

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 2. Vorlesung (Teil 1)

ULRICH HUSEMANN, KATHRIN VALERIUS

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Kurze Wiederholung

- Einheiten für Kern- und Teilchenphysik:
 - \blacksquare Zentrale Größe: Energie \rightarrow Einheit: Elektronenvolt (eV)
 - Praktisch: natürliche Einheiten \rightarrow Einheit von Energie, Impuls, M → Einheit von Länge und Zeit: e
- Relativistische Kinematik:
 - Viererimpuls: $p_{\mu} = m\gamma(c, v_x, v_y)$, Mandelstam-Variablen:

$$S = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

$$t = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

$$U = (p_1 - p_4)^2 = (p_3 - p_2)^2$$

$$(\hbar = c = k_B = 1)$$

Masse und Temperatur: eV
 V^{-1}

$$v_z) \equiv \left(\frac{E}{c}, p_x, p_y, p_z\right)$$

$$p_1 p_2$$

$$p_2$$

Auflösung Aufgabe 1

- Warum ist es sinnvoll, in der Teilchenphysik mit natürlichen Einheiten zu arbeiten?
 - A. Die physikalische Interpretation wird erleichtert, weil Skalen an typischen Skalen in der Teilchenphysik angepasst sind.
 - B. Es ist einfacher, Gleichungen in natürlichen Einheiten auszuwerten.
 - C. Es ist einfacher, Gleichungen in natürlichen Einheiten auszudrücken.
 - D. Dimensionsanalysen werden in natürlichen Einheiten einfacher.
 - E. Das deutsche Gesetz über die Einheiten im Messwesen und die Zeitbestimmung verbietet den Einsatz des SI-Systems.

Struktur der Materie: vom Atom zum Elementarteilchen

Kapitel 2

Ubersicht

- Zentrales Thema: Struktur der Materie Schlüsselexperimente und aktueller Stand
 - Streuexperimente: Auflösung immer kleinerer Strukturen Kerne: Verteilung von Ladung und Spin
- - Nukleonen: Verteilung von Ladung und Spin, Verteilung von Quarks und Gluonen ("Partonen")
 - Aktueller Stand: Standardmodell der Teilchenphysik Fundamentale Teilchen und Kräfte
- - Theoretisches Hilfsmittel: relativistische Quantenfeld**theorie** (Dirac-Gleichung usw. \rightarrow Mod. Th. Phys. II)

eilch article

Rutherford-Streuung und Wirkungsquerschnitt

Kapitel 2.1

Warum Streuexperimente?

- Prinzip eines Streuexperiments:
 - **Strahl** von Teilchen mit **bekannten** Eigenschaften (Energie, Impuls, ...)
 - Wechselwirkung mit Untersuchungsobjekt \rightarrow Änderung der Eigenschaften der Stahlteilchen (meist Kinematik)
 - → Rückschluss auf Eigenschaften des Objekts
- Grobe Klassifikation:
 - Elastische Streuung: Impulsübertrag, aber kein Energieübertrag Inelastische (eigentlich: "unelastische") Streuung: zusätzlich Energieänderung

Beispiele:

- Institut Laue-Langevin (Grenoble): Neutronen auf Festkörper
- Rutherford-(Geiger-Marsden-)Experiment: Alphateilchen auf Goldfolie HERA (DESY, Hamburg, 1992–2007): Elektronen/Positronen auf Protonen

Erinnerung: Rutherford-Experiment

- Rutherford, Geiger, Marsden (ab 1909):
 - Streuung von Alphateilchen (= Heliumkernen) an Goldfolie
 - Messe Rate der gestreuten Alphateilchen als Funktion des Streuwinkels \rightarrow Rückschlüsse über Streuzentren in Goldfolie \rightarrow Rutherford-Atommodell
- Versuchsaufbau: "Fixed Target"
 - Geschirmte Radium-Quelle: $E_{kin}(\alpha) = 4,78 \text{ MeV}$
 - Sehr d
 ünne Goldfolie (Kernladungszahl Z = 79, Dicke 0,5 µm, ca. 1000 Atomlagen)
 - Nachweis der gestreuten Alphateilchen: ZnS-Schirm → früher Szintillationsdetektor

Erinnnerung: Rutherford-Streuformel

- Herleitung mit folgenden Annahmen (aus heutiger Sicht):
 - Kern punktförmig mit (positiver) Ladung Ze und Spin 0
 - Alphateilchen punktförmig mit (positiver) Ladung ze und Spin 0
 - Dünne Goldfolie: nur eine Wechselwirkung (keine Vielfachstreuung)
 - Kern viel massiver als Alphateilchen und in Kristallgitter eingebunden → Rückstoß des Kerns vernachlässigbar
 - Nur elektromagnetische Wechselwirkung: Coulomb-Abstoßung zwischen Kern und Alphateilchen mit Potenzial

V(r)

→ elastische Streuung: kein Energieverlust des Alphateilchens \rightarrow keine starke Kraft: keine Kernanregung

$$\sim rac{z \, Z \, e^2}{r}$$

Erinnerung: Rutherford-Streuformel

- Klassischer Ansatz: abstoßendes Zentralpotenzial → Trajektorie des Alphateilchens = Hyperbel
- Stoßparameter b

(engl.: impact parameter)

- Wertebereich: $b \in [0; \infty[$
- Resultat (Mod. Exp. Phys. I):

Rutherford-Streuformel

Moderne Experimentalphysik III (4010061) – 2. Vorlesung

→ Substitution:
$$dt = \frac{r^2}{Vb} d\phi$$

mit $\phi \in \left[-(\pi - \theta)/2, +(\pi - \theta)/2 \right]$
=) $|Sp| = \int_{-(\pi - \theta)/2}^{+(\pi - \theta)/2} \frac{z \cdot 2e^2}{4\pi \cdot \varepsilon_0 \vee b} \cos \phi d\phi$
 $-(\pi - \theta)/2$
 $= \frac{z \cdot 2e^2}{4\pi \cdot \varepsilon_0 \vee b} \sin \phi \Big|_{-(\pi - \theta)/2}^{+(\pi - \theta)/2}$
 $= \frac{z \cdot 2e^2}{4\pi \cdot \varepsilon_0 \vee b} 2 \cos \frac{\theta}{2}$
• Gleichseten: $\tan \frac{\theta}{2} = \frac{z \cdot 2e^2}{4\pi \cdot \varepsilon_0 \vee w' \cdot b} = \frac{k}{b}$
 \Rightarrow Relation Stremerickel \iff Stoßporameter

Sommersemester 2020

Aufgabe 2

- korrekt?
 - A. Aus der Winkelverteilung der aus der Goldfolie ausgeschlagenen Goldatome lässt sich auf die Streuzentren in der Goldfolie schließen.
 - B. Aus der Winkelverteilung der an der Goldfolie gestreuten Alphateilchen lässt sich auf die Streuzentren in der Goldfolie schließen.
 - C. Für kleine Stoßparameter b erwartet man große Streuwinkel θ .
 - D. Für große Stoßparameter b erwartet man große Streuwinkel θ .
 - E. Die Rutherford-Streuformel beschreibt die Streuung von Fermionen an Goldatomen.
- Bitte beantworten Sie diese Frage anonym auf ILIAS:

Welche der folgenden Aussagen über die Rutherford-Streuung sind

https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Aufbau eines Streuexperiments

- Teilchenstrahl trifft senkrecht auf dünnes Target → Fixed-Target-Experiment
- Parameter des einfallenden Teilchenstrahls:
 - Querschnittsfläche: A (typischerweise in cm²)
 - Geschwindigkeit: *v_i* (in cm/s)
 - Anzahldichte: n_s (in cm⁻³)
 - Flussdichte: $J = n_s \cdot v_i$ (in cm⁻² s⁻¹)
 - Fluss: $\Phi = J \cdot A = n_s \cdot v_i \cdot A$ (in s⁻¹)
- Parameter des Targets:
 - Dicke: *d* (in cm)
 - Dichte: ρ (in g/cm³)
 - Molare Masse: *m_t* (in g/mol)
 - Anzahldichte der Targetkerne: $n_t = \rho \cdot N_A/m_t$ (ρ : Dichte, N_A : Avogadro-Konstante)
 - Anzahl Targetkerne im Strahl: $N_t = n_t \cdot A \cdot d$

Sommersemester 2020

Totaler Wirkungsquerschnitt

- Abhängigkeit der Gesamtrate von Streuereignissen (Einheit: s⁻¹):
 - $\frac{dN_{\text{streu}}}{dt} = J \cdot N_t \cdot \sigma_{\text{tot}} = \Phi \cdot n_t \cdot d \cdot \sigma_{\text{tot}}$
 - **Strahleigenschaften:** Flussdichte *J* bzw. Fluss Φ
 - **Targeteigenschaften:** Anzahl N_t bzw. Dichte n_t der Targetkerne im Strahl
 - Proportionalitätskonstante: physikalische Eigenschaften des Streuprozesses \rightarrow totaler Wirkungsquerschnitt σ_{tot}
- Totaler Wirkungsquerschnitt (engl.: total cross section): $\sigma_{tot} = \frac{Zahl der Streuereignisse pro Zeit und Targetkern}{Zahl der einfallenden Teilchen pro Fläche und Zeit}$
 - Maß für Wahrscheinlichkeit des Streuprozesses
 - Dimensions analyse: $[\sigma_{tot}] = L^2 T T^{-1} = L^2 \rightarrow Dimension einer Fläche$

Wirkungsquerschnitt und Fläche

- Wirkungsquerschnitt:
 - Einheit: 1 b ("Barn") = 10^{-28} m² (siehe Phys. Today 25 (1972) 7, 9)
 - Interpretation: effektive Streufläche
 - Kernphysik: b bis 10⁻³ b (mb)
 - Teilchenphysik: mb bis 10⁻¹⁸ b (ab)
- **Geometrischer** Streuquerschnitt σ_{geo} :
 - Modell: harte Kugeln mit Radien R (Target) und r (Strahlteilchen) $\sigma_{\rm geo} = \pi (R^2 + r^2)$

Abschätzung für Rutherford-Streuung (b < R, $r \ll R$): ¹⁹⁷Au $A \sim R^3 \rightarrow R \approx 1,2 \, \text{fm} \cdot A^{1/3} \rightarrow \sigma_{\text{geo}} \approx 1,5 \, \text{b}$ (mit Massenzahl A = 197)

Luminosität

in Luminosität (etwa: "Leuchtkraft")

Instantane Luminosität (in cm⁻² s⁻¹ bzw. Hz/b) \rightarrow proportional zur Streurate:

$$L = J N_t = \Phi n_t d$$

$$\rightarrow \frac{dN_{\text{streu}}}{dt} = L \cdot \sigma_{\text{tot}}$$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults#Multi year plots

Teilchenphysik: Eigenschaften von Strahl und Target zusammengefasst

CMS Peak Luminosity Per Day, pp

Data included from 2010-03-30 11:22 to 2018-10-26 08:23 UTC

		40
	_	35
	_	30
	_	25
	_	20
.,	_	15
	_	10
•	_	5
		0

Integrierte Luminosität

CMS Integrated Luminosity Delivered, pp

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults#Multi year plots

Sommersemester 2020

Differenzieller Wirkungsquerschnitt

- - Phasenraum des Streuprozesses: Streuwinkelverteilung, Impulsspektrum
 - Detektor deckt oft nur kleinen Teil dieses Phasenraums ab
- **Differenzieller** Wirkungsquerschnitt: Hier nur Streuwinkelverteilung: differenziell in Raumwinkel $\Omega = \Omega(\theta, \phi)$

 $d\sigma$ $d\Omega$

Totaler Wirkungsquerschnitt oft nicht experimentell zugänglich:

Raumwinkelelement d Ω

nach Goldstein, Poole, Safko: Classical Mechanics, Addison-Wesley (2001)

Zahl der nach d Ω gestreuten Teilchen pro Zeit und Targetkern Zahl der einfallenden Teilchen pro Fläche und Zeit

Sommersemester 2020

Totaler Wirkungsquerschnitt

Totaler Wirkungsquerschnitt aus Integration über **Phasenraum** Hier: Integration über Raumwinkel Ω

$$\sigma_{\text{tot}} = \int_{0}^{2\pi} \int_{-1}^{1} \frac{\mathrm{d}\sigma}{\mathrm{d}\sigma}$$

Für Streuprobleme mit azimutaler Symmetrie

$$\sigma_{\rm tot} = 2\pi \int_{-1}^{1}$$

 $\frac{\sigma(\cos\theta,\phi)}{d\Omega} d\phi d\cos\theta$

 $\frac{d\sigma(\cos\theta)}{d\Omega}d\cos\theta$

Rutherford-Wirkungsquerschnitt

- Evinnerung: $\tan \frac{\theta}{2} = \frac{22e^2}{4\pi\epsilon_0 mv^2 b} = \frac{k}{b}$ (Relation Strenwinkel ~ Stoßparameter)
- · Geometrischer Wirkungsgnerschnitt:
 - $\frac{d\varsigma}{d\delta l} = 2\overline{l}b$ $\frac{d\varsigma}{d\delta l} = 2\overline{l}\overline{l}\sin\theta$ $\frac{d\varsigma}{d\rho} = 2\overline{l}\overline{l}\sin\theta$ $\frac{d\varsigma}{d\rho} = 2\overline{l}\overline{l}\sin\theta$ $\frac{d\varsigma}{d\rho}$ $\frac{d\rho}{\partial r} = 2\overline{l}\overline{l}\sin\theta$
- · Anwendung auf Rutherford-Strenung; $b = \frac{k}{\tan \frac{\theta}{2}} \longrightarrow \frac{db}{d\theta} = -\frac{k}{2\sin^2 \frac{\theta}{2}}$ tenz

Sommersemester 2020

Rutherford-Wirkungsquerschnitt

Rutherford-Wirkungsquerschnitt (Mod. Exp. Phys. I):

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Rutherford}} = \left(\frac{zZ\,\alpha\,\hbar c}{4E_{\mathrm{kin}}}\right)^{2}\cdot\frac{1}{\mathrm{sin}^{4}}$$

- **Unphysikalisches** Resultat: $d\sigma/d\Omega$ divergent für $\theta \rightarrow 0^{\circ}$
- Korrektur: (teilweise) Abschirmung der Kernladung, falls Stoßparameter *b* von Größenordnung der Elektronenhülle

Aufgabe 3

- Wie hängen Streurate, Wirkungsquerschnitt und Luminosität zusammen? A. Für einen festen Wirkungsquerschnitt ist die Streurate umgekehrt
 - proportional zur Luminosität.
 - B. Für eine feste Luminosität ist die Streurate proportional zum Wirkungsquerschnitt.
 - C. Der Wirkungsquerschnitt ist durch den betrachteten physikalischen Prozess gegeben.
 - D. Die Luminosität ist durch den betrachteten physikalischen Prozess gegeben.
 - E. Die Luminosität ist durch Beschleuniger bzw. Target gegeben.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Zusammenfassung: Streuexperimente

- **Teilchenstrahlen** auf Target → Rückschlüsse auf **Struktur** der untersuchten Materie
- Prototyp-Experiment: Alphateilchen auf Goldfolie (Rutherford, Geiger, Marsden) \rightarrow Basis für Rutherford-Atommodell
- Streurate abhängig von Teilchenfluss, Targeteigenschaften, Wirkungsquerschnitt
- Teilchenphysik: Eigenschaften von Strahl und Target zusammengefasst in Luminosität

Zusammenfassung: Wirkungsquerschnitt

- **Totaler** WQ: Maß für **Wahrscheinlichkeit** des Streuprozesses $\sigma_{tot} = \frac{Zahl \text{ der Streuereignisse pro Zeit und Targetkern}}{Zahl \text{ der einfallenden Teilchen pro Fläche und Zeit}}$
 - **Differenzieller** WQ (hier: als Funktion des Raumwinkels Ω):
 - Zahl der nach d Ω gestreuten Teilchen pro Zeit und Targetkern $\mathbf{d}\sigma$ Zahl der einfallenden Teilchen pro Fläche und Zeit $d\Omega$
 - Beispiel: Rutherford-Wirkungsquerschnitt: $d\sigma/d\Omega \sim 1/sin^4(\theta/2)$

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 2. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Auflösung Aufgabe 2

- Welche der folgenden Aussagen über die Rutherford-Streuung sind korrekt?
 - A. Aus der Winkelverteilung der aus der Goldfolie ausgeschlagenen Goldatome lässt sich auf die Streuzentren in der Goldfolie schließen.
 - B. Aus der Winkelverteilung der an der Goldfolie gestreuten Alphateilchen lässt sich auf die Streuzentren in der Goldfolie schließen.
 - C. Für kleine Stoßparameter b erwartet man große Streuwinkel θ .
 - D. Für große Stoßparameter b erwartet man große Streuwinkel θ .
 - E. Die Rutherford-Streuformel beschreibt die Streuung von Fermionen an Goldatomen.

Auflösung Aufgabe 3

- Wie hängen Streurate, Wirkungsquerschnitt und Luminosität zusammen? A. Für einen festen Wirkungsquerschnitt ist die Streurate umgekehrt
 - proportional zur Luminosität.
 - B. Für eine feste Luminosität ist die Streurate proportional zum Wirkungsquerschnitt.
 - C. Der Wirkungsquerschnitt ist durch den betrachteten physikalischen Prozess gegeben.
 - D. Die Luminosität ist durch den betrachteten physikalischen Prozess gegeben.
 - E. Die Luminosität ist durch Beschleuniger bzw. Target gegeben.

Mott-Streuung und Formfaktoren von Kernen

Kapitel 2.2

Rutherford-Streuung

Teilchen mit Coulombfeld des punktförmigen Kerns, differenzieller Wirkungsquerschnitt

- Dabei nicht berücksichtigt:
 - Teilchensorten (z. B. Elektronen)

 - Teilchens $\lambda = h/p$ in derselben Größenordnung wie Kernradius
 - Einfluss der starken Wechselwirkung \rightarrow ggf. modifiziertes Potenzial

Erinnerung: Rutherford-Streuung = elastische Streuung punktförmiger geladener

$$\left(rac{zZ\,lpha\,\hbar c}{4E_{
m kin}}
ight)^2\cdotrac{1}{\sin^4(heta/2)}$$

Spin: irrelevant für Alphateilchen (Spin 0) \rightarrow wichtig für Streuung mit anderen

Relativistische Effekte bei höheren kinetischen Energien \rightarrow wichtig für leichte Teilchen ■ Endliche Ausdehnung des Kerns → relevant, wenn de-Broglie-Wellenlänge des

Mott-Streuung

Rutherford-Streuung umgeschrieben mit Viererimpulsübertrag:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Rutherford}} = \frac{(2 z Z \alpha \hbar c)^2 E'^2}{Q^4 c^4}$$

Streuung von relativistischen Elektronen: Berücksichtigung von Kernrückstoß und Elektronenspin → Mott-Wirkungsquerschnitt

$$\left(\frac{d\sigma}{d\Omega}\right)_{Mott} = \left(\frac{d\sigma}{d\Omega}\right)_{Rutherford} \cdot \frac{E'}{E} \cdot \left(1 - \beta^2 \sin^2 \frac{\theta}{2}\right)_{Rutherford}$$

Kernrückstoß Elektronenspin

Viererimpulsübertrag

Karlsruher Institut für Technologie

→ Anwendung auf Purtherford-Streunny:
• elastische Streunny:
$$|\vec{p}| = |\vec{p}'|$$

• Mann vernachlässigt: $E = |\vec{p}|c$
 $\neg Q^2 = -z \frac{EE'}{c^2}(1 - \cos \theta)$
 $= -4 \frac{EE'}{c^2} \sin^2 \frac{\theta}{2}$
 $\neg ersetze 4 E_{vin} \sin^2 \frac{\theta}{2} = \frac{Q^2 c^2}{E^2}$
 $\Rightarrow \frac{d\tau}{d\alpha} = \frac{(2z7 \text{ wtr} c)^2 E^{12}}{Q^4 c^4}$
 $\int spater, Photon propagator $\left|\sum_{n=1}^{\infty} \right|^2$$

Mott-Streuung und Helizität

- Elektronenspin und Helizitätserhaltung:
 - **Helizität** = Projektion des Spins eines Teilchens auf den Impuls

$$h \equiv rac{\mathbf{s} \cdot \mathbf{p}}{|\mathbf{s}||\mathbf{p}|}$$

→ ohne Spin-Wechselwirkung erhalten (Drehimpulserhaltung)

Bei **Rückstreuung** (θ = 180°) müsste Spin umklappen (engl.: spin flip) → ohne Spin-Wechselwirkung mit Kern verboten → unterdrückt

Formfaktoren

- Experimentell (Hofstadter et al., ab 1953): Abweichungen von Mott-Wirkungsquerschnitt für Streuung mit großem Q²
 - Auflösung steigt mit Q² des virtuellen Photons (Abschätzung Unschärferelation: $\Delta x \approx \hbar/|\mathbf{q}|$)
 - Kern = ausgedehnte Ladungsverteilung → Elektron tastet nur Teil der Ladung ab → geringerer Wirkungsquerschnitt
- Beschreibung mit Formfaktoren:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} |F(\mathbf{q}^2)|^2$$

420-MeV-Elektronen auf Kohlenstoff

Formfaktoren

SLAC-Experiment zur Elektronenstreuung

NobelPrize.org

Bornsche Näherung: Formfaktor = Fouriertransformierte der Ladungsverteilung (Mod. Exp. Phys. I) [iar]

$$F(\mathbf{q}) = \int \rho(\mathbf{r}) \exp\left[\frac{\mathbf{\eta}}{\hbar}\right] d^3r$$

Mit normierter radialsymmetrischer Ladungsdichte $\int \rho(r) d^3r = 1$: SIN $F(q^2) = 4\pi$ $|\mathbf{q}|r$

Formfaktoren	ρ(r)
$\rho(r) = \frac{\delta(r)}{4\pi}$	punktförmig
$\rho(r) = \frac{a^3}{8\pi} \exp[-ar]$	exponentiell
$\rho(r) = \left(\frac{a^2}{2\pi}\right)^{3/2} \exp\left[-\frac{a^2r^2}{2}\right]$	gaußförmig
$\rho(r) = \begin{cases} \frac{3}{4\pi} R^3 & \text{für } r \leq R \\ 0 & \text{für } r > R \end{cases}$	homogene Kugel
$\rho(r) = \frac{\rho_0}{1 + \exp\left[\frac{r-R}{a}\right]}$ (Woods-Saxon)	Kugel mit diffusem Rand
	Povh r

Sommersemester 2020

Woods-Saxon-Verteilung

- mit diffusem Rand
 - Formfaktor: oszillierende Funktion → Größe des Kerns aus Minima Messung von Formfaktoren \rightarrow Parametrisierung der Ladungsverteilung

Moderne Experimentalphysik III (4010061) – 2. Vorlesung

Gutes Modell für Ladungsverteilung bei schweren Kernen: homogene Kugel

Häufige Parametrisierung: **Woods-Saxon-Verteilung**

$$\rho(r) = \frac{\rho_0}{1 + \exp\left[\frac{r-R}{a}\right]}$$

R: mittlerer Radius, a: Randdicke Empirisch für größere Kerne: $R = 1,07 \text{ fm } A^{1/3}, a = 0,54 \text{ fm}$ (A: Massenzahl, Nukleonenzahl)

Aufgabe 4

- Atomkernen ist korrekt?
 - A. Die Streuung von Elektronen an Atomkernen beschreibt man mit dem Rutherford-Wirkungsquerschnitt.
 - B. In der Mott-Streuung sind Spin-Flips unterdrückt.
 - C. Die Helizität ist die (normierte) Projektion des Spins auf die Impuls.
 - D. Bei ausgedehnten Kernen wird die Ladungsverteilung mit einem Formfaktor zusätzlich zum Mott-Wirkungsquerschnitt beschrieben.
 - E. Der Formfaktor ist proportional zur Ladungsverteilung.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Welche der folgenden Aussagen im Zusammenhang mit dem Aufbau von

Kurze Zusammenfassung

- **Mott-Streuung**: elastische Streuung relativistischer Spin-1/2-Teilchen (z. B. Elektronen) an Kernen
 - Kernrückstoß
 - Helizitätserhaltung: Rückstreuung unterdrückt
- Hohe Energien: Abweichungen von Mott-Wirkungsquerschnitt
 - Physikalischer Grund: Kern = ausgedehnte Ladungsverteilung
 - Mathematische Beschreibung: Formfaktor = Fouriertransformierte der Ladungsverteilung
 - Ladungsverteilung bei schweren Kernen: homogene Kugel mit diffusem

Kernmodelle

Kapitel 2.3

Übersicht

- Atomkern: komplexes Vielteilchensystem
 - Grundlegende Wechselwirkung bekannt (\rightarrow QCD, später), Kernkraft als Restwechselwirkung zwischen Nukleonen (Analogie: van-der-Waals-Kraft zwischen neutralen Atomen)

Bisher keine vollständige Theorie aller Kerneigenschaften

- Alternative: phänomenologische Modelle (Einteilchen- und kollektive Modelle, vgl. Moderne Experimentalphysik I)
 - Fermigasmodell: unabhängige Nukleonen als Gas von Fermionen in effektivem Kernpotenzial
 - **Tröpfchenmodell**: Kernmaterie = Tropfen einer inkompressiblen Flüssigkeit Schalenmodell: quantenmechanische Beschreibung einzelner Nukleonen analog
 - zu Schalenmodell der Atomphysik
 - Vermittlung der Kernkräfte durch Austausch von Mesonen

Eigenschaften von Kernen

Kernradius	Kernmaterie mit R = 1,2 fm·A ^{1/3} (
Masse und Bindungsenergie	Bindungsenergi Eisen/Nickel: sta
Quantenzahlen	Spin und Parität
Stabilität	Kerne stabil für Alpha-, Beta-, G
Anregungen und Deformationen	Energieniveaus kollektive Anreg
7. Kornladungsza	hl (auch: Ordnungs

Kernmodelle sollten beobachtete Kerneigenschaften beschreiben:

- konstanter Dichte, Kernradius näherungsweise (A: Massenzahl).
- e pro Nukleon ungefähr konstant (8 MeV). abilste Elemente im Universum.
- von Kernzuständen.
- Z = N (für kleine A) und für N > Z (für große A). Sammazerfall, Spaltung, Fusion, ...
- angeregter Zustände, ungen des Kerns.
- Z: Kernladungszahl (auch: Ordnungszahl) N: Neutronenzahl A = Z+N: Massenzahl

Moderne Experimentalphysik III (4010061) – 2. Vorlesung

Isotope, Isotone, Isobare

- **Isotope** = Kerne mit gleicher Kernladungszahl Z: Beispiele: ^{38,39,40,41,42,43}K (Z=19), ^{232,233,234,235,236,237,238,239}U (Z=92)
- **Isotone** = Kerne mit gleicher Neutronenzahl N: Beispiele: ${}^{2}H$ und ${}^{3}He$ (*N*=1); ${}^{36}S$, ${}^{37}CI$, ${}^{38}Ar$, ${}^{39}K$ und ${}^{40}Ca$ (*N*=20)
- **Isobare** = Kerne mit gleicher Massenzahl *A* = *Z* + *N*: Beispiel: ¹⁴C, ¹⁴N, ¹⁴O

 - Klassifikation nach gerader/ungerader Protonen-/Neutronenzahl:
 - Z und N gerade: gg-Kern
 - Z und N ungerade: **uu-Kern**
 - N gerade)

Spezialfall $Z_1 = N_2$, $Z_2 = N_1$: Spiegelkerne, z. B. ¹⁴C (Z=6, N=8) und ¹⁴O (Z=8, N=6)

A = Z + N ungerade: gu-Kern (Z gerade, N ungerade), ug-Kern (Z ungerade,

Isospin-Symmetrie

Neues Konzept: Isospin (kurz für "Isotopenspin")

- Entdeckung: Heisenberg, 1932 Name: Wigner, 1937
- Proton/Neutron: ähnliche Eigenschaften (experimentell: Streuung an Spiegelkernen, z. B. $^{22}Mg/^{22}Ne) \rightarrow Kernkraft unabhängig von elektrischer Ladung$
- Schlussfolgerungen:
 - **Falls** nur Kernkraft vorhanden: Proton = Neutron \equiv Nukleon
 - **Symmetrie** zwischen Protonen und Neutronen: Isospin T
 - Beschreibung analog zu Spin in Quantenmechanik \rightarrow Nukleon als Isospin-Duplett

Nukleon =
$$\begin{pmatrix} |p\rangle \\ |n\rangle \end{pmatrix} = \begin{pmatrix} |T = \frac{1}{2}, T_3 = +\frac{1}{2}\rangle \\ |T = \frac{1}{2}, T_3 = -\frac{1}{2}\rangle \end{pmatrix}$$

Ahnliches Konzept in elektroschwacher Theorie: "schwacher Isospin"

Fermigasmodell

- Bindungsenergie
 - Effektive Einteilchensysteme:
 - Besetzung der Zustände: Pauliprinzip
 - Wechselwirkungen zwischen Nukleonen → mittleres Kernpotenzial
 - Neutronen: Kastenpotenzial (alle Zustände besetzt \rightarrow abgesättigte Kernkräfte → freie Bewegung im Kern)

Zwei unabhängige Systeme (Protonen, Neutronen) mit gemeinsamer

Protonen: Kastenpotenzial (Kernkräfte) + Coulombpotenzial (Ladung)

Povh

Tröpfchenmodell

- Semi-empirisches Kernmodell (von Weizsäcker 1935, Bethe 1936):
 - Kernmaterie inkompressibel, Kräfte zwischen Nukleonen kurzreichweitig
 - Klassische Analogie: Wassertropfen (van-der-Waals-Kräfte, Oberflächenspannung, ...), zusätzlich Quantenmechanik
- Formel f
 ür Bindungsenergien von Kernen in Abh
 ängigkeit von Z und A mit experimentell anzupassenden Koeffizienten (Mod. Exp. Phys. I)

Sommersemester 2020

Bethe-Weizsäcker-Formel Bindungsenergie: $E_{b,K}(Z,A) = a_V A - a_O A^{2/3} - a_C \frac{Z(Z)}{\Delta}$

Anpassung an Daten

Parameter	Wert (MeV/c ²)
av	15,8
a 0	17,8
ac	0,711
a _A	94,8
a _P	34,0

Zahlenwerte: Alonso/Finn, Fundamental University Physics III (1969)

B/A [MeV]

$$\frac{Z-1}{A^{1/3}} - a_A \frac{(A/2-Z)^2}{A} + \begin{cases} a_P A^{-3/4} & \text{gg} \\ 0 & \text{ug/g} \\ -a_P A^{-3/4} & \text{uu} \end{cases}$$

Magische Zahlen

Energie des ersten angeregten Zustands

Experimentell: Kerne mit bestimmten "magischen" Protonen- und/oder Neutronenzahlen besonders stabil

Magische Zahlen: Z und/ oder N = 2, 8, 20, 28, 50,82, 126

Analogie aus Atomphysik: abgeschlossene Schalen ("Edelgaskonfiguration") besonders stabil

N, number of neutrons

Schalenmodell

- (Einteilchen-)Schalenmodell: (Goeppert-Mayer; Haxel, Jensen, Suess, 1949)
 - Einzelnes Nukleon in mittlerem Potenzial der anderen Nukleonen (Ansatz: z. B. Woods-Saxon)
 - Lösung der Schrödingergleichung in kugelsymmetrischem Potenzial **mit Spin-Bahn-Kopplung** → Quantenzahlen und Energieniveaus ("Schalen")
- Erfolg: korrekte Beschreibung der magischen Zahlen
- Unterschiede zur Atomphysik: stärkere Kraft, kein Kraftzentrum, Spin-Bahn-Kopplung viel stärker und mit umgekehrtem Vorzeichen

M. Goeppert Mayer

J. H. D. Jensen

NobelPrize.org

Einteilchen- und Einlochzustände

Erfolgreiche Beschreibung mit Schalenmodell: abgeschlossene fehlendes Nukleon ("Loch")

Energieniveaus: ¹⁶**O**

(doppelt magisch)

Schalen und ein überschüssiges Nukleon ("Leuchtnukleon") bzw. ein

Einteilchen- und Einlochzustände

Erfolgreiche Beschreibung mit Schalenmodell: abgeschlossene fehlendes Nukleon ("Loch")

Energieniveaus: ¹⁷**O**

(ein Leuchtnukleon)

Schalen und ein überschüssiges Nukleon ("Leuchtnukleon") bzw. ein

Sommersemester 2020

Aufgabe 5

- Welche der folgenden Aussagen zum Schalenmodell des Atomkerns sind korrekt?
 - A. Das Schalenmodell beschreibt die Energieniveaus von Leuchtnukleonen besonders gut.
 - B. Das Schalenmodell beschreibt die magischen Zahlen nur für bestimmte Annahmen über Potenzial und Spin-Bahn-Kopplung.
 - C. Das Schalenmodell nimmt ein asymmetrisches Potenzial an.
 - D. Vorzeichen und Stärke der Spin-Bahn-Kopplung sind ähnlich wie bei Atomen.
- Bitte beantworten Sie diese Frage anonym auf ILIAS:

https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Kerne sind komplizierter...

- Komplizierte Effekte:
 - Korrelationen zwischen ≥2 Nukleonen (z. B. Alphateilchen)
 - **Kollektive Kernanregungen**: Kernrotationen, Oberflächenschwingungen, Riesenresonanzen (= Vibrationen des gesamten Kerns)
 - Exotische Kerne, z. B. Halokerne
- Beschreibung der starken Kernkraft:
 - Bis 1980er Jahre: Austausch von Mesonen, z. B. Pion Heutige Werkzeuge: chirale Störungstheorie und
 - Gittereichtheorie

Quadrupol-Resonanz

= 2, T = 0

Bethge, Walter, Wiedemann

Pionenaustausch

Kurze Zusammenfassung

- Einfache Kernmodelle:
 - **Fermigasmodell**: Freie Spin-1/2-Nukleonen in Potenzialtopf
 - Tröpfchenmodell: semiempirische Beschreibung der Bindungsenergie von Kernen
 - Keine Erklärung der Stabilität von Kernen mit magischen Nukleonenzahlen (2, 8, 20, 28, 50, 82, 126)
- Analogie zur Atomphysik: Schalenmodell des Kerns
 - Einteilchenmodell mit Spin-Bahn-Kopplung
 - Gute Beschreibung: magische Zahlen, Einteilchen- und Einlochzustände
 - Kern = komplexes Vielteilchensystem \rightarrow viele weitere Effekte...

