

Kerne und Teilchen

Moderne Experimentalphysik III Vorlesung 6

MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Streuung – elastische Streuung am Nukleon – quasielastische Streuung

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

6.1 Formfaktoren des Nukleons (p,n)

- e-Streuung am H und D 🗢 Daten über p, n
- aber es gilt zu beachten:
 - a) Rückstoß wichtig
 - b) Magnetisches Moment
 - c) elektrische und magnetische Formfaktoren

Erinnerung:
$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott}^{*} = \left(\frac{d\sigma}{d\Omega}\right)_{Ru} \cdot \left(1 - \beta^{2} \sin^{2} \frac{\theta}{2}\right)^{*}$$
 "ohne Rückstoß"
 $\rightarrow \cos^{2}(\theta/2) \text{ für } \beta \rightarrow 1$

mit
$$\left(\frac{d\sigma}{d\Omega}\right)_{Ru} = \frac{4Z^2 \alpha^2 (\hbar c)^2}{4E^2 \sin^4 \frac{\theta}{2}}$$
; $E = E'$; $|\vec{p}| = |\vec{p}'|$; $|\vec{q}| = 2 |\vec{p}| \sin \frac{\theta}{2}$

Formfaktoren des Nukleons – a

- a) Vgl. $\rho(r)$ -Daten \Rightarrow R(p) \approx 1 fm \Rightarrow $|\vec{q}| = \frac{4.5 \ \hbar}{R} = \frac{4.5 \cdot 197 \ MeV \ fm}{1 \ fm \ c} \approx 900 \ MeV/c$
- D.h. E_{kin} ist nicht mehr klein gegen m_p , $m_n \approx 938$ MeV/c².
- Im Mott-WQ ist E und E' enthalten (gut), aber Phasenraumdichte dn/dE_f muss modifiziert werden.
- Es gilt nicht mehr $dE_f = dE' \approx dE$ so einfach ...

Vielmehr gilt:

[Herleitung im Perkins]

Benutze im Folgenden Lorentz-invariante Größe Viererimpulsübertrag:

 \widetilde{q}^2

Def.:
$$Q^2 := -\widetilde{q}^2$$

Ersetze
$$|\vec{q}|^2 \rightarrow \widetilde{q}^2$$
 oder Q^2 im Mott – WQ

$$= (\widetilde{p} - \widetilde{p}')^{2}$$

$$= 2m_{e}^{2}c^{2} - 2(EE'/c^{2} - |\vec{p}||\vec{p}'|\cos\theta)$$

$$\approx \bigoplus_{I} \frac{4EE'}{c^{2}}\sin^{2}\frac{\theta}{2}$$

Formfaktoren des Nukleons – b

- **b) bisher:** elektrische WW zwischen e⁻ und Kernladungen etc.
 - jetzt: auch die magnetische WW von e-Strom und magnetischem Moment von Proton bzw. Neutron berücksichtigen!
- Magn. WW ist mit **Umklappen des Nukleonspins** verknüpft (siehe VL 5).

Aus L- und S-Erhaltung

- ⇒ Drehimpuls und Helizitätserhaltung unvereinbar bei Streuung um 0°
- ⇒ Streuung um 180° wird favorisiert

Der Rutherford-Wirkungsquerschnitt muss bei Umklappen des Nukleonspins mit einem **Zusatzterm** $\propto sin^2(\theta/2)$ ergänzt werden:

magn WQ =
$$\left(\frac{d\sigma}{d\Omega}\right)_{Ru} \cdot \sin^2 \frac{\theta}{2}$$

Formfaktoren des Nukleons – b

Aus rel. QM, Dirac-Gleichung:

magnetisches Moment eines punktförmigen (pf) Spin-¹/₂ -Teilchens:

$$\mu = \frac{g}{2} \cdot \left[\frac{e\hbar}{2M_{pf}} \right] \quad ; \quad g = 2 \qquad \text{"Magneton": eħ/ 2M}$$

Die WW zwischen elektrischem Strom und magnetischem Moment ergab einen Zusatzterm $\propto \sin^2(\theta/2)$ im Rutherford-WQ.

Für den Mott-WQ entspricht das einem zusätzlichen <u>tan²-Term</u>: (Rf·sin² = Rf·cos² · tan² = Mott · tan²):

Der magn. Term ist wichtig bei hohem Q²-Übertrag und großen Streuwinkeln.

Formfaktoren des Nukleons – b

<u>Wie erklärt sich der Faktor 2τ ?</u>

$$\left(\frac{d\sigma}{d\Omega}\right)_{S=1/2}^{pf} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left(1 + 2\tau \tan^2 \frac{\theta}{2}\right)$$

Das Matrixelement *A* der magn. WW ist (mit $E_{mag} = -\vec{\mu} \cdot \vec{B}$)

$$A \propto \mu \propto 1/M$$

$$A \propto \vec{B}_{e^{-}} \propto \text{Ablenkung aus } \int F_B dt \propto Q$$

Im WQ geht A^2 ein $\Rightarrow \tau = \frac{Q^2}{4M^2c^2}$ Für Dirac-Teilchen: g(e) = g(µ) = 2 (aus g – 2-Exp. und QED \checkmark) alles zusammen

p,n bestehen aus Quarks (mit einem anomalen magnetischen Moment, das noch nicht wirklich verstanden ist: Beitrag von Gluonen, virtuellen $q\bar{q}$ u.v.a.m. ...)

gemessen:
$$\mu_p = \frac{g_p}{2} \mu_N = +2.79 \mu_N$$
 $\mathbf{p} = (\mathbf{u} \, \mathbf{u} \, \mathbf{d})$ mit Kernmagneton:
 $\mu_n = \frac{g_n}{2} \mu_N = -1.91 \mu_N$ $\mathbf{n} = (\mathbf{u} \, \mathbf{d} \, \mathbf{d})$ $\mu_N = \mathbf{e}\hbar/2\mathbf{M}_p = 3.1 \cdot 10^{-14} \text{ MeV/T}$

Formfaktoren des Nukleons – c

elektrische $G_F(Q^2)$ und magnetische $G_M(Q^2)$ FF werden benötigt C) (1950):

 $d\sigma$

Im Falle $Q^2 \rightarrow 0$ folgt:

$$G_E(Q^2) \rightarrow \frac{Ze}{e}; \qquad G_M(Q^2) \rightarrow \frac{\mu}{\mu_N}$$

G=G(Q²

 $\frac{G_E^2 + \tau G_M^2}{1 + \tau} + G_M^2 2\tau \tan^2 \frac{\theta}{2}$

Also für Nukleonen:

Protonen:	Neutronen:
$G_E^p(Q^2=0) = 1$	$G_E^n(Q^2=0) = 0$
$G_M^p(Q^2=0) = 2.79$	$G_M^n(Q^2 = 0) = -1.91$

Michael Feindt & Thomas Kuhr, Moderne Experimentalphysik III, Vorlesung 6 7 13.5.2014

Rosenbluth – Diagramm

Experimentell bestimmt man $\left(\frac{d\sigma}{d\Omega}\right)_{Rosenbluth} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott}$ als Funktion von $\tan^2 \frac{\theta}{2}$: 0.016 Beschuss von $d\sigma/d\Omega)_{Mott}$ $d\sigma/d\Omega)_{exp}$ Wasserstoff-Targets mit e-: 0.014 E = 400 MeV - 16 GeVgenaue Messung von E' und θ in Magnetischen Spektrometern 0.012 [Perkins Kap. 6, Anh. G; Cheng/O'Neill, Ch. 4] 0.010 0.10 0.15 0.05 0 $\tan^2 \frac{\theta}{2}$ Quotient aus gemessenem und Mott-WQ $\sigma_{exp}/\sigma_{Mott}$ als Funktion von tan²($\theta/2$) bei einem Viererimpulsübertrag von $Q^2 = 2.5 \text{ GeV}^2/c^2$ [aus Taylor, 1967]

Gerade mit Steigung $G_M^p(Q^2)$ und Achsenabschnitt $\frac{G_E^2 + \tau G_M^2}{1 + \tau}$ bei $\theta = 0^\circ$ Für verschiedene Q² durchführen $\Rightarrow G_E(Q^2)$ und $G_M(Q^2)$ separat

elektrische und magnetische Formfaktoren

elektrische und magnetische FF von p und n

Gemeinsame Beschreibung von p und n durch Dipolfit:

 $\rho_N(r) = \rho(0) \cdot e^{-ar}$ mit $a = 4.27 \, fm^{-1}$

- ⇒ Nukleonen sind diffuse Gebilde
- Dipolskalierung":

$$G_{E}^{p}(Q^{2}) = \frac{G_{M}^{p}(Q^{2})}{2.79} = \frac{G_{M}^{n}(Q^{2})}{-1.91} = G^{Dipol}(Q^{2}) = \left(1 + \frac{Q^{2}}{0.71(GeV/c)^{2}}\right)^{-2}$$

Vgl. $\rho(r)$ und FF-Tabelle!

"Radien" aus Steigung von G_{E,M}(Q²)|_{Q²=0} :

$$\langle r^2 \rangle = -6\hbar^2 \frac{dG^{Dipol}}{dQ^2} \Big|_{Q^2=0} = \frac{12}{a^2} = 0.66 \, fm^2$$

und somit:

neuere Daten ergeben:
$$\langle \mathbf{r}^2 \rangle_p^{1/2} = 0.862$$

 $(r^2)_{Dipol}^{1/2} = 0.81 \text{ fm}$

fm

elektrische und magnetische FF von p und n

- $G_E^n(Q^2)$ ist schwierig zu messen: über eD-Streuung und nachträgliches Subtrahieren des eH-Anteils.
- Eleganter: Reaktor-Neutronen an Atom-Elektronen streuen, dabei ist Q² klein.
 e-Nachweis (& zusätzlicher Foldy-Term) führt zu:

$$-6\hbar^2 \frac{dG_E^n(Q^2)}{dQ^2}\Big|_{Q^2=0} = \langle r^2 \rangle = -0.133(5) fm^2$$

- ⇒ Neutron nur nach außen neutral;
 - ⇒ geladene Konstituenten im Inneren, die auch das magn. Moment tragen!

Elastischer Wirkungsquerschnitt

Energiespektrum

Karlsruher Institut für Technologie

o aus H

Erinnerung: e⁻ – Streuung (Laborenergie E) an ruhenden Nukleonen (Masse M)

feste Relation zwischen E' und θ

Jetzt: Experiment mit gebundenen Nukleonen durchführen ⇒ Energiespektrum wird komplizierter

Bsp: H₂¹⁶O (ee') am MAMI (Mainzer Mikrotron) Überlagerung von p(ee') und ¹⁶O(ee')

Interpretation:

(q.e.) quasielastische Streuung an den Nukleonen im ¹⁶O – Kern Breite: Dopplereffekt ^p Verschiebung: Austrittsarbeit aus Kernpotential

Modell:

Stoßnäherung: e⁻ – WW mit einzelnen Nukleonen Herauslösen aus dem Kernverband: Austrittsarbeit ⇔ ΔE Breites Spektrum: Nukleonen bewegen sich schnell und ~ frei im Kern ⇔ Dopplereffekt

mittlerer Nukleonenimpuls

kugelsymmetrische Verteilung von P \Rightarrow zeitl. Mittel $\Rightarrow \langle \vec{q} \cdot \vec{P} \rangle = 0$ $\Rightarrow \langle v \rangle = v_0 = \frac{\vec{q}^2}{2M} + S$ mit Breite $\sigma_{\nu} = \sqrt{\left\langle \left(\nu - \nu_{0}\right)^{2} \right\rangle} = \sqrt{\left\langle \frac{|\vec{q}^{2}\|\vec{P}^{2}|\cos^{2}\alpha}{M^{2}} \right\rangle} = \frac{|\vec{q}|}{M}\sqrt{\left\langle \vec{P}^{2}\cos^{2}\alpha\right\rangle} = \left| \frac{|\vec{q}|}{M}\sqrt{\frac{1}{3}\left\langle \vec{P}^{2}\right\rangle} \right|$ $=\frac{1}{4\pi}\int_{\alpha=0}^{2\pi}\int_{\alpha=0}^{1}\cos^{2}\alpha \ d\cos\alpha d\varphi = \dots = \frac{1}{2}$ Def. Varianz ΔE in H₂O(ee') ~ 15 MeV ⇒ S ≈ 15 MeV $\sigma_{\text{E'}} \sim \sigma_{v} \approx 70 \text{ MeV FWHM /2.3} \Rightarrow \langle \vec{P}^2 \rangle = \left(\sigma_{v} \cdot \frac{M}{|\vec{q}|} \right)^2 \cdot 3$ ≈ 30 MeV $= \left(30 \cdot \frac{936}{378}\right)^2 \cdot 3 = 128^2$ $q^{2} = \frac{4EE'}{c^{2}} \sin^{2}\theta/2 = 4 \cdot 246 \cdot 150 \cdot \sin^{2}74^{\circ}$ = 143000 \approx 378² ⇒ mittlerer Nukleonimpuls im Kern ist 128 MeV (sehr hoch!)

⇒ was bedeutet das? Modell: Fermi – Gas

Einschub: Fermi – Gas – Modell

- siehe Povh 17.1
- p,n unabhängige Fermionensysteme mit Fermi-Dirac-Statistik; freie Bewegung im Kernvolumen; Pauli-Prinzip

⇒ Die Nukleonen können sich im Kern mit hohem Impuls bewegen (vgl. Unschärferelation $\Delta p \cdot \Delta x \approx \hbar$ für ein auf Δx lokalisiertes Teilchen)

"Fermi – Energie"

$$\blacksquare \quad E_F = \frac{p_F^2}{2M} \approx 33 MeV$$

⇒ Tiefe des Potentialtopfs: $V_0 = E_F + B/A \approx 40 \text{ MeV}$

B/A ~7-8 MeV /Nukleon

- unabhängig von A
- nicht extern vorgegeben, sondern durch WW unter den Nukleonen erzeugt
- KEINE gute Näherung für kleine A
- Zunahme der Niveaudichte wg. des mit A größeren Kernvolumens

• E_F konstant ⇒ konstante Kerndichte

- N>Z für schwere Kerne: $E_F^n \le E_F^p$ für stabile Kerne, sonst β-Zerfall
 - p sind wegen der Coulomb-Abstoßung schwächer gebunden als n: N > Z
 ⇒ "n-Topf tiefer als p-Topf"

Verbindung mit $\langle \vec{p}^3 \rangle$ aus quasi-elastischer Streuung (Breite der E'-Verteilung):

$$\left\langle E_{kin} \right\rangle = \frac{\int_{0}^{p_{F}} E_{kin} p^{2} dp}{\int_{0}^{p_{F}} p^{2} dp} = \frac{\int_{0}^{p_{F}} \frac{p^{2}}{2M} p^{2} dp}{\int_{0}^{p_{F}} p^{2} dp} = \frac{3}{5} \frac{p_{F}^{2}}{2M} \stackrel{\text{allg.}}{=} \frac{\left\langle p^{2} \right\rangle}{2M}$$

$$p_{F}^{2} = \frac{5}{3} \left\langle p^{2} \right\rangle$$

Datenbeispiele aus quasielastischer e⁻-Streuung

	⁶ Li	¹² C	⁵⁹ Ni	²⁰⁸ Pb	
p _F [MeV/c]	169	221	260	265	±5
S [MeV]	17	25	36	44	±3

Ladungsradien von Mesonen aus Formfaktoren

- - Formfaktoren von π , K: $q\overline{q}$ Systeme mit Spin 0 ⇒ nur elektrische Formfaktoren - m_π=140 MeV ; m_κ=494 MeV

Pion- und Kaon-Formfaktoren

