Nachweis des Gluons (1978)
- heute: PETRA-III Synchrotronstrahlungsquelle
- XFEL: X-ray-Free

Electron Laser

Freie-Elektronen-Laser im Röntgenbereich mit $\Lambda = 0.1 - 6$ nm, $\Delta t = 100$ fs

Tevatron am Fermilab

- Tevatron: Synchrotron f
 ür Proton-Antiproton Kollisionen (1987 2012) 774 Niob-Titan supraleitende Dipolmagnete (4.2 T), 240 NbTi Quadrupole Umfang: 6.3 km, Kollisionsenergie bei D0 und CDF: E_{CMS} = 1.96 TeV Beschleunigungsstufen:
 - I Cockcroft-Walton: 750 keV H⁻, II Linac: 400 MeV H⁻, III Booster: 8 GeV IV – Main Injector: 120 GeV (plus Erzeugung von Antiprotonen, 150 GeV) V – Tevatron: 980 GeV (Speicherung und Kollisionen)

LHC - Large Hadron Collider

■ p-p Kollisionen bei \sqrt{s} = 14 TeV Schwerpunktsenergie Beginn Datennahme: Frühjahr 2010 bei E_p = 3.5 TeV Zielsetzung: Nachweis Higgs-Boson & Supersymmetrie Suche nach Quark-Gluon Plasma (574 TeV Pb-Ionen)

Design: 1232 Dipol-Magnete mit B = 8.3 T (bei 7 TeV)

- Kühlung: 120t He (1.8 K), 10.000t fl. Stickstoff
- gespeicherte magnetische Energie: E = 10.4 GJ
- Strahlenergie: Protonen 724 MJ
- Strahlpakete kollidieren alle 25 ns
- Beschleunigung: I LINAC 2: 50 MeV II – Booster: 1.4 GeV, III – PS: 26 GeV
 - IV SPS: 450 GeV
 - V LHC: derzeit 3.5 TeV (Injektion + Beschleunigung: 40 min.)

200 Tage Physik-Runs/Jahr integrierte Luminosität ~300 fb⁻¹

LHC Strahlparameter -	
Luminosität	10 ³⁴ cm ⁻² s ⁻¹
Bunche/Strahl	2808
Protonen/Bunch	1.15 × 10 ¹¹

BAU DES BESCHLEUNIGERS

ILC – International Linear Collider

- Hohe Synchrotronstrahlungsverluste beim LEP Ringbeschleuniger:
 - bei E = 50 GeV (e^- , e^+) $\Delta E = 130$ MeV pro Umlauf
 - bei E = 90 GeV (e^- , e^+) $\Delta E = 1.7 \text{ GeV}$ pro Umlauf ($\Delta P = 17 \text{ MW}$)
- Für Elektron-Positron-Kollisionen bei höheren Linearbeschleuniger Energien (500 GeV): Linearbeschleuniger HF beschleunigt e⁻, e⁺ mit 31.5 MV/m Positronen 16000 supraleitende Kavitäten Linearbeschleuniger =31 km **ILC-Designvorschlag** Elektroner

Luminosität L bei Collider-Experimenten

Luminosität am LHC

Designluminosität am LHC: L = 10³⁴ cm⁻² s⁻¹

Verfügbare Energie in Beschleunigern

