Kerne und Teilchen

Moderne Physik III

Vorlesung # 21

8. Moderne Elementarteilchen-Physik

- 8.1 Phänomene der Schwachen Wechselwirkung
 - a) Klassifikation schwacher Prozesse
 - b) Elektroschwache Vereinigung
 - c) Schwache Wechselwirkung von Quarks
 - d) CP-Verletzung
 - e) Neutrinophysik

Wiederholung: Elektroschwache Vereinigung

Austauschfelder (Eichfelder):

- (W⁺, W⁰, W⁻): Triplet des schwachen Isospins Koppelt nur an linkshändige Fermionen (rechtsh. Antifermionen) Kopplungsstärke g
- B⁰: Singulett des schwachen Isospins Koppelt an schwache Hyperladung (analog zum Photon bzgl. El. Ladung)

Kopplungsstärke g'

Physikalische Austauschbosonen γ und Z sind Gemische von W⁰ und B⁰:

$$\begin{pmatrix} |\gamma\rangle \\ |Z^{0}\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{W} & \sin\theta_{W} \\ -\sin\theta_{W} & \cos\theta_{W} \end{pmatrix} \cdot \begin{pmatrix} |B^{0}\rangle \\ |W^{0}\rangle \end{pmatrix}$$

Weinbergwinkel
$$\theta_W$$
:
 $g' = g \cdot \tan \theta_W$
 $e = g \cdot \sin \theta_W$

CKM-Matrix, GIM Mechanismus

Cabbibo-Kobayashi-Maskawa-Matrix

- unitäre 3 × 3 Matrix (Universalität des CC)
 i.a. 3 Winkel, 6 Quark-Phasen
- **3 reelle Winkel** θ_{12} , θ_{13} , θ_{23} beschreiben Quarkmischung
- **1 imaginäre (CP)-Phase** beschreibt CP-Verletzung (alle weiteren Phasen können in Quarkfeldern absorbiert werden)

CKM-Matrix

- alle nicht-diagonalen Elemente klein
- Drehung θ_{ij} der Massen/Flavourzustände

GIM-Mechanismus

Einführung schwacher Dubletts (u d´)_L (c s´)_L zustände keine FCNC (flavourändernde neutrale Ströme)

$$\sum_{k=1}^{3} |V_{ik}|^2 = 1$$

$$\begin{pmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{pmatrix}_{L} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{pmatrix}_{L}$$

1.

2.

3.

d) CP-Verletzung in der Schwachen W.W.

Kaonen* bilden zwei (Starke) Isospin-Dubletts:

 $\pi^- + p \rightarrow K^0 + \Lambda$

Erzeugung von Kaonen durch die starke Wechselwirkung mit $\Delta S = 0$

paarweise Erzeugung → ds + uds

Zerfall von Kaonen durch die schwache Wechselwirkung mit $\Delta S = \pm 1$

$$\mathsf{K^0} \to \pi^+ + \pi^-$$

$$\rightarrow 2\pi, \rightarrow 3\pi, \rightarrow \pi^- e^+ \nu_e$$

*Kaonen sind pseudoskalare Mesonen mit Strangeness; $M(K^+, K^-) = 493.7 \text{ MeV}, M(K^0, \overline{K^0}) = 497.6 \text{ MeV}$

Zustände K₁ und K₂

Interne Parität P von neutralen Kaonen $P = -(-1)^{\ell}$, mit $\ell = 0$:

$$P\left|K^{0}\right\rangle = -\left|K^{0}\right\rangle \qquad P\left|\overline{K}^{0}\right\rangle = -\left|\overline{K}^{0}\right\rangle$$

Ladungskonjugation C von neutralen Kaonen:

$$C\left|K^{0}\right\rangle = -\left|\overline{K}^{0}\right\rangle \quad C\left|\overline{K}^{0}\right\rangle = -\left|K^{0}\right\rangle$$

Vorzeichen Konvention

CP-Eigenschaften von neutralen Kaonen:

$$CP\left|K^{0}\right\rangle = \left|\overline{K}^{0}\right\rangle \quad CP\left|\overline{K}^{0}\right\rangle = \left|K^{0}\right\rangle$$

K⁰, K⁰ keine CP-Eigenzustände

Linearkombinationen K₁, K₂ von neutralen Kaonen:

$$\left| K_{1} \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle + \left| \overline{K}^{0} \right\rangle \right) \left| \left| K_{2} \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\left| K^{0} \right\rangle - \left| \overline{K}^{0} \right\rangle \right) \right|$$

■ K₁, K₂ als CP-Eigenzustände:

$$CP | K_1 \rangle = + | K_1 \rangle$$
 $CP | K_2 \rangle = - | K_2 \rangle$

K⁰ und K⁰ Mesonen sind damit orthogonale Superpositionen von K₁, K₂:

$$\left| K^{0} \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\left| K_{1} \right\rangle + \left| K_{2} \right\rangle \right)$$

$$\left| \overline{K}^{0} \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\left| K_{1} \right\rangle - \left| K_{2} \right\rangle \right)$$

Kaon-Oszillationen:

- Starke Wechselwirkung:

erzeugt K⁰ und K⁰ mit definierter Masse CPT-Theorem: m(K⁰) = m(K⁰)

- Schwache Wechselwirkung:

Übergänge $K^0 \Leftrightarrow \overline{K^0}$ Mischung der beiden neutralen Kaonen Entstehung der Zustände K₁ und K₂ mit unterschiedlichen Massen, Lebensdauern

Kaon-Oszillationen

Schwache Wechselwirkung: in 2. Ordnung führen die

beiden 'Boxdiagramme' zu **Teilchen-Antiteilchen-Oszillationen** bei Kaonen mit $\Delta S = 2$ (L. Wolfenstein: alle CP-verletzenden Prozesse involvieren $\Delta S = 2$)

Kaon-Zerfälle

Zerfälle von K₁ und K₂ in Pionen

die Zustände K₁ und K₂ haben unterschiedliche:

- Massen (K⁰- K⁰ Oszillationen heben die Massen-Entartung auf)
- CP-Eigenwerte (+1, -1) & damit Zerfallsmoden in Pionen $(2\pi, 3\pi)$
- Lebensdauern mit $\tau(K_1) \leq \tau(K_2)$

CP Zustände von zwei Pionen

$$P\left|\pi^{+}\pi^{-}\right\rangle = \left(-1\right)^{\ell}\left|\pi^{+}\pi^{-}\right\rangle$$

$$C\left|\pi^{+}\pi^{-}\right\rangle = (-1)^{\ell+s}\left|\pi^{+}\pi^{-}\right\rangle$$

Parität ist multiplikative Größe

$$CP\left|\pi^{+}\pi^{-}\right\rangle = +1\left|\pi^{+}\pi^{-}\right\rangle$$

ebenso

$$CP\left|\pi^{0}\pi^{0}\right\rangle = +1\left|\pi^{0}\pi^{0}\right\rangle$$

CP Zustände von drei Pionen

$$CP \left| \pi^{0} \pi^{0} \pi^{0} \right\rangle = -1 \left| \pi^{0} \pi^{0} \pi^{0} \right\rangle$$
$$CP \left| \pi^{0} \pi^{+} \pi^{-} \right\rangle = -1^{\ell+1} \left| \pi^{0} \pi^{+} \pi^{-} \right\rangle$$
Grundzustand, daher $\ell = 0$

Kaon-Zerfälle: K_L und K_s

bei CP-Erhaltung erwartet man die beiden Zerfallsmoden:

CP Erhaltung verbietet den Zerfall des K₂ in 2 Pionen

- K_2 : durch den kleinen Phasenraum ergibt sich eine große Lebensdauer $\tau_L = (51.54 \pm 0.44) \text{ ns} (K_L = K_{Long})$
- K₁ : durch den großen Phasenraum ergibt sich eine kurze Lebensdauer

 $\tau_{s} = (89.53 \pm 0.06) \text{ ps} (K_{s} = K_{short})$

bei CP-Erhaltung gelten die Relationen
 K₂ = K_L
 K₁ = K_S

die CP Eigenzustände K₁, K₂ sind nur bei vollständiger CP-Erhaltung identisch mit den Eigenzuständen K_S, K_L der schwachen Wechselwirkung

Zerfallsmodus	Branching ratio	
$K_1 \rightarrow \pi^+ \pi^-$	69 %	
$K_1 \rightarrow \pi^0 \pi^0$	31 %	
$K_2 \rightarrow \pi^0 \pi^0 \pi^0$	21 %	
$\mathbf{K_2} \rightarrow \pi^+ \pi^- \pi^0$	13 %	
$K_2 \rightarrow \pi^+ e^- \nu_e$	39 %	
$K_2 \rightarrow \pi^+ \mu^- \nu_\mu$	27 %	

Nachweis der CP-Verletzung

- 1964: am Brookhaven National Laboratory (BNL) weisen Cronin & Fitch CP-Verletzung im System der neutralen Kaonen nach
 - K⁰ Mesonen Erzeugung: Beschuss eines Be-Targets mit 30 GeV-Protonen aus dem AGS, am Experiment (d = 20 m) nur noch K_L
 - π^+ und π^- Impulse: magnetische Spektrometer mit Funkenkammern
 - Resultat: neben dem dominanten $K_L \rightarrow 3 \pi$ Zerfallsmodus beobachtet man eine kleine Rate an $K_L \rightarrow 2 \pi$ Ereignissen R = (2.3±0.4)×10⁻³

CP-Verletzung erfolgt über zwei unterschiedliche Prozesse:

Indirekte CP-Verletzung

Indirekte CP-Verletzung entsteht durch durch die Mischung von K₁ und K₂, d.h. der Zerfall K₂ \rightarrow 2 π resultiert durch die kleine Beimischung von K₁ zu K₂ :

$$\left| K_{S} \right\rangle \equiv \frac{1}{\sqrt{1+\left| \varepsilon \right|^{2}}} \left(\left| K_{1} \right\rangle + \varepsilon \cdot \left| K_{2} \right\rangle \right)$$
$$\left| K_{L} \right\rangle \equiv \frac{1}{\sqrt{1+\left| \varepsilon \right|^{2}}} \left(\varepsilon \cdot \left| K_{1} \right\rangle + \left| K_{2} \right\rangle \right)$$

 $\epsilon = 2.23 \times 10^{-3}$

Direkte CP-Verletzung

- CP-Verletzung erfolgt in diesem Falle direkt am Zerfallsvertex $K_2 \rightarrow 2 \pi$ Feynman-Diagramm: elektroschwacher 'Pinguin'
- Die direkte CP-Verletzung ist nochmals wesentlich schwächer als die indirekte CP-Verletzung durch die Oszillationen

Konsequenz: Definition von Materie/Antimaterie

Der Zerfall

$$K_L \rightarrow \pi^- e^+ V_e$$

kommt 0,3% häufiger vor als

$$K_L \rightarrow \pi^+ e^- \overline{V}_e$$

Konvention:

Das im Zerfall der langlebigen Kaonen seltener vorkommende Lepton ist

- Materie
- Elektrisch negativ geladen
- Das assoziierte Neutrino ist rechtshändig

Oszillation von B⁰ Mesonen

- Die Verletzung der CP-Symmetrie wurde in den letzen Jahren auch im System der neutralen B⁰-Mesonen beobachtet (B-Fabriken am KEK, SLAC)
 - Die CP-verletzenden Effekte sind wesentlich größer

CP-Verletzung & Materie/Antimaterie

Vernichtung von Materie – Antimaterie bei t ~ 0.1 ms b Erzeugung der CMB

- BBN: Baryon-Photon-Verhältnis $\eta \sim 10^{-9}$
- hier: kein thermisches Gleichgewicht

sonst wärer $\eta \sim 10^{-18}$!

Sacharov-Kriterien für Entstehung einer Baryon-Antibaryon-Asymmetrie:

1 CP- und C-verletzende Prozesse

verschiedene Eigenschaften von Materie & Antimaterie, Beispiel: Zerfalls-Amplituden von neutralen Kaonen, B-Mesonen

kein thermodynamisches Gleichgewicht

ansonsten wäre die Teilchendichte nur abhängig von ihrer Masse & der Temperatur kT des Universums CPT: identische Massen m(K⁰) = m(K⁰)

Baryonenzahl B- verletzende Prozesse

e) Neutrinophysik

Untersuchung der v-Eigenschaften (Mischung, 20) mit intensiven v-Quellen: genau bekannte v-Energien & Flavour-Zusammensetzungen erforderlich

Beschleuniger-Neutrinoexperimente

- Erzeugung hochenergetischer Neutrinostrahlen am Beispiel des CNGS: 400 GeV Protonen aus dem SPS treffen auf leichtes Be-Target:
 - 1. Target: Erzeugung von Pionen (π^{\pm} , π^{0}) & Kaonen (K[±], K⁰, K⁰)
 - 2. Magnetisches Horn: Fokussierung & Ladungsselektion der Mesonen
 - 3. Zerfallstunnel: Pionzerfall $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ in einem evakuiertem Tunnel
 - 4. Abschirmung: Absorption von Myonen und Hadronen, Instrumentierung

AGS-Experiment – das zweite Neutrino v_{μ}

 1962: L.M. Lederman, M. Schwartz, J. Steinberger: erster experim. Nachweis, dass v_µ ≠ v_e (Identität der Neutrinos aus dem Pionzerfall)

DONUT-Experiment – das dritte Neutrino v_{τ}

 2000 : erster experimenteller Nachweis des v_τ durch das DONUT Experiment (Direct Observation of NU Tau) am Fermilab (Chicago)
 Experiment: 800 GeV Protonen treffen auf ein Wolfram-Target
 Š D_s-Mesonen (cs̄) Zerfall Š v_τ mit E_v = 50 GeV
 Š Suche nach CC-v_τ-Wechselwirkungen an Stahlplatten

Resultate: **4 Ereignisse** mit der Topologie eines v_{τ} identifiziert: τ -*kink* τ -Lebensdauer: $\tau = 3 \times 10^{-13}$ s, Reichweite $c\tau$ = einige mm

Reaktor-Neutrinos

Kernreaktoren = stärkste terrestrische v–Quellen (isotroper Fluss $\Phi_v \sim 1/r^2$)
Neutrinos aus ß-Zerfällen neutronen-reicher Spaltprodukte

- Spaltisotope aus Kernspaltung von ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu

- ca. 6 $\bar{\nu}_e$ pro Spaltung mit (E_v) ~ 1 MeV

$n + {}^{238}U \longrightarrow {}^{239}U \longrightarrow {}^{239}Np$	$\rightarrow {}^{239}$ Pu (t _{1/2} = 24 100 J)
$n + {}^{239}Pu \rightarrow {}^{240}Pu + n$	$\rightarrow {}^{241}$ Pu (t _{1/2} = 14.1 J)

- pro Spaltung werden ~200 MeV Energie freigesetzt - v-Rate R_v aus einem P_{therm} = 8.4 GW Reaktor:

$$R_{v} = \frac{6 \cdot P_{th}}{204 MeV} = \frac{6 \times 8.4 \cdot 10^{9} \times 6.24 \cdot 10^{12}}{204} \overline{v}_{e} / s = 1.5 \cdot 10^{21} \overline{v}_{e} / s$$

²⁴¹Pu 212.4 ± 1.0 1 MeV = 1.602 · 10⁻¹³ Ws

 $1 \text{ W} = 6.24 \cdot 10^{12} \text{ MeV/s}$

Reaktor-Neutrinos: Energiespektren

- theoretisch berechnete v-Energiespektren für unterschiedliche Spaltprodukte
 - gewichtet mit der Häufigkeit im Reaktorkern (🗞 zeitabhängige Anteile!)
 - Normierung auf gemessene thermische Reaktor-Leistung P_{th}
- nachgewiesene Antineutrinos: Faltung mit energieabhängigem Wq.
 - Anwachsen mit der Energie: $\sigma(E_v) \sim (E_v Q)^2$

Neutrinoquellen – astrophysikalisch

Erzeugung von astrophysikal. Neutrinos mit Energien von 10⁻⁶ eV bis 10²⁰ eV

astrophysikalische v–Quellen	Energien	Erzeugungs-
Urknall (thermisch, $T_v = 1.9 \text{ K}$)	einige µeV	$e^+ + e^- \rightarrow v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau}$
Sonne (Kernfusion, pp, ⁷ Be, ⁸ B)	< 15 MeV	4 p + 2 e ⁻ \rightarrow ⁴ He + 2 v_e
Supernova (thermisch, Protoneutronstern)	< 50 MeV	$e^+ + e^- \rightarrow v_{e,\mu,\tau} + \overline{v}_{e,\mu,\tau}$
Atmosphäre (kosmische Strahlung)	< 104 GeV	$\pi^{\pm} \rightarrow \stackrel{(\overleftarrow{\nu}_{\mu}}{\rightarrow} + \mu^{\pm} \rightarrow e^{\pm} + \stackrel{(\overleftarrow{\nu}_{\mu}}{\rightarrow} + \stackrel{(\overleftarrow{\nu}_{e})}{\rightarrow} e^{\pm}$
kosmische Beschleuniger (µ-Quasare,	< 10 ¹⁰ GeV	$\pi^{\pm} \rightarrow \mu^{\pm} + \overline{V}_{\mu}$

