Kerne und Teilchen

Moderne Physik III

Vorlesung # 22

8. Moderne Elementarteilchen-Physik

- 8.1 Phänomene der Schwachen Wechselwirkung
 - a) Klassifikation schwacher Prozesse
 - b) Elektroschwache Vereinigung
 - c) Schwache Wechselwirkung von Quarks
 - d) CP-Verletzung
- 8.2 Neutrinophysik
- 8.3 Fundamentale Entdeckungen: W/Z-Bosonen, Top-Quarks, Higgs-Bosonen

8.2 Neutrinophysik

Untersuchung der v-Eigenschaften (Masse, Mischung, \mathcal{P})

a) Neutrinoquellen

Terrestrische v–Quellen	v–Energien	
Kernreaktoren (ß-Zerfall von Spaltprodukten)	1 – 5 MeV	
Spallationsquellen (π^+ - μ^+ Zerfallskette in Ruhe)	bis 50 MeV	69 -
Beschleuniger (π^+ -Zerfall im Fluge)	bis 200 GeV	
+ neue Konzepte für v-Strahlen: "ß-beams"	Strates	Rection and a second se
		MINOS Near Defector
CERN 730 Juni LINGS		Decay Enclosure Main injector Main injector
CERN-Gran Sasso CHOOZ: Reak	torneutrinos	R AND TO AND THE REAL PROPERTY AND THE REAL

Neutrinoquellen – astrophysikalisch

Erzeugung von astrophysikal. Neutrinos mit Energien von 10⁻⁶ eV bis 10²⁰ eV

astrophysikalische v–Quellen	Energien	Erzeugungs- Reaktion e n
Urknall (thermisch, $T_v = 1.9 \text{ K}$)	einige µeV	$e^+ + e^- \rightarrow v_{e,\mu,\tau} + v_{e,\mu,\tau}$
Sonne (Kernfusion, pp, ⁷ Be, ⁸ B)	< 15 MeV	4 p + 2 e ⁻ → ⁴ He ⁻ + 2 v _e
Supernova (thermisch, Protoneutronstern)	< 50 MeV	$e^+ + e^- \rightarrow v_{e,\mu,\tau} + v_{e,\mu,\tau}^{(-)}$
Atmosphäre (kosmische Strahlung)	< 104 GeV	$\pi^{\pm} \rightarrow \nu_{\mu} + (\mu^{\pm} \rightarrow e^{\pm} + \nu_{\mu} + \nu_{e})$
Kosmische Beschleuniger	< 10 ¹⁰ GeV	$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$

Sonnenneutrinos

- Solare Neutrinos: E_v < 10 MeV (pp, ⁷Be, ⁸B, hep), L_v ~ 150 Mio km aus den pp-Fusionsreaktionsketten: 4 p + 2 e⁻ → ⁴He + 2 v_e
- Standardsonnenmodell SSM (basierend auf solaren Parameter)

Integraler Sonnen-v-Fluss: $\Phi_v = 6.6 \times 10^{10}$ / cm² s

Solare Neutrinos – Energiespektren

Detaillierte theoret. Modellrechnungen zum solaren v–Spektrum

Grundgleichungen

- hydrodynamisches
 Gleichgewicht
- Energietransport: Strahlung & Konvektion
- Energieerzeugung: pp-Kernfusion (+CNO)
- SSM: Standard-
 - Sonnen-Modell

Pionier des heutigen Standard-Sonnenmodells: John Bahcall (1934-2005)

Solare Neutrinos – ⁸B

Wasser-Cherenkov-Detektoren: 'real-time' Nachweis von ⁸B-v's Messung der spektralen Form, CC-Rate, NC-Rate, Tag-Nacht-Effekte,...

Solare Neutrinos – ⁷Be

■ Radiochemische Detektoren: Cl-37 $v_e + {}^{37}Cl \leftrightarrow {}^{37}Ar + e^-$ (Q = 814 keV)

Messungen über 3 Jahrzehnte: solares v-Problem

Solare Neutrinos – pp

Radiochemische Detektoren: Gallex & SAGE:

 $v_e + {^{71}Ga} \leftrightarrow {^{71}Ge} + e^- (Q = 233 \text{ keV})$

Resultate der Sonnen-Neutrinoexperimente

Deuteron

Solares Neutrinodefizit:

alle Experimente (radiochemisch, realtime) auf der Basis von CC-Reaktionen zeigen ein signifikantes, schwellenabhängiges Defizit

Sudbury Neutrino Observatory SNO

das SNO-Experiment löst das solare Neutrino-Problem durch die erste Beobachtung einer NC Reaktion an ²H (Deuteron):

- Die exp. NC Rate entspricht dem theoretischen SSM-Wert
- Solare v's oszillieren auf dem Flugweg vom Sonneninnern zur Erde in andere, nicht mit **CC-Reaktionen nachweisbare** Flavourzustände v_{μ} , v_{τ}

Atmosphärische Neutrinos

Erzeugung durch kosmische Strahlung in der obere Atmosphäre (h ~ 20 km) Wechselwirkungen mit ¹⁶O, ¹²N Kernen: ⁴ Pionen (π⁺, π⁰, π⁻) Kaonen Zerfallskette der Pionen/Kaonen ⁴ atmosphärische v´s im GeV-Bereich

Atmosphärische Neutrino-Oszillationen

- Die Evidenz f
 ür die Oszillation von atmosph
 ärischen v
 s basiert auf einer oben-unten Asymmetrie f
 ür hochenergetische Myon-Neutrinos: die nach oben laufenden v
 u sind in v
 τ oszilliert
- Aus der Anpassung des beobachteten Winkelspektrums ergibt sich:
 atmosphärische Neutrinos oszillieren maximal

b) Neutrino-Oszillationen

Neutrino-Oszillationen basieren auf einem quantenmechanischen Interferenzphänomen

2-Flavour-v-Mischung:

Nichtidentität von

enge Analogie zur
 CKM Mischung der
 linkshändigen Quarks

Bruno Pontecorvo: erstes Konzept $v-\overline{v}$ Oszillationen

Neutrino-Oszillationen – Formalismus

• Wahrscheinlichkeit P für die Oszillation eines v_{μ} in ein v_{e} nach Zeit t:

$$P(v_{\mu} \rightarrow v_{e}) = |\cos\theta \cdot \sin\theta \cdot (1 - e^{i\Delta m^{2}t/2E_{v}})|^{2}$$
 mit P = $|\langle v_{e}|v_{\mu}(t) \rangle|^{2}$

$$= \sin^{2} 2\theta \cdot \sin^{2}(\Delta m^{2}L_{v}/4E_{v})$$
 mit Massensplitting $\Delta m^{2} = |m_{1}^{2} - m_{2}^{2}|$

$$= \sin^{2} 2\theta \cdot \sin^{2}(1.27 \cdot \Delta m^{2} \cdot L_{v}/E_{v})$$
 L_v in Einheiten m bzw. km
E_v in Einheiten MeV bzw. GeV

$$\int_{\Delta osc} = \frac{2.5 E_{v}}{\Delta m^{2}}$$
 periodisches Auftauchen eines neuen Neutrinoflavourzustands

$$= periodische Ab - bzw. Zunahme des ursprünglichen Neutrino-flavourzustandes$$

$$= Oszillationslänge \lambda \sim v-Energie ! \lambda_{osc} \sim 2.5 E_{v}/\Delta m^{2}$$

Neutrino-Oszillationen – Konzept

Neutrino-Oszillationen entstehen bei der Propagation der Massenzustände

Appearance & disappearance Kanal

Disappearance Kanal $v_{\mu} \rightarrow v_{\mu}$ disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta \cdot \sin^2 \left(1.27 \cdot \Delta m^2 \cdot \frac{L_{\nu}}{E_{\nu}} \right)$$

Statistik: große Ereignisanzahl (N > 10⁴) **Systematik:** v–Fluss & v–Energien ideal, falls **große** Mischungsamplitude

Appearance Kanal $v_{\mu} \rightarrow v_{\tau}$ appearance

 $P(v_{\mu} \rightarrow v_{\tau}) = \sin^2 2\theta \cdot \sin^2 \left(1.27 \cdot \Delta m^2 \cdot \frac{L_{\nu}}{E_{\nu}} \right)$

Statistik: sehr kleine Ereigniszahl (N < 100) **Systematik:** v–Flavoursorten ideal, falls **kleine** Mischungsamplitude

Beispiel: NuMI Strahl - MINOS

3-Flavour Mischung

- Erweiterung der 2-Flavour-Oszillationen auf **3 Flavour-Oszillationen**:
 - drei Mischungswinkel: θ_{12} , θ_{23} , θ_{13}
 - zwei unabhängige Δm^2 Skalen mit Relation:

$$\Delta m_{13}^2 = \Delta m_{12}^2 + \Delta m_{23}^2$$

3 Flavour-Mischung 'entkoppelt' in drei separate Mischungs-Terme:

3 Flavour-Mischung 'entkoppelt' in drei separate Mischungs-Terme:

Long-Baseline Oszillationsexperimente

Iong-baseline v-Oszillations-Experimente in Japan, USA & Europa: Überprüfung der Oszillation von atmosphärischen v´s im Labor

Long-Baseline Beschleuniger Experimente: Übersicht									
LB-v-Strahl	Ort	Entfernung	Energie	L/E	Beginn	Detektor	Kanal		
K2K	J	235 km	1.4 GeV	~150	1999	Super-Kamiokande	ν _μ - Χ		
NuMI	US	735 km	1-30 GeV	50-350	2005	MINOS	$ u_{\mu}$ - $ u_{\mu}$		
CNGS	EU	732 km	30 GeV	50-350	2007	OPERA	$ u_{\mu}$ - $ u_{ au}$		
T2K	J	295 km	GeV		2010	Super-Kamiokande	v_{μ} - v_{e}		

Neutrino-Ruhemasse & ßß-Zerfall

- v-Oszillationen (solare, atmosphärische, LBL v's):
 - Neutrinos sind massebehaftet!
 - Mischungswinkel θ_{ij}
 - Differenz der Massenquadrate ∆m²ij
 - Keine Absolutskala der v-Massen!

Neutrinomassen in der Teilchenphysik

c) Neutrinomasse – experimentelle Methoden

KATRIN Experiment - Überblick

Ultrapräzise ß-Spektroskopie von T₂:

- hochintensive molekulare Tritiumquelle mit ~10¹¹ Bq
- hochauflösende elektrostatische Spektrometer mit $\Delta E = 0.93 \text{ eV}$

ß-Zerfall – Energiespektrum

- ß-Zerfallskinematik am Endpunkt E_0 : modellunabhängige Messung von m(v_e)
 - basiert nur auf kinematischen Größen & Energieerhaltung

Suche nach dem 0vßß

- Neutrinobehafteter Doppelbetazerfall (2vßß): Prozess der
 - schwachen Wechselwirkung in 2. Ordnung \clubsuit extrem geringe Reaktionsrate & lange Halbwertszeiten T_{1/2} ~ 10¹⁹ 10²¹ Jahre, E₀ teilt sich auf 4 Leptonen auf

