Kerne und Teilchen

Moderne Physik III

Vorlesung # 16

- 7. Grundlagen der Elementarteilchen-Physik
- 7.1 Der Teilchenzoo
- 7.2 Hadronen und Leptonen
- 7.3 Wechselwirkungen im Standardmodell
 - starke Wechselwirkung
 - elektromagnetische und schwache
 - Wechselwirkung

Mesonen – Zerfälle durch Starke WW:

Zerfälle durch die starke Wechselwirkung am Beispiel der ρ^0 - und ω Mesonen

$$\rho^{0}(770) = \frac{1}{\sqrt{2}} \left| d\overline{d} - u\overline{u} \right\rangle$$

 $\tau = 4.3 \cdot 10^{-24} \text{ s } \Gamma = (150.3 \pm 1.6) \text{ MeV}$ Zerfall in 2 Pionen (fast 100%)

$$\omega(782) = \frac{1}{\sqrt{2}} \left| d\overline{d} + u\overline{u} \right\rangle$$

 τ = 7.8 · 10⁻²³ s Γ = (8.5±0.1) MeV Zerfall in 3 Pionen (89.1%)

Zweig-Regel

Bei den Zerfällen von schwereren Mesonen, z.B. des $\Phi(1020)$, ist der Quark-Inhalt der Mesonen im Endzustand wichtig (mit/ohne Strangeness) Zerfall eins Φ Vektor-Mesons: ~83% in K⁺ K⁻, nur ~15% in drei Pionen $\pi^+ \pi^- \pi^0$ Zerfall in K⁺ K⁻: durchgezogene ss - Quarklinien Zerfall in $\pi^+ \pi^- \pi^0$: nicht durchgezogene ss - Quarklinien

"Zweig-Regel" & geringe Zerfalls-Breite von schweren Mesonen

Massenspektrum von Baryonen/Mesonen

Das beobachtete Massenspektrum von Baryonen und Mesonen kann heute mit wenigen Input-Massen durch modernen QCD Methoden gut nachgebildet werden

Existenz von exotischen Hadronen?

Zahlreiche Suchen nach exotischen Baryon- & Mesonzuständen

normales Baryon

normales Meson

Quantenchromodynamik (QCD) erlaubt die Existenz z.B. von Tetraquarks 2010: Resultate des BELLE Experiments in Japan können als möglicher Hinweis für ein Tetraquark gedeutet werden

Glueball

Tetraquark

Hybridmeson

Evidence grows for tetraquarks Physics world Apr 27, 2010

7.3 Wechselwirkungen im Standardmodell

- Im Standardmodell werden Wechselwirkungen durch Eichsymmetrien beschrieben:
 - Vereinheitlichung von elektromagnetischer & schwacher Wechselwirkung zur elektroschwachen Wechselwirkung (zentrale Vorhersage: Existenz von neutralen schwachen Strömen mit einem massiven Z⁰ Eichboson)
 - starke Wechselwirkung : Quantenchromodynamik
 - elektroschwache Wechselwirkung: Weinberg-Salam-Glashow Modell Fernziel: große Vereinheitlichung (**G**rand **U**nified **T**heories, **GUT**s)

Wechsel- wirkung	Boson	Masse [GeV]	rel. Stärke [3 × 10 ⁻¹⁷ m]	Reichweite [m]	Potenzial
stark	Gluonen	0	60	2.5 · 10 ⁻¹⁵	αr ⁻¹ + βr
elektromagnet.	Photon	0	1	∞	1/r
schwach	W⁺ W⁻ Z⁰	80.4 91.2	10-4	~10 ^{−18}	δ (r)

Die theoretischen Vorhersagen des Standardmodells stehen mit allen experimentellen Resultaten in sehr guter Übereinstimmung (Ausnahme: endliche Neutrinomassen)

 kosmologische Beobachtungen (Dunkle Materie, dunkle Energie, Materie/Antimaterie Asymmetrie) deuten auf Physik jenseits des Standardmodells hin (BSM, Beyond the Standard Model, z.B. Supersymmetrie)

Sheldon Lee Glashow

Abdus Salam

Steven Weinberg

Nobelpreis 1979

A) Starke Wechselwirkung

- Baryonen und Mesonen sind nach außen stets QCD 'farbneutrale' Objekte, d.h. alle Hadronen befinden sich in einem Farb-Singulett-Zustand Baryonen: 3 Farben (rgb) Mesonen: 1 Farbe & 1 Anti-Farbe
- Für Mesonen ergeben sich damit folgende 'Farb-Wahrscheinlichkeiten'
 - ¹∕₃ für rot-antirot,
 - ⅓ für blau-antiblau
 - ¹⁄₃ für grün-antigrün
- Der Farbzustand
 von Quarks ändert
 sich andauernd durch
 den Austausch von
 Gluonen (tragen
 ebenfalls Farbe)

Farbe als Freiheitsgrad & Pauli-Prinzip

u u u >

Flavour

- Der Farb-Singulett-Zustand eines Baryons ist wichtig zur Erfüllung eines verallgemeinerten Pauli-Prinzips: die Gesamtwellenfunktion eines Baryons muss unter Berücksichtigung aller Quark-Freiheitsgrade antisymmetrisch sein
- Die Δ^{++} Resonanz (uuu) & das Ω^{-} (sss) verletzen ohne die Existenz des Farb-Freiheitsgrades das Pauli-Prinzip, Beispiel: Δ^{++} Wellenfunktion

= 0

Orbital-

symmetrische Gesamtwellenfunktion

Flavour Spin Orbital-
$$\ell$$

$$\Delta^{++} = |u \, u \, u \rangle \cdot |\uparrow\uparrow\uparrow\rangle \cdot |\ell = 0 \rangle \cdot \left|\frac{1}{\sqrt{6}} \varepsilon^{ijk} q_i q_j q_k\right\rangle$$

$$\varepsilon_{ijk} = +1 \quad \text{für}$$
gerade Permutation

$$\varepsilon_{ijk} = -1 \quad \text{für}$$
ungerade Permutation

$$\varepsilon_{ijk} = 0 \quad \text{für}$$
2 gleiche Indices (Farben)

mit Farbfreiheitsgraden: anti-symmetrische Δ^{++} Gesamtwellenfunktion

Die Antisymmetrisierung am Beispiel des Δ^{++} :

$$\Psi_{Farbe} (Baryon) = \frac{1}{\sqrt{6}} \varepsilon^{ijk} q_i \cdot q_j \cdot q_k$$

Summation über die Farbindices *i*, *j*, *k* von 1 bis 3

Antisymmetrische Darstellung der Farbfreiheitsgrade:

$$\Psi_{Farbe} (\Delta^{++}) = \frac{1}{\sqrt{6}} | RGB + BRG + GBR - GRB - BGR - RBG \rangle$$

Beispiel: nach Vertauschung der beiden Farbfreiheitsgrade RG ergibt sich:

$$\Psi'_{Farbe} (\Delta^{++}) = \frac{1}{\sqrt{6}} |GRB + BGR + RBG - RGB - BRG - GBR \rangle$$
$$= -\Psi_{Farbe}$$

Die Gesamtwellenfunktion des Δ^{++} Baryons ist unter Berücksichtigung aller Quark-Freiheitsgrade wie gefordert <u>antisymmetrisch</u>

Gluonen

- In der QCD existieren 8 Gluonzustände ('Farbzustände', 'Farboktett'):
 - alle Zustände sind linear unabhängig
 - jedes Gluon ist ein masseloses Spin 1 Boson
 - jedes Gluon trägt eine Farbe + Anti-Farbe
- In nebenstehenden Darstellung ändern die ersten 6 Gluonen die Farbe eines Quarks, die beiden farbneutralen Kombinationen ändern die Farbe bei der Emission/Absorption nicht

Gluonen: Selbstwechselwirkung

QED (Elektrodynamik):

Photonen (γ) als Eichbosonen tragen selbst keine elektrische Ladung & unterliegen als neutrale Teilchen keiner Selbstwechselwirkung

QCD (Chromodynamik):

- Gluonen (g) tragen selbst QCD-Farbladungen und können daher nicht nur mit Quarks sondern auch untereinander in Wechselwirkung treten
- die Selbstwechselwirkung der Gluonen f
 ührt zum Auftreten von komplexeren QCD-Vertexgraphen

Farbe und SU(3)_c Symmetriegruppe

- Regeln der **Quantenchromodynamik**:
 - gleiche Farbladungen stoßen sich ab
 - Farbe & Antifarbe ziehen sich an
 Meson als qq Bindungszustand),
 - antisymmetrischen Zustände ziehen sich an

Symmetriegruppe SU(3)_{Color} :

- die Farbladungen spannen einen 3-dimensionalen Farbladungsraum auf
- die SU(3) Eichgruppe wird durch 8 Parameter beschrieben \Leftrightarrow 8 Gluonen

Gluonen: Fluss-Schläuche & Confinement

- Die Gluon-Gluon-Selbstwechselwirkung erzeugt bei einer räumlichen Trennung von Quarks zylindrische Farb-Flussschläuche mit einer konstanten Feldstärke über Länge der Fluss-Röhre
- Quark-Antiquark-Potenzialansatz mit: 1/r 'Coulombansatz' 2 linearer Term

Asymptotische Freiheit in der QCD

- Bei extrem kurzen Abständen sollten sich die Quarks entsprechend der QCD (Wilzeck, Gross, Politzer) wie nahezu freie Teilchen verhalten
 - 'asymptotische Freiheit'
 - dieser Effekt der QCD ermöglicht die Anwendung des Quark-Parton Modells zur Interpretation der tiefinelastischen eN-Streuung

Frank Wilczek David J. Gross H. David Politzer

"for the discovery of asymptotic freedom in the theory of the strong interaction"

Nobelpreis 2004

ENSKAPSAKADEMIE

Confinement & Jetstrukturen

- Bei einem harten Stoßprozess wird das qq-Paar räumlich voneinander getrennt & die Energie im farbelektrischen Flussschlauch wird so groß, dass ein weiteres Quark-Antiquark Paar erzeugt wird, man erhält damit 2 Mesonen
- Energie-Abschätzung bei d = 1 fm (linearer Term)

 $V \cong 9.81 \times 14 \cdot 10^{3} \times 10^{-15} J$ = 1.4 \cdot 10^{-10} J \ge 0.9 GeV

Energie ist ausreichend für neues qq-Paar

 dieser Prozess kann sich mehrmals wiederholen: Bildung von zahlreichen Quark-Antiquark Paaren
 Ausbildung eines hadronischen Jets

Jetstrukturen

- Ausbildung eines beobachtbaren hadronischen Jets:
 Pionen, schwere Mesonen, Nukleonen, Hyperonen,...
- aus den Jet-Parametern (E_T, p_T)
 Rückschluss auf die Primärteilchen

CMS Experiment at the LHC, CERN Date Recorded: 2009-12-06 07:18 GMT Run/Event: 123596 / 6732761 Candidate Dijet Collision Event

Gluonen: Nachweis in 3 Jet Ereignissen

Vakuumpolarisation in QED und QCD

Die Stärke einer Wechselwirkung (Kopplungskonstanten α, α_s) variiert mit dem Impulsübertrag Q² zwischen den beteiligten Teilchen Grund: Polarisation der virtuellen Ladungswolke in Nähe der Ladung

Vakuumfluktuationen erzeugen ständig virtuelle Teilchen-Antiteilchenpaare

Renormierung der nackten Ladung **QED**:

Photonen erzeugen e⁺/e⁻ Paare

QCD:

Gluonen erzeugen Paare von Quarks/Antiquarks & Gluonen

Vakuumpolarisation in der QED

Quantenelektrodynamik:

"nacktes" Elektron ist von Elektron-Positron-Paaren umgeben, dies führt zu einer Abschirmung der Ladung

- mit wachsendem Abstand d wird effektive Ladung e_{eff} des Elektrons kleiner
- bei kürzeren Abständen (höhere Energie): größere "nackte" Ladung des Elektrons wird sichtbar

Verlauf der Feinstrukturkonstanten α:

die Stärke $e^2 = \alpha$ (Feinstrukturkonstante) der elektromagnet. Wechselwirkung steigt mit der Energie an

$$\alpha(Q) = \frac{\alpha(\mu)}{1 - \frac{\alpha(\mu)}{\pi} \cdot \ln\left(\frac{Q^2}{\mu^2}\right)}$$

μ: Impulsübertrag

 α = 1/137 bei µ = 1 MeV $\Rightarrow \alpha$ = 1/129 bei µ = 90 GeV

Vakuumpolarisation in der QCD

- Quantenchromodynamik
 - Abschirmung der Farbladung des "nackten" Quarks durch die erzeugten virtuellen Quark/Antiquark Paare (wie bei der QED), die qq-Paare tragen aber keine Netto-Farbladung
 - Anti-Abschirmung der Ladung durch die vom Quark emittierten virtuellen Gluonen, da diese Farbladungen mitnehmen, dies führt zu einer Verschmierung der QCD Ladung auf ein größeres Volumen
 - bei kleinen Abständen dominiert der Effekt der Gluonen!
- Verlauf der Feinstrukturkonstanten α: die Kopplungs 'konstante' α_s der QCD wird mit steigender Energie (d.h. bei kleineren Abständen d) durch die
 - schwächere gluonische Anti-Abschirmung kleiner

 α_{s} wird mit wachsendem Impulsübertrag kleiner

Starke Kopplungskonstante & Abstand

- Die starke Kopplungs konstante α_s hängt ab vom den Parametern:
 - Impulstransfer µ
 - Zahl N_f der Quark-Flavourarten
- Zwei sehr eng benachbarte
 Quarks fühlen eine schwächere
 Kraft symptotische Freiheit

$$\alpha_{s}(Q^{2}) \stackrel{Q^{2} \to \infty}{\to} 0$$

- Zwei weit entfernte Quarks fühlen eine deutlich stärkere Kraft
 Confinement in Hadronen
 für kleine Werte von Q gilt
 - $\alpha_{s} \sim 100 \cdot \alpha$

$$\alpha_s(Q) = \frac{\alpha_s(\mu)}{1 + \frac{33 - 2 \cdot n_f}{12\pi} \cdot \alpha_s(\mu) \cdot \ln\left(\frac{Q^2}{\mu^2}\right)}$$

Starke Kopplungskonstante $\alpha_s(Q)$

- Zusammenfassung der bei verschiedenem Q-Werten gemessenen Kopplungs-Parameter & Vergleich mit QCD
 - Energie-Bezugspunkt ist die Ruhemasse des Z-Bosons M_z:

 $\alpha_{\rm s}({\rm M_Z}) = 0.1189 \pm 0.0010$

 Da α_s implizit auch von der Zahl der Farbfreiheitsgrade N_c abhängig ist, kann aus den experimentellen Daten nach einer Anpassung der Wert von N_c bestimmt werden:

 $N_c = 3.03 \pm 0.12$ 3 Farbfreiheitsgrade der QCD

B) Elektroschwache Wechselwirkung

Eine zentrale Säule des Standardmodells (SM) ist die Vereinheitlichung von elektromagnet. & schwacher Ww. zur **elektroschwachen Wechselwirkung**

Schwache Wechselwirkung - Vektorbosonen

Intermediäre Vektorbosonen J^P = 1⁻

Geladene & neutrale schwache Ströme

1973: erster Nachweis von neutralen Ströme am CERN mit Gargamelle
Gargamelle Blasenkammer (Target: 20 t Freon, $\ell = 4.8$ m, $\emptyset = 1.9$ m)

