

Kerne und Teilchen

Moderne Experimentalphysik III Vorlesung 13

MICHAEL FEINDT & THOMAS KUHR INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK

Quarkonia: Charmonium und Bottonium

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

was bisher geschah...

- bisher: <u>Analyse:</u>
 - Atom → Kern → Nukleonen → $\frac{Quarks}{Leptonen}$ → keine Substrukturen
 - e.m., starke und schwache W.W.
 - Standardmodell

	im Folgenden:	<u>Synthese</u>	e: Aufbau k (gebund	Aufbau komplexer Strukturen (gebundener Zustände) aus elementaren Teilchen					
	Quarkonium	1	aus elen						
	MesonenBaryonenKerne	steige Komp	ende olexität						
~ 6	analoge Behandl	ung von	H-Atomen	Positronium	Charmonium				

stabil

stabil

instabil

Wasserstoffatom

H – Atom:

- statisches Coulomb-Potential
- nichtrelativistische Schrödinger-Gleichung

Schrödinger-GI: $\left(-\frac{\hbar^2}{2m}\Delta - \frac{\alpha \hbar c}{r}\right)\psi(\vec{r}) = E \psi(\vec{r})$ Energieniveaus: $\begin{aligned} E_n &= -\frac{\alpha^2 m c^2}{2n^2}\\ E_1 &= -13.6 \, eV \end{aligned}$ **Hauptquantenzahl** n = N + l + 1 (N+1 = n_r = Radialquantenzahl) **# Knoten in Radial-WF Bahndrehimpuls Bohrscher Radius** $r_B = \frac{\hbar c}{\alpha mc^3} = 0.5 \cdot 10^5 fm$ (Proton-Radius ~ 1 fm) Wellenfunktion $\psi(\vec{r}) = R_{Nl}(r) \cdot Y_{lm}(\theta, \varphi)$ Radial-WF [↑] [↑] Winkelabhängigkeit der WF

Wasserstoffatom

kleine Korrekturen zu den entarteten Energieniveaus

Feinstruktur": Spin-Bahn-WW $\propto \alpha^2$, O(10⁻⁴)

"Hyperfeinstruktur" : Spin-Spin-WW $\propto \alpha^2 \frac{\mu_p}{\mu_{\rho}}$, O(10⁻⁷)

Notation:	п	l_{j}	mit	it $\vec{j} = \vec{l} + \vec{s}$			und	$\vec{f} = \vec{j} + \vec{i}_{\text{Pr oton}}$		
			<i>l</i> =	{	0 s	1 p	3 d	4 <i>f</i>	 	

- System bisher: Proton in Ruhe, Elektron bewegt sich um ruhendes Proton
- besser: Bewegung beider Teilchen im Schwerpunktsystem
 - ➡ gleicher Formalismus, aber ersetze Masse des Elektrons durch "reduzierte Masse":

$$m = \frac{M_{p} \cdot m_{e}}{M_{p} + m_{e}} \approx m_{e} \left(1 - \frac{m_{p}}{m_{e}}\right) \approx m_{e}$$

(praktisch kein Unterschied, weil $M_p >> m_e$)

Positronium

"Atom" aus Positron und Elektron, Proton durch Positron ersetzt.
 Potential wieder e.m. 1/r, aber jetzt haben beide Partner gleiche Masse

reduzierte Masse:

$m = m_e/2$	\Rightarrow	E_{B}	×2 kleiner
		r _B	×2 größer

■ Zerfall in Photonen $e^+e^- \rightarrow 2\gamma$ $\rightarrow 3\gamma$ Spin-Spin-WW größer

$$\frac{\mu_p}{\mu_e} \rightarrow \frac{\mu_e}{\mu_e} = 1$$

Abschätzung der Lebensdauer von Spin-0 – Positronium:

 $\tau_{2\gamma} \propto \frac{\alpha^2}{r_B^3 \cdot m^2}$ Kopplung an 2 Photonen (2 Vertices) gibt korrekte Dimension Überlappvolumen $r_B = \frac{\hbar c}{\alpha m}$

$$\begin{aligned} \tau_{2\gamma} &\approx \alpha^{5} \cdot m \approx 10^{-10} s & \checkmark \\ \tau_{3\gamma} &\approx 10^{-7} s & \checkmark \end{aligned}$$

präzise QED-Rechnungen stimmen gut mit Experimenten überein

Vergleich von Energieniveauschemata

Charmomium

■ gebundene cc̄ – Zustände

Notation - in der Atomphysik: n = n_r + L (Hauptquantenzahl) - in der Teilchenphysik: n = n_r = N + 1 (Radialquantenzahl)

Erzeugung von 1⁻⁻ – Zuständen in e⁺e⁻ – Annihilation durch virtuelles Photon:

e⁺e⁻ – Annihilation

8

Die "Novemberrevolution": J/Ψ

Richter nannte die neue Resonanz Ψ (Ting \rightarrow **J**)

Etwas später :

Ψ scheint der richtige Name zu sein...

Quelle: Perkins, Introduction to High Energy Physics

Charmomium-Spektroskopie

Quelle: Povh, Teilchen und Kerne

"Crystal – Ball" Detektor

"Crystal – Ball" Detektor

Vergleich von Energieniveauschemata

Quelle: Povh, Teilchen und Kerne

Vergleich von Energieniveauschemata

QCD – Potential

Quelle: Povh, Teilchen und Kerne

Farbmagnetische Wechselwirkung

kleine Abstände: 1–Gluon–Austausch dominiert (wg. Potentialanteil 1/r, analog zu 1–Photon– Austausch)

- starke Aufspaltung der S–Zustände ^{↑↑} und ^{↑↓} führt zu
- **großer Spin–Spin–Wechselwirkung**: Charmomium = 1000 x Positronium

Erwartungswert von $\vec{\sigma}_{a} \cdot \vec{\sigma}_{\bar{a}}$

$$\left\langle \vec{\sigma}_{q} \cdot \vec{\sigma}_{\bar{q}} \right\rangle = 4 \cdot \frac{s_{q} \cdot s_{\bar{q}}}{\hbar^{2}} = 2 \left[S(S+1) - s_{q}(s_{q}-1) - s_{\bar{q}}(s_{\bar{q}}-1) \right] = \begin{cases} -3 & f\ddot{u}r \ s = 0 \\ +1 & f\ddot{u}r \ s = 1 \end{cases}$$

wegen $\vec{S}^2 = (s_q + s_{\bar{q}})^2$ und binom. Formel gilt : $\vec{S}^2 = s_q^2 + s_{\bar{q}}^2 + 2\vec{s}_q \cdot \vec{s}_{\bar{q}}$ Eigenwert von $\vec{S}^2 = S(S+1)\hbar^2$ etc...

$$S = \text{Gesamtspin} = s_q + s_{\overline{q}} = \begin{cases} 0 \\ 1 \end{cases}$$

■
$$J/\psi \rightarrow \eta_c \gamma$$

■ $\uparrow\uparrow \rightarrow \uparrow\downarrow$ Spin – Flip
■ $1^{--} \rightarrow 0^{-+}$ e.m. M1 – Übergang
■ $\Delta m \approx 120 \text{ MeV}$

/\[[]

Quarkonium – Zerfälle und Bestimmung von α_s

4 Möglichkeiten:

- 1. elektromagnetisch
- 2. qq Annihilation (stark u. Zweig-unterdrückt, oder e.m.)
- 3. starker Zerfall in leichtere Mesonen
- 4. schwacher Zerfall

1) elektromagnetisch

$$\chi_{C1} = (1 {}^{3}P_{1}) \rightarrow J/\Psi (1 {}^{3}S_{1}) + \gamma$$

Änderung des Anregungszustandes durch **Photon – Emission**

Auswahlregeln aus Spin, Parität und Multipolentwicklung

Quarkonium – Zerfälle

2) $q\bar{q}$ - Annihilation in Photon oder Gluon

elektromagnetischer und starker Zerfall sind hier ca. gleich groß, weil der starke Zerfall 3 Gluonen benötigt und somit von der Größenordnung (α_s)³ ist. \rightarrow **Zweig-Unterdrückung**, wenn Quark-Linien nicht durchgängig sind.

Quarkonium – Zerfälle

Zweig-unterdrückte, starke Zerfälle (unter der $D\overline{D}$ – Schwelle)

Quarkonium – Zerfälle

- 4) Schwacher Quark Zerfall
 - kleine Zerfallsrate, sehr seltener Prozess, weil starke oder e.m. Zerfälle immer wichtiger sind

Quarkonium – Zerfälle: Bestimmung von α_s

- Verhältnis der Zerfallsraten in Photonen bzw. Hadronen ergibt eine Messung der starken Kopplungskonstante α_s (und dessen "Running")
- Beispiele:

= Positronium • Farbfaktor, Ladung, Masse der Quarks

 $\underline{\mathbf{c}}\overline{\mathbf{c}} - \underline{\mathbf{System}}: \quad \Gamma\left(\eta_{c}\left(1^{1}S_{0}\right) \xrightarrow{\boldsymbol{\alpha}_{em}^{2}} 2\gamma\right) = \frac{\mathbf{3} \cdot 4\pi Z_{c}^{4} \cdot \alpha_{em}^{2} \hbar^{2}}{m^{2} c} |\psi(0)|^{2} (1 + Korr.)$ $\Gamma(\eta_{c}(1^{1}S_{0}) \xrightarrow{\boldsymbol{\alpha_{s}^{2}}} 2g \xrightarrow{\boldsymbol{1}} Hadronen) = \frac{2}{3} \frac{\cdot 4\pi \cdot \alpha_{s}^{2}\hbar^{2}}{m^{2}c} |\psi(0)|^{2} (1 + Korr.)$ $\implies \frac{\Gamma(2\gamma)}{\Gamma(2g)} = \frac{8}{9} \cdot \frac{\alpha_{em}^2}{\alpha_s^2} \cdot (1 + Korr .)$ | α_s ≈ 0.25 $\frac{\Gamma(J/\Psi \to 3g \to Hadr.)}{\Gamma(J/\Psi \to 2\gamma \to Lept.)} \propto \frac{\alpha_s^3}{\alpha_{em}^2} \qquad \text{okay } \checkmark$ ebenso Theorie, und höhere Ordnungen **<u>bb</u> – System:** $\Gamma(Y \to 3g \to Hadr.) \propto \frac{\alpha_s^3}{\alpha_{em}} \alpha_s^2 \propto \frac{\alpha_s}{\alpha_{em}}$ ⇒ | α_c = 0.163 Starke Kopplung nimmt $\alpha_s(3 \text{ GeV}) \approx 0.25 \leftrightarrow \text{,laufen}^{"} \leftrightarrow \alpha_s(10 \text{ GeV}) \approx 0.16$ mit Abstand ab !