Kerne und Teilchen

Moderne Physik III

Vorlesung # 20

8. Moderne Elementarteilchen-Physik

- 8.1 Phänomene der Schwachen Wechselwirkung
 - a) Klassifikation schwacher Prozesse
 - b) Elektroschwache Vereinigung
 - c) Schwache Wechselwirkung von Quarks
 - d) CP-Verletzung in der Schwachen Wechselwirkung
 - e) Neutrinophysik
- 8.2 Fundamentale Entdeckungen: W/Z-Bosonen, Top-Quarks, Higgs-Bosonen

8. Moderne Elementarteilchen-Physik

8.1 Phänomene der Schwachen Wechselwirkung

Schwache Wechselwirkung:

- flavourändernde Übergänge zwischen den Quarks (d \rightarrow u, c \rightarrow s, t \rightarrow b)
- geladene (W[±]) und neutrale (Z⁰) Ströme
- Verletzung von Erhaltungssätzen: Parität P (chirale Symmetrie), Ladungskonjugation C, CP-Symmetrie, Familien-Leptonenzahl L_{e,µ,τ}, (Leptonenzahl L?)

a) Klassifikation schwacher Prozesse

Rein leptonische Prozesse:

- ausschließlich Leptonen im Anfangs- und Endzustand
- wichtige Beispiele für rein leptonische Kanäle:

 $\mu\text{-Zerfall}\;\mu^{\scriptscriptstyle -} \to e^{\scriptscriptstyle -} + \nu_{\mu} + \nu_{e} \quad \tau\text{-Zerfall}:\;\tau^{\scriptscriptstyle -} \to \mu^{\scriptscriptstyle -} + \nu_{\mu} + \nu_{\tau},$

- Bestimmung der Kopplungsstärke G_F der schwachen Wechselwirkung
- keine Beeinflussung durch hadronische Prozesse

 $\ell + \overline{\nu}_{\ell} \rightarrow \ell' + \overline{\nu}_{\ell'}$ elementare Reaktion: Kopplung von 2 Strömen

Neutrino-Elektron Streuung

- CC: geladene Ströme (W-Bosonen)
- NC: neutrale Ströme (Z⁰-Bosonen)
- bei der v_e -e Streuung (und der v_e -e Streuung) kommt es zu einer CC/NC Interferenz der Ströme

CC+NC: $v_e + e^- \rightarrow v_e + e^-$

Semi-leptonische Prozesse:

- neben Leptonen sind auch Hadronen im Anfangs- und Endzustand
- wichtige Beispiele semi-leptonischer Kanäle: n-Zerfall, Kaon-Zerfall: $K^+ \rightarrow \pi^0 + e^+ + \nu_e$
- für semileptonische Zerfälle von Hadronen mit Strangeness S \neq 0 gilt

 $\Delta S = \Delta Q$

Quarkflavours: $s \rightarrow W^- + u, \bar{s} \rightarrow W^+ + \bar{u}$

mit $|\Delta S| = 1$, Beispiel: $\Sigma^- \rightarrow n + e^- + \overline{\nu}_e$ mit $|\Delta S| = +1$ und $|\Delta Q| = +1$

Semileptonische Prozesse

Fermi-Kopplungskonstante G_F

Fermi-Kopplungskonstante:

- Die geringe Reichweite der massiven W-Bosonen (~1/M_w ~ 0.002 fm) kann als Fermische Punktwechselwirkung approximiert werden
- Stärke der Fermi-Kopplungskonstante G_F der Punktwechselwirkung wird aus der Zerfallskonstante λ spezieller (Fermi)-Zerfälle bestimmt, wobei mit Fermis Goldener Regel gilt: λ ~ G² · |M|²

$$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{m_e^5 c^4}{2\pi^3 \hbar^7} \cdot f \cdot G_F^2 \cdot |M_{fi}|^2$$

- Für bestimmte (Fermi-) ß-Übergänge wie ${}^{14}O \rightarrow {}^{14}N + e^- + v_e$ gilt $|M_F|^2 = 1$, damit ergibt sich G_F zu:

$$\frac{G_F}{(\hbar c)^3} = 1.16637 \times 10^{-5} \, GeV^{-2} = 8.96 \times 10^{-5} \, MeV \, fm^{-3}$$

Probleme mit der Fermi-Theorie

Verletzung der Unitaritätsgrenze in der v-Nukleonstreuung:

 $\sigma(\nu N) \propto G_{F}^{2} \cdot 2m_{N} \cdot E_{\nu}$ (Labor) $\propto G_{F}^{2} \cdot s = 4 \cdot G_{F}^{2} \cdot p_{CMS}^{2}$ (CMS)

Aber: Punktförmige Streuung von Spin ½ Teilchen maximal (Wellentheorie)

$$\sigma_{\text{max}} = \pi \lambda^2 \frac{2l+1}{2s+1} = \frac{\pi \hbar^2}{2p^2_{\text{CMS}}} = \frac{2\pi \hbar^2}{s} \qquad (l=0)$$

 $\sigma(\nu N) > \sigma_{max}: \qquad (\hbar = c = 1)$ $\leftrightarrow 4 \cdot G_{F}^{2} \cdot p_{CMS}^{2} > \pi / (2p_{CMS}^{2})$

 $\leftrightarrow p_{CMS}^4 > \pi / (8G_F^2)$

Bei E_{смs} = 600 GeV kommt es zur Unitaritätsverletzung

$$\rightarrow p_{C M S} > 300 \text{ GeV/c} \rightarrow E_{C M S} = \sqrt{s} = 2 \cdot p_{C M S} = 600 \text{ GeV}$$

Fermi-Kopplungskonstante und g

Im Vergleich zur Darstellung mit dem entspr. Propagatorterm von Vektorbosonen ergibt sich

$$\frac{G_F}{(\hbar c)^3} = \frac{\sqrt{2}}{8} \cdot \frac{g^2}{M_W^2}$$

(Vorfaktoren sind historisch bedingt)

Bei kleinem q² ist Fermi-Theorie eine effektive Theorie der schwachen Ww.: Propagator $1/(q^2 - M_w^2) \rightarrow 1/M_w^2$ (punktförmig)

- Dimensionslose Kopplung $\alpha_W = g^2 / (\hbar c)$
 - analog Feinstrukturkonstante $\alpha_{em} = e^2/(\hbar c)$
 - mit $\alpha_W \sim 1/30 \& \alpha_{em} = 1/137$ gilt $\alpha_W > \alpha_{em} !!$

inverser ß-Zerfall

V-A Wechselwirkung

Fermis Ansatz mit vektorieller Kopplung gv:

- in enger Analogie zur elektromagnetischen Wechselwirkung beschreibt
 E. Fermi die schwache Wechselwirkung mit einem vektoriellen
 Operator γ^μ :

$$H_{w} = G \cdot (\overline{\Psi}_{p} \ \gamma^{\mu} \Psi_{n}) \cdot (\overline{\Psi}_{e} \ \gamma^{\mu} \Psi_{v})$$

- skalare Größe: 4 Fermi-Ansatz ist paritätserhaltend

Strom-Strom Kopplung:

- Kopplung eines leptonischen Stroms J_{lept} mit einem hadronischen Strom J_{hadr}

$$H_{w} = \frac{G}{\sqrt{2}} \cdot J_{\mu}^{+}(x) \cdot J^{\mu}(x)$$

- mit $J_{\mu} = J_{\mu}(\text{leptonisch}) + J_{\mu}(\text{hadronisch})$

V-A Kopplung, Chiralität

V –A Wechselwirkung in den Strömen:

- R.P. Feynman & M. Gell-Mann erweitern den vektoriellen Fermi-Ansatz um **axialvektorielle Ströme**

$$J_{\mu}(leptonisch) = \overline{\Psi}_{e} \gamma_{\mu} (1 - \gamma^{5}) \Psi_{v}$$

$$\gamma_{\mu} \gamma^{5}$$

$$V - A Wechselwirkung$$

$$J_{\mu}(hadronisch) = \overline{\Psi}_{n} \gamma_{\mu} (1 - \frac{g_{A}}{g_{V}} \cdot \gamma^{5}) \Psi_{p}$$

Hadronischer Strom

 im hadronischen Stromanteil sind die axialen Anteile g_A durch QCD-Effekte nur teilweise erhalten (g_A/g_V = 1.25)

Paritätsverletzende Kopplung der V – A Wechselwirkung

- Helizität: Kopplung nur an LH Fermionen bzw. RH Anti-Fermionen,

Chirale Kopplung der V – A Wechselwirkung

Intermediäre Vektorbosonen W[±] koppeln nur an LH Fermionen / RH Anti-Fermionen

$$j^{\mu} \propto \overline{u} \gamma^{\mu} (1-\gamma^5) u$$

<u>Chiraler</u> Chiraler Projektions-Operator $\frac{1}{2} \cdot (1 - \gamma^5)$

$$\Psi_{\mathsf{R}} = \frac{1}{2} \cdot (1 + \gamma^5) \mathsf{u}$$
$$\overline{\Psi}_{\mathsf{L}} = \overline{\mathsf{u}} \cdot \frac{1}{2} \cdot (1 - \gamma^5)$$

chiral RH Fermion

chiral LH Fermion

Schwacher Isospin

- Schwache Isospin: SU(2)- Dubletts & Singuletts:
 - die (chiral) linkshändigen Fermionen werden zu Dubletts bzgl. des schwachen Isospins T zusammengefasst (mit T = ¹/₂)
 - die (chiral) rechtshändigen Fermionen sind Singuletts bzgl. SU(2)

$$\begin{pmatrix} e^{-} \rangle_{R} & (\mu^{-})_{R} & (\tau^{-})_{R} \\ (u)_{R} & (c)_{R} & (t)_{R} & (d)_{R} & (s)_{R} & (b)_{R} \\ \end{cases}$$
Schwache Isospinsinguletts (T = T₃ = 0)
$$\begin{pmatrix} e^{-} \rangle_{R} & = \frac{1}{2}(1+\gamma^{5})e \\ \end{pmatrix}$$

Schwacher Isospin T:

- bei einer Reaktion (v_e, e^-): Leptonen verbleiben im gleichen Dublett \Rightarrow Zuordnung 3. Isospinkomponente $T_3(v_e, v_\mu, v_\tau) = +\frac{1}{2}$ $T_3(e^-, \mu^-, \tau^-) = -\frac{1}{2}$

Schwacher Isospin T :

- ein Fermion mit $T_3 = +\frac{1}{2}$ transformiert immer in eins mit $T_3 = -\frac{1}{2}$
- geladene W-Bosonen tragen schwachen Isospin T = 1 (Triplett)
 Emission W⁺ Boson: T₃ = +1 , W⁻ Boson: T₃ = -1, (W⁰ Boson: T₃ = 0)
 W⁰ ist nicht mit dem Z⁰ identisch!

Schwache Hyperladung

S. L. Glashow: Einführung der schwachen Hyperladung Y_w

$Q = T_3 + Y_W / 2$		$Y_{W} = 2 (Q - T_3)$			
Fermion	Händigkeit	Isospin T	lsospin T ₃	Hyperladung Y ^w	el. Ladung Q
$\nu_{e'}, \nu_{\mu'}, \nu_{\tau}$	L	1/2	+1/2	-1	0
e⁻, μ⁻, τ⁻	L	1/2	-1/2	-1	-1
u, c, t	L	1/2	+1/2	1/3	+2/3
d', s', b'	L	1/2	-1/2	1/3	-1/3
e ⁻ , μ ⁻ , τ ⁻	R	0	0	-2	-1
u, c, t	R	0	0	4/3	+2/3
d, s, b	R	0	0	-2/3	-1/3

b) Elektroschwache Vereinheitlichung

Elektroschwache Eichsymmetrie:

vier Spin 1 – Vektorbosonen $\dot{W_{\mu}}$, B_{μ} (Basiszustände des schwachen Isospins)

$$\vec{W}_{\mu} = (W_{\mu}^1, W_{\mu}^2, W_{\mu}^3)$$
 Triplett im T-Raum

Definition:

Singulett im T-Raum

Die **reellen Vektorbosonen W[±]** ergeben sich aus Kombination:

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \cdot (W_{\mu}^{1} \pm i W_{\mu}^{2})$$

Brechung der Eichsymmetrie durch 2 komplexe skalare Felder $\Phi(x)$ Eigenschaften: schwache Hyperladung $Y_w = +1$, Ladung Q = 0, Spin s = 0

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$$

3 Eichfelder erhalten Masse, 1 massives Higgs-Boson verbleibt

w: Vakuum-Erwartungswert Higgs Kopplung der Vektorbosonen W_{μ} , B_{μ} an den schwachen Isospinstrom J_{μ} und den Strom der schwachen Hyperladung J_{μ}^{γ} elektroschwache Ww.

$$L_{W} = g \cdot \sum_{a=1}^{3} J_{\mu}^{a} \cdot W^{a\mu} + g' \cdot J_{\mu}^{Y} \cdot B^{\mu}$$

$$Isotriplett W_{\mu} \text{ koppelt}$$
an schwachen Isospin mit Stärke **q**

$$Isosingulett B_{\mu} \text{ koppelt}$$
an schwache Hyperladung mit Stärke **q**

2 elektrisch neutrale Eichfelder: W³_µ und B_µ

$$A_{\mu} = \sin \theta_{W} \cdot W_{\mu}^{3} + \cos \theta_{W} \cdot B_{\mu}$$
$$Z_{\mu} = \cos \theta_{W} \cdot W_{\mu}^{3} - \sin \theta_{W} \cdot B_{\mu}$$

Mischung der neutralen Felder zum Photon und Z⁰-Boson Mischung von SU(2) und U(1) Photon γ und Z⁰-Boson sind 2 orthogonale Zustände und lassen sich als Linearkombination der Eichfelder B⁰ (B_µ) und W⁰ (W_µ) darstellen:

$$|\gamma\rangle = \frac{g \cdot |B^0\rangle + g \cdot |W^0\rangle}{\sqrt{g^2 + (g \cdot)^2}}$$

$$\left|Z^{0}\right\rangle = \frac{g \cdot \left|W^{0}\right\rangle - g \cdot \left|B^{0}\right\rangle}{\sqrt{g^{2} + (g \cdot)^{2}}}$$

Weinbergwinkel θ_w:

Der **elektroschwache Mischungswinkel** θ_{W} (Weinbergwinkel) ist der zentrale Parameter des Weinberg-Salam-Glashow-Modells

 beschreibt die Drehung der Eigenzustände des schwachen Isospins B⁰, W⁰ relativ zu den reellen Vektorbosonen γ und Z⁰

$$\sin \theta_W = \frac{g'}{\sqrt{g^2 + (g')^2}} \qquad \tan \theta_W = \frac{g'}{g}$$

$$\begin{pmatrix} |\gamma\rangle \\ |Z^{0}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{W} & \sin\theta_{W} \\ -\sin\theta_{W} & \cos\theta_{W} \end{pmatrix} \cdot \begin{pmatrix} |B^{0}\rangle \\ |W^{0}\rangle \end{pmatrix}$$

Weinbergwinkel θ_w:

- misst die Stärke der elektromagnet. relativ zur schwachen Wechselwirkung

 $e = g \cdot \sin \theta_W$

 experimenteller Wert aus der v-e Streuung, der elektroschwachen Interferenz bei e*e⁻ Streuung, Z⁰ - Breite

 $\sin^2 \theta_W = 0.2325 \pm 0.0008$

Erste Messungen von sin²0_w

Vor 1983: W,Z noch nicht entdeckt

Messung von sin²θ_W über das Verhältnis von neutralen und geladenen Neutrino-Nukleon Reaktionen

→ Abschätzung von M_W, M₇

M_W≈80GeV, M₇≈90GeV

Mit: $M_W = 37,4 \text{ GeV/c}^2 \cdot \sin^2 \theta_{W,}$ $M_Z^2 = M_W^2 / (1 - \sin^2 \theta_W)$

Figure 9.8 Value of the ratio $R_{\rm v}$ of antineutrino neutral-current cross-section to chargedcurrent cross-section, plotted against the corresponding quantity $R_{\rm v}$ for neutrinos, measured in deep-inelastic neutrino-nucleon scattering. The data points are from Fermilab (CCFRR) and CERN(CDHS, BEBC) experiments with beam energies of 50–150 GeV. The curve shows the prediction from the Weinberg-Salam model. The world data give a value $\sin^2 \theta_w = 0.22 \pm 0.01$. (After Geweniger 1984.)

c) Schwache Wechselwirkung von Quarks

- Effekte der Quarkmischung in der schwachen Wechselwirkung
 - N. Cabbibo: g ist "universell", neben den Übergängen innerhalb eines SU(2)-Dubletts auch Übergänge zwischen den Quark-Familien (Mischung)
 - Beispiele: $d \rightarrow u$ <u>und</u> $s \rightarrow u$

Cabbibo-Winkel θ_c

 ß-Zerfälle von Neutron und Lambda: Abweichungen bei Vergleich der Lebensdauern mit den Berechnungen

Cabbibo-Winkel θ_c ~ 13°

GIM Mechanismus

1970 Glashow, Illiopoulos & Maiani:

Einführung eines zweiten Quark-Dubletts (u, d´) (c, s´) zur Erklärung der Nichtexistenz von **Strangeness- (Flavour-) ändernden neutralen Strömen** (GIM-Mechanismus: Einführung des c-Quarks *vor* der Entdeckung des J/ψ)

Beispiel für einen verbotenen FCNC (Flavour Changing Neutral Current):

mit den beiden schwachen Quarkströmen ud´ und cs´

 $ud' = u (d \cdot \cos \theta_C + s \cdot \sin \theta_C)$ cs' =

$$cs = c \left(-d \cdot \sin \theta_C + s \cdot \cos \theta_C \right)$$

gibt es im neutralen Strom (uu + cc + d'd' + s's') keine $|\Delta S| = 1$ Anteile !

Quarkmischung – 2 Familien

Durch die Übergänge zwischen 2 Familien ergibt sich: der Partner des u-Quarks beim Austausch eines W-Bosons ist das d', eine Linearkombination von |d> und |s>

$$\begin{vmatrix} d' \rangle = \cos \theta_C \cdot |d\rangle + \sin \theta_C \cdot |s\rangle \\ |s'\rangle = \cos \theta_C \cdot |s\rangle - \sin \theta_C \cdot |d\rangle$$

$$\begin{pmatrix} |d'\rangle \\ |s'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_C & \sin\theta_C \\ -\sin\theta_C & \cos\theta_C \end{pmatrix} \cdot \begin{pmatrix} |d\rangle \\ |s\rangle \end{pmatrix}$$

- die Drehung von |d> und |s> ist Konvention, (anstatt |u> und |c>)
 - wichtig ist allein die Differenz der Drehwinkel

Quarkmischung – 2 Familien

- W-Bosonen koppeln nicht an die Masseneigenzustände d, s, sondern an die "Cabibbo-gedrehten" Quark-Flavour Zustände d´, s´
- die "Cabibbo-gedrehten" Quark-Flavour Zustände d´, s´
 besitzen keine definierten Massen (besser: Massenanteile d cos θ_c s sin θ_c)

CKM-Matrix: Mischung von 3 Familien

 1973: M. Kobayashi & T. Maskawa - Erweiterung der 2×2 Matrix mit der Mischung von 2 Familien auf eine 3×3 Quark-Mischungs-Matrix:
 Cabbibo-Kobayashi-Maskawa-Matrix (CKM – Matrix)

$$\begin{pmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{pmatrix}_{L} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{pmatrix}_{L}$$

Cabbibo Kobayashi Maskawa

- CKM-Matrix ist eine unitäre 3 × 3 Matrix mit 4 unabhängigen Parametern:
 - 3 reelle Winkel
 - 1 imaginäre (CP)-Phase (d.h. einige Matrixelemente sind komplex)
 - Übergangswahrscheinlichkeit P für qq' : $\mathbf{P} \sim |\mathbf{V}_{qq'}|^2$
 - alle nichtdiagonalen Elemente sind klein
- CKM-Matrix enthält einen Phasenfaktor, der CP-Verletzung ermöglicht (CP Verletzung erfordert drei Quarkgenerationen!)

CKM-Matrix: Parametrisierung

CKM Matrix ist darstellbar durch 3 Euler-Winkel θ_{ij} (θ_{12} , θ_{13} , θ_{23}), empfohlene **Parametrisierung** (mit $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$):

$$V_{CKM} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{-i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{-i\delta} & s_{23}c_{13} \\ s_{12}c_{23} - c_{12}s_{23}s_{13}e^{-i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{-i\delta} & c_{23}c_{13} \end{pmatrix}$$

- **CP-Phase** unter Zeitumkehr $e^{i\delta} \rightarrow e^{-i\delta}$: Verletzung von T bzw. von CP B⁰-B⁰ System: Phase $\delta \sim 60^{\circ}$
- Experimente zeigen: Quarkmischungswinkel sind klein $\sin \theta_{12} = \sin \theta_{c} >> \sin \theta_{23} >> \sin \theta_{13}$ $\theta_{12} = 13.04^{\circ}, \theta_{23} = 2.38^{\circ}, \theta_{13} = 0.201^{\circ},$

CKM-Matrix - Darstellungen

aktuelle experimentelle Werte der CKM Matrixelemente

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \\ \begin{pmatrix} 0.97459 & 0.2257 & 0.00359 \\ 0.2256 & 0.97334 & 0.0415 \\ 0.00874 & 0.0407 & 0.99913 \end{pmatrix}$

die theoretisch erwartete
 Unitarität der CKM Matrix wird
 experimentell überprüft
 (Suche nach einer 4. Generation)

