Kerne und Teilchen

Moderne Physik III

Vorlesung # 17

- 7. Grundlagen der Elementarteilchen-Physik
- 7.1 Der Teilchenzoo
- 7.2 Hadronen und Leptonen
- 7.3 Wechselwirkungen im Standardmodell
 - starke Wechselwirkung
 - elektromagnetische und schwache Wechselwirkung
- → 7.4 Das Quarkmodell
 - relevante Symmetrien
 - Mesonen
 - Baryonen
 - Schwere Quarks und gebundene Zustände

Existenz von exotischen Hadronen?

Zahlreiche Suchen nach exotischen Baryon- & Mesonzuständen

normales Baryon

normales Meson

Quantenchromodynamik (QCD) erlaubt die Existenz z.B. von Tetraquarks: Resultate der BELLE, BES Experimente in Japan und China können als möglicher Hinweis für ein Tetraquarks gedeutet werden:

Hybridmeson

7.4 Das Quarkmodell a) Relevante Symmetrien

Mesonen und Baryonen: Für die Einordnung von Hadronen sind Symmetrien wichtig:

- Ladung Q : Ladungserhaltung, Symmetrietransformation $\Psi' = \Psi \cdot e^{i \cdot \alpha \cdot Q}$ α = reeller Phasenfaktor, unitäre Transformation U(1)-Gruppe exakt erhaltene <u>globale</u> Symmetrie
- Isospin I : eingeführt von Heisenberg (1932) Spiegelkerne, m(p) \approx m(n) starke Wechselwirkung ist ladungsunabhängig \clubsuit [H,I] = 0 - Nukleon (p,n) Isospin-Dublett, Pion (π^+ , π^0 , π^-) Isospin-Triplett erstes Beispiel einer **Flavoursymmetrie der Quarks** (u,d)-Quark-Isospin-Dublett mit Isospin I₃ = +½ (u), -½ (d)

Isospin-Symmetrie

Alle anderen Quarks (s,c,b,t) sind Isospin-Singuletts. Mit den Quark-Dubletts (u,d) und (u,d) erhält man:

- Mesonen (qq):	Singuletts mit	$I = 0$ (ω)
	Tripletts mit	$I = 1$ (π, ρ)
- Baryonen (qqq):	Dubletts mit	$I = \frac{1}{2}$ (p,n)
	Quadrupletts mit	$I = 3/2 \ (\Delta^{++}, \Delta^{+}, \Delta^{0}, \Delta^{-})$

Isospininvarianz & -verletzung:

- starke Wechselwirkung:

invariant unter Rotationen im Isospinraum, Erhaltung von I und I₃

- elektromagnetische WW. : Erhaltung von I, Verletzung von I₃
- schwache Wechselwirkung : Verletzung von I und I₃

Strangeness – historischer Rückblick

Seltsame Teilchen: K⁰ (neutrales Kaon), A (Lambda-Hyperon) unterschiedliche Erzeugungs-/Zerfalls-Reaktionen:

Wechselwirkungen: stark/elektromagnetisch: $\Delta S = 0$, schwach: $\Delta S = 0$, ±1

Flavour-Symmetrie

Mit weiteren schweren Quarkflavours s,c,... ergibt sich eine Erweiterung der Isospinsymmetrie auf eine Flavoursymmetrie

SU(3)-Gruppe:

(u,d,s) Quarks mit additiven Quantenzahlen

- Isospin I₃
- Hyperladung Y (Y = B + S):
- ♥ Baryonenoktett
- Saryonendekuplett
- ♦ Mesonenoktette (J = 0, 1)

SU(4)-Gruppe:

(u,d,s,c) Quarks mit

- Isospin I_3
- Hyperladung Y, Charm C

♦ hadronische 20-pletts & 16-pletts

SU(3): fundamentale Darstellung und Zuordnung der Quarks

Gell-Mann Nishijima Formel

Gell-Mann / Nishijima Formel für Hadronen & für Quarks beschreibt Relation zwischen Ladung Q, Baryonenzahl B und Strangeness S:

$$Q = I_3 + \frac{1}{2}(B+S)$$

B

 $Q = I_3 + \frac{1}{2}Y$

Y = Hyperladung = B+S = Baryonenzahl

Verallgemeinerung der Formel f
ür alle 6 Quarkflavours

$$Q = I_3 + \frac{1}{2}(B + S + C + B' + T)$$

$$S = -(n_s - n_{\overline{s}}) \qquad C = +(n_c - n_{\overline{c}})$$
$$B' = -(n_b - n_{\overline{b}}) \qquad T = +(n_t - n_{\overline{t}})$$

S: strangeness C: charm B': bottom T: top

Murray Gell-Mann (*1929)

Kazuhiko Nishijima (1926-2009)

b) Mesonen – Multiplette

Mesonen: mit Isospin (I₃) und Hyperladung (Y): Gruppierung in ein Nonett

Mesonen – Nonett

Mesonen-Nonett mit J^P = ½⁺ in der SU(3) Darstellung, Isomultipletts:
 2 Singuletts (η, η΄), 2 Dubletts (K⁰, K⁺) & (K⁻, K⁰), 1 Triplett (π⁺, π⁰, π⁻)

Die SU(3)-Flavoursymmetrie der Mesonen wird durch die unterschiedlichen Quarkmassen (u ~ 2 MeV, d ~ 4.8 MeV, s ~ 92 MeV) gebrochen: stark unterschiedliche Massen der pseudoskalaren Mesonen

c) Baryonen – Multiplette

Isomultipletts:

da Baryonen aus 3 Quarks aufgebaut werden, gibt es

 $3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$

- zwei Baryonen-Oktette

1 Oktett symmetrisch / 1 Oktett antisymmetrisch unter Austausch von qq

- ein Baryonen-Singulett

Pauli-Prinzip:

Gesamtwellenfunktion des Baryons muss antisymmetrisch sein

- Orts-, Spin-, Flavour-, Farb- Anteile der Wellenfunktion
- Beispiel J = ½ Baryonen (û û ↓)

gemischte Spin-Symmetrie (keine reine symmetrische/antisymmetrische Wf.)

- ♦ die Flavoursymmetrie (u,d,s) muss ebenfalls gemischt sein
- ♦ keine flavour-symmetrischen J = ½ Zustände (uuu), (ddd), (sss)

Baryonen – Oktett

 Isomultipletts: Baryonenoktett mit J^P = ½⁺ in der SU(3) Darstellung mit den Quantenzahlen Isospin I₃ und Hyperladung Y (bzw. Strangeness S = Y - B)
 8-fold way (M. Gell-Mann): 1 Singulett (Λ), 2 Dubletts (N, Ξ), 1 Triplett (Σ)

 Isomultipletts: Baryonenoktett mit J^P = ½⁺ in der SU(3) die SU(3)-Flavoursymmetrie der Baryonen wird durch die unterschiedlichen Quarkmassen (u ~ 2 MeV, d ~ 4.8 MeV, s ~ 92 MeV) gebrochen

Baryonen – Dekuplett

Isomultipletts: Baryonendekuplett mit J^P = ³/₂⁺ in der SU(3) Darstellung
 1 Singulett (Ω⁻), 1 Dubletts (Ξ), 1 Triplett (Σ), 1 Quadruplett (Δ)

d) Schwere Quarks (Quarkonia)

- Die schweren Quarks c, b und t werden bei Prozessen der starken & elektromagnetischen Wechselwirkung stets in qq-Paaren erzeugt
- Charm-Quark:
 - theoretisch postuliert
 - experimenteller Nachweis 1974 (B. Richter, S. Ting) m(c) = 1.27 ± 0.1 GeV, q = +2/3, τ (c-Mesonen) ~ 10^{-13} s
- Bottom-Quark (beauty-Quark) :
 - theoretisch postuliert 1973 (M. Kobayashi, T. Maskawa)
 - experimenteller Nachweis 1977 (L. Lederman) m(b) = 4.2 + 0.17 - 0.7 GeV, q = -1/3, τ (b-Mesonen) ~ 10^{-12} s

Top-Quark:

theoretisch postuliert 1973 (M. Kobayashi, T. Maskawa) - experimenteller Nachweis 1995 Tevatron (CDF, D0) m(t) = 173.1 ± 1.3 GeV, q =+ 2/3, τ = 4.2 \cdot 10⁻²⁵ s

1970 (S. Glashow, J. Iliopoulos, L. Maiani)

T. Maskawa M. Kobayashi

Entdeckung des Ψ

Entdeckung einer langlebigen, schmalen Mesonenresonanz (cc-Paar)
 11/1974: erster Nachweis des J/Ψ (M = 3.1 GeV) am

- SLAC: SPEAR e^+-e^- Speicherring (E = 1.3 2.4 GeV)
- MARK I-Detektor: drahtbasierte Funkenkammer in Elektromagnet - Erzeugung eines gebundenen (cc)-Systems über ein virtuelles Photon

Entdeckung des J

rents. The run at reduced current was taken two cted shape of a δ -function resonance folded with the nths later than the normal run. ussian energy spread of the beams and including

Charmonium: Zerfallskaskaden

- kurz nach J/Ψ-Entdeckung: viele weitere Resonanzen bei höheren Energien Beispiel: $\Psi(2S) \rightarrow J/\Psi (\rightarrow e^+ + e^-) + \pi^+ + \pi^-$
- J/Ψ-Zustand hat lange Lebensdauer & geringe Breite: Erklärung durch Verletzung der OZI Regel (Okubo-Zweig-Iizuka): Feynman-Diagramme mit nicht durchlaufenden Quarklinien sind unterdrückt

Massen & Breiten von S = 1 Resonanzen

Resonanz	Masse [MeV]	Breite Γ [MeV]
J/Ψ (1S)	3097	0.087
Ψ (2S)	3686	0.277
Ψ (3770)	3770	24
Ψ (4040)	4040	52
Ψ (4160)	4160	78

radiale Anregungen n des S=1 (cc)-Systems

Zerfallssignatur eines ψ' im MARK I Detektor

Charmonium-Spektroskopie

 Charmonium-Termschema : Messung des inklusiven Gammaspektrums von Ψ´ Zerfällen (möglich da hadronische Zerfälle OZI- unterdrückt

Charmonium-Spektroskopie

Charmonium-Spektrum

Charmonium-Termschema : Rekonstruktion über das γ-Spektrum und weitere hadronische Zerfälle (Bsp: η_c(1S) mit 0⁻⁺ nicht durch e⁻ e⁺ !)

- nichtrelativistische Bindungs-Zustände (cc):
 - schwere c-Quark Masse
 - Relation Anregungsenergie M(Ψ)
 zur Ruheenergie M(J/Ψ)

$$\frac{M\left(\Psi'\right)-M\left(J/\Psi\right)}{M\left(J/\Psi\right)}\approx0.19$$

 Bindungspotenzial aus QCD: kleine Abstände: asymptotische Freiheit große Abstände: Störungstheorie versagt

Termschemata: Charmonium – Positronium

Charmonium & QCD Potenzial

Charmonium-Positronium Termschema :

- Zustände mit n = 1 und n = 2 zeigen große Ähnlichkeit
- höher liegende (cc) Zustände stimmen nicht mehr gut mit dem 1/n² Verhalten bei Positronium überein
- QCD Potenzial bei kleinen Abständen (n = 1,2) sollte Coulomb-artig sein
- bei (cc) ist aber die Entartung der
 2 ³S und 1 ³P Zustände aufgehoben
 + linear anwachsendes Potenzial

$$V(r) = -\frac{4}{3} \cdot \frac{\alpha_s(r) \cdot \hbar c}{r} + \kappa \cdot r$$

kleines r : asymptotische Freiheit großes r : Confinement

Charmonium -Zerfälle

Charmonium-Zerfälle : starke/elektromagnet. Wechselwirkung

c

Anlagerung leichter qq Annihilation von $c\bar{c}$ zu reellen oder virtuellen Photonen Paare & Bildung von Doder Gluonen, J/Ψ zerfällt zu 70% über starke Ww. Mesonen mit offenem Charm 30% über elektromagnet. Ww. in Hadronen/Leptonen je D⁰ D⁰ 1864.6 MeV virt. γ ggg чō c u 888888 c c С С С $\eta_c(1 \ {}^1S_0) \qquad J/\Psi(1 \ {}^3S_1)$ ψ(3770 $\rightarrow 2\gamma \rightarrow ggg \rightarrow virtuelles \gamma$ \rightarrow Hadronen \rightarrow Hadronen

Bottom Quarks - das Upsilon

Entdeckung des Upsilons 1977: gebundener Zustand eines Bottom-Quarks & eines Bottom-Antiquarks im Fermilab-Experiment E288 bei E_p = 400 GeV

Upsilon-Meson & Anregungen

Eigenschaften von Υ				
Masse [MeV]	9460.30 ± 0.26			
Lebensdauer τ [s]	1.21 · 10 ⁻²⁰			

Resonanz	Masse [MeV]	Breite Γ [MeV]
Υ (1S)	9460	0.053
Y (2S)	10023	0.043
Y (3S)	10355	0.026
Υ (4S)	10580	20
Y (10860)	10865	110

Orginalpublikation: Invariante Masse

Baryonen-Multipletts

Baryonen-Multiplett mit J = 3/2 mit u, d, s, b - Quarks

drei Bottom Quarks: noch nicht nachgewiesen

zwei Bottom Quarks: noch nicht nachgewiesen

ein Bottom Quark: noch nicht alle nachgewiesen

kein Bottom Quark: alle nachgewiesen

Bottomonium

 Bottomonium-Spektroskopie (bb-System) erfolgt in sehr enger Analogie zur Charmonium-Spektroskopie (cc-System)

 die kinematische Schwelle f
ür den Zerfall in BB-Mesonen liegt zwischen der Υ(3S) und Υ(4S) Resonanz, da M(BB-System) = 10558 MeV

 4S-Resonanz kann daher an einem e- e⁺ Beschleuniger benutzt werden, um Mesonen mit b-Quarks zu erzeugen B-Fabrik (B-factory)

- USA: SLAC - PEP-Speicherring (Positron-Electron-Project)

- Japan: KEKB

B-Fabriken: B-Physik

- Aktuell: sehr intensive Untersuchungen zur b-Quark-Physik (B-Fabriken), speziell zur Analyse der CP-Verletzung im B-System
 - CMS-Energie des e⁺e⁻ Strahls bei E = 10.58 GeV d.h. bei der Energie der Y(4S) Resonanz $4S \rightarrow B^+ B^-, 4S \rightarrow B^0 \overline{B}^0$ (Belle, BaBar)

Top Quarks

Top-Quark-Physik

Top/Anti-Top Paare (tt): erste Beobachtung am Tevatron (1994) in den beiden Experimenten CDF, DØ über hadronische Erzeugung

Eigenschaften des top-Quarks				
Masse [GeV]	173.1 ± 1.3			
Lebensdauer τ [s]	4.2 · 10 ⁻²⁵			
Zerfall (schwache Ww.)	$t \rightarrow b + W^+$			

Top Quarks

Top-Quark

die extrem kurze top-Lebensdauer ($\tau \sim 10^{-25}$ s) ermöglicht keine Bildung hadronischer Bindungszustände (Toponium), da die Hadronisation eines einzelnen Quarks erst nach $\tau_{hadr} \sim 10^{-23}$ s einsetzt

Einzelne Top-Quark (2009)

Erzeugung einzelner Tops über schwache Wechselwirkung

