

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 3. Vorlesung (Teil 1)

ULRICH HUSEMANN, KATHRIN VALERIUS

Bildquelle: CMS

www.kit.edu

Kurze Wiederholung

- Streuexperimente:
 - Streuung von Teilchenstrahlen an Target \rightarrow Struktur der Materie
 - Prototyp: Rutherford-Experiment (Alphateilchen auf Goldfolie)
 - Streurate ~ Teilchenfluss, Targeteigenschaften, Wirkungsquerschnitt
 - Differenzieller Wirkungsquerschnitt Rutherford-Streuung: $d\sigma/d\Omega \sim 1/sin^4(\theta/2)$
 - **Mott-Streuung**: elastistische Elektron-Kern-Streuung
 - Berücksichtung von Spin und Kernrückstoß
 - Kern = ausgedehnte Ladungsverteilung \rightarrow Formfaktor = Fouriertransformierte der Ladungsverteilung

Isotope (gleiches *Z*) – **Isotone** (gleiches *N*) – **Isobare** (gleiches *A*)

Kurze Wiederholung

- Einfache **Kernmodelle**:
 - **Fermigasmodell**: Freie Spin-1/2-Nukleonen in Potenzialtopf
 - Tröpfchenmodell: semiempirische Beschreibung der Bindungsenergie von Kernen
 - Keine Erklärung der Stabilität von Kernen mit magischen Nukleonenzahlen (2, 8, 20, 28, 50, 82, 126)
- Analogie zur Atomphysik: Schalenmodell des Kerns Einteilchenmodell mit Spin-Bahn-Kopplung
 - Gute Beschreibung: magische Zahlen, Einteilchen- und Einlochzustände

Kern = komplexes Vielteilchensystem \rightarrow viele weitere Effekte...

Auflösung Aufgabe 4

- Welche der folgenden Aussagen im Zusammenhang mit dem Aufbau von Atomkernen ist korrekt?
 - A. Die Streuung von Elektronen an Atomkernen beschreibt man mit dem Rutherford-Wirkungsquerschnitt.
 - B. In der Mott-Streuung sind Spin-Flips unterdrückt.
 - C. Die Helizität ist die (normierte) Projektion des Spins auf die Impuls.
 - D. Bei ausgedehnten Kernen wird die Ladungsverteilung mit einem Formfaktor zusätzlich zum Mott-Wirkungsquerschnitt beschrieben.
 - E. Der Formfaktor ist proportional zur Ladungsverteilung.

Auflösung Aufgabe 5

- korrekt?
 - besonders gut.
 - B. Das Schalenmodell beschreibt die magischen Zahlen nur für bestimmte Annahmen über Potenzial und Spin-Bahn-Kopplung.
 - C. Das Schalenmodell nimmt ein asymmetrisches Potenzial an.
 - D. Vorzeichen und Stärke der Spin-Bahn-Kopplung sind ähnlich wie bei Atomen.

Welche der folgenden Aussagen zum Schalenmodell des Atomkerns sind

A. Das Schalenmodell beschreibt die Energieniveaus von Leuchtnukleonen

Struktur der Materie: vom Atom zum Elementarteilchen

Kapitel 2

Struktur der Nukleonen

Kapitel 2.4

Elektron-Nukleon-Streuung

- Streuung hochenergetischer Elektronen an gasförmigem Wasserstoff und Deuterium (H_2 , HD, D_2) → Untersuchung der inneren Struktur der Nukleonen
- Abschätzung: Teilchenenergie und Längenskalen
 - Strukturgröße < 1 fm \rightarrow Impulsübertrag $|\mathbf{q}| > 200$ MeV/c ($\hbar c = 197$ MeV fm)
 - Teilchenenergie vergleichbar mit Nukleonenmasse (z. B. $m_p = 938 \text{ MeV}/c^2$) → Rückstoß berücksichtigen
- Nukleonen sind Fermionen → Spin von Elektron und Nukleon berücksichtigen

Kopplung an magnetisches Moment

- Elektronen koppeln an magnetisches Moment des Kerns ($V = \mu \cdot B$): Allgemein f
 ür Spin-1/2-Teilchen mit Masse m und Ladung q: $\mu \equiv |\mu| = g \frac{q\hbar}{2m}$ mit gyromagnetischem Faktor g = 2 aus Dirac-Gleichung
 - Solution Konsequenz: Spin-Flip des Elektrons erlaubt \rightarrow Wirkungsquerschnitt für θ = 180° weniger stark unterdrückt als in Mott-Streuung Für Streuung an **punktförmigen** Nukleonen:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[1 + 2\tau \tan^2 \frac{\theta}{2}\right] \quad \text{mit } \tau \equiv \frac{Q^2}{4m^2c^2}$$

Rosenbluth-Formel

Nukleonen (vgl. vorige Folie)

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[1 + 2\tau \tan^2 \frac{\theta}{2}\right] \quad \text{mit } \tau \equiv \frac{Q^2}{4m^2c^2}$$

- **Rosenbluth-Formel**: Parametrisierung mit elektrischem Formfaktor G_E und magnetischem Formfaktor G_M

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \begin{bmatrix} G_E^2(Q^2) + \tau G_M^2(Q^2) \\ 1 + \tau \\ \text{winkelunabhängig} \end{bmatrix} + \frac{2\tau G_M^2(Q^2) \tan^2 \frac{\theta}{2}}{\text{winkelabhängig}} \end{bmatrix}$$

Differenzieller Wirkungsquerschnitt für Streuung an punktförmigen

Nicht-punktförmige Nukleonen → Ladungs- und Stromverteilung

Formfaktoren: Proton und Neutron

Moderne Experimentalphysik III (4010061) – 3. Vorlesung

Formfaktoren: Proton und Neutron

Experimentelle Bestimmung der Formfaktoren: • G_E : **Dipolcharakter** für Proton, $G_E = 0$ für Neutron

$$G(Q^2) = \left(1 + \frac{Q^2}{0.71(\text{GeV}/c)^2}\right)$$

 \rightarrow exponentiell abfallende Ladungsverteilung \rightarrow mittlerer Ladungsradius aus ep-Streuung: 0,8751(61) fm

aber anomales magnetisches Moment

$$\mu_{p} = 2,7928473446(8) \cdot \mu_{N}$$

 $\mu_{n} = -1,9130427(5) \cdot \mu_{N}$

 \rightarrow Hinweis auf innere Struktur der Nukleonen (\rightarrow später)

 \Box G_M für Proton und Neutron: **ähnliche** Q²-Abhängigkeit wie G_E für Proton

mit Kernmagneton
$$\mu_{\rm N} = \frac{e\hbar}{2m_{\rm p}}$$

Zahlenwert aus <u>http://pdg.lbl.gov</u>

Nukleonresonanzen

- Elektronenergien oberhalb von 1–2 GeV: inelastische Streuung
 - Invariante Masse des hadronischen Systems W größer als Protonmasse
 - **Resonanzen** in differenziellem Wirkungsquerschnitt als Funktion der Energie des auslaufenden Elektrons E' (bzw. invarianter Masse des hadronischen Systems W)

Inelastische Streuung: Kinematik

· Invariante Masse des hadrouischen Systems: $W^2 c^2 \equiv P^{\gamma^2} = (P+q)^2 = M^2 c^2 + 2P \cdot q - Q^2$ Manse des Nukleons ~> W=M: elastisch, W>M: inelastisch • Energienbertrag : $\gamma \equiv \frac{\dot{P} \cdot q}{M}$ in Laborsupstein: $P^* = (Mc, \vec{o}), q^* = (\frac{E-E'}{c}, \vec{p} - \vec{p})$ $\Rightarrow \gamma^* = E-E'$

• Inelastizität:
$$y \equiv \frac{P \cdot q}{P \cdot \rho} \Rightarrow y^* = \frac{E \cdot E'}{E}$$

• Bjorken-Skalenvariable: $x_{B_j} \equiv x \equiv \frac{d^2}{2Mv}$
 $\Rightarrow W, \frac{V}{c^2}, \frac{\sqrt{B^2}}{c} \gg M$: fiefinelastische Stren
(engl.: DIS)

Strukturfunktionen

Analogon zur Rosenbluth-Formel für inelastische Streuung:

$$\frac{d^{2}\sigma}{d\Omega dE'} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \begin{bmatrix} W_{2}(Q^{2},\nu) + 2W_{1}(Q^{2},\nu) \tan^{2} \\ winkel- \\ unabhängig \end{bmatrix}$$
 winkelabhängig

Inelastische Streuung: Impuls- und Energieübertrag \rightarrow abhängig von **zwei** Variablen, z. B. Q² und E'

Heutige Schreibweise: dimensionslose Strukturfunktionen $F_{1,2}(x,Q^2)$

$$F_1(x, Q^2) = Mc^2 W_1(Q^2, \nu)$$

$$F_2(x,Q^2) = \nu W_2(Q^2,\nu)$$

Strukturfunktionen $W_{1,2}(Q^2, v)$: Parametrisierung der Nukleonstruktur

- (magnetische Wechselwirkung)
- (elektrische Wechselwirkung)

Tiefinelastische Streuung

Fig. 11. Inelastic data for W = 2 and 3 GeV as a function of q^2 . This was one of the earliest examples of the relatively large cross sections and weak q^2 dependence that were later found to

Moderne Experimentalphysik III (4010061) – 3. Vorlesung

Elektron-Nukleon-Streuung mit Elektronenergien >1 GeV (Friedman, Kendall, Taylor, SLAC ab 1962)

Große invariante Massen W: Wirkungsquerschnitt fällt nur **langsam** mit Q² ab ("Bjorken-Skalierungsverhalten")

W > 3 GeV: Formfaktor praktisch konstant → punktförmige Ladungsverteilung?

Keine Q²-Abhängigkeit: elastische Streuung?

Partonmodell

- Interpretation: (naives) **Partonmodell** (Bjorken, Feynman, 1969)
 - Bei hohen Energien: ep-Streuung = (inkohärente) Summe aus elastischen Streuungen mit Bestandteilen des Protons ("Partonen")
 - Später: Identifikation der Partonen mit den Quarks (und Gluonen), Rechtfertigung der Annahmen in QCD
- Geschicktes Bezugssystem: Breit-System
 - Proton mit unendlichem Longitudinalimpuls
 - Kein Energieübertrag des Photons (",brick wall frame")
 - Alle Massen und Transversalimpulse vernachlässigbar

fnal.gov

Partonmodell

Kinematik der Streuung an Partonen: Parton trägt Bruchteil x des Protonenimpulses P Vergleich der invarianten Massen von Parton und Parton-Photon-System (\rightarrow Nebenrechnung)

X =

- Interpretation: für gegebenes x_{Bj} (definiert aus Kinematik der
- Spin 1/2, Bjorken-Skalierungsverhalten korrekt vorhergesagt

$$\frac{Q^2}{2Pq} = x_{\rm Bj}$$

ep-Streuung) streut virtuelles Photon an Parton mit Impulsbruchteil x

Erfolge des Partonmodells (Details später): relevante Partonen haben

Nebenrechnung Bjorken-Skalierung

- · Invoriante Masse des Partons: $(mc)^2 = (xP)^2 \simeq 0$
- · Invariante Marse des Parton Photon Systems; $(x^{2} + q)^{2} = (mc)^{2} \sim 0$
- \neg Vergleich: $(xP)^2 + 2xPq Q^2 = (xP)^2$ 122

Kurze Zusammenfassung

- **Elastische** Elektron-Nukleon-Streuung (*E* < 1 GeV):
 - Abhängigkeit von einer kinematischen Variable, z. B. Streuwinkel
 - Kopplung an Ladung und magnetisches Moment des Nukleons
 - Endliche Ausdehnung der Nukleonen: anomales magnetisches Moment
 - Rosenbluth-Formel: Parametrisierung der Ladungs- und Stromverteilungen im Nukleon mit **Formfaktoren** G_E und G_M
 - **Inelastische** Elektron-Nukleon-Streuung ($E \ge 1$ GeV):
 - Abhängigkeit der Formfaktoren von zwei kinematischen Variablen
 - Nukleonresonanzen, z. B. Δ-Resonanz
 - Wirkungsquerschnitt parametrisiert mit **Strukturfunktionen** $F_{1,2}$ analog zu Formfaktoren

Kurze Zusammenfassung

(E > 3-4 GeV):

- Tiefinelastische Elektron-Nukleon-Streuung
 - Bjorken-**Skalierungsverhalten**: Strukturfunktionen hängen nur von einer Variable ab
 - Partonmodell: elastische Streuung an punktförmigen Partonen mit Spin 1/2
- Konsequenz f
 ür Verst
 ändnis der Struktur der Materie: Quarks werden vom mathematischen Modell zur physikalischen Realität

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 3. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

Bildquelle: CMS

www.kit.edu

Teilchen und Kräfte im Standardmodell der Teilchenphysik

Kapitel 2.5

Ubersicht

- Standardmodell der Teilchenphysik: fundamentale **Bausteine** der Materie und ihre Wechselwirkungen (nach heutigem Verständnis)
- Wechselwirkungen vermittelt durch Eichbosonen (Spin 1)
- Fundamentale Bausteine: Fermionen = Quarks und Leptonen (Spin 1/2)
- Massen der Elementarteilchen (Eichbosonen und Fermionen) durch **Higgs-Boson** (Spin 0)

Theoretische Hilfsmittel

- Standardmodell der Teilchenphysik: relativistische Quantenfeldtheorie
 - **Dirac-Gleichung:** quantenmechanische Wellengleichung für relativistische Spin-1/2-Teilchen (vgl. Mod. Th. Phys. II)
 - **Quantisierte** Felder ("2. Quantisierung", vgl. Mod. Th. Phys. II)
 - Dynamik der Felder über Lagrange-Dichte
- Einführung von Wechselwirkungen: Eichprinzip
 - Logik: (abstrakte) Symmetrie \rightarrow vollständige Dynamik der Theorie
 - Invarianz der Lagrange-Dichte unter Eichtransformationen \rightarrow alle Wechselwirkungen (vgl. minimale Kopplung in Elektrodynamik)
- Feynman-Diagramme und Feynman-Regeln: graphische Darstellung und Rechenvorschrift für Wechselwirkungen in Störungstheorie

Dirac-Gleichung

- - Spinor") Wellenfunktion ψ muss vier Komponenten besitzen ("Spinor")
 - γ : vier antikommutierende 4×4-Matrizen
- $\psi_{1,2} = U_{1,2}(p) \exp[-ipx]$
 - $u_{1,2}(p)$ und $v_{1,2}(p)$: Spinoren im Impulsraum Interpretation (Feynman/Stückelberg): Spinor = gleichzeitige Beschreibung von **Teilchen** (Spin up/down) und **Antiteilchen** (Spin up/down)

Dirac-Gleichung im Impulsraum

Relativistisch invariante Formulierung: $(i\hbar\gamma^{\mu}\partial_{\mu} - mc)\psi \equiv (i\hbar\partial - mc)\psi = 0$

Lösung der Dirac-Gleichung für freies Teilchen mit ebenen Wellen:

$$\psi_{3,4} = V_{2,1}(p) \exp[ipx]$$

(mit
$$\hbar = c = 1$$
): $(p - m)u(p) = 0$
 $(p + m)v(p) = 0$

Feynman-Regeln

Wirkungsquerschnitt schematisch (vgl. Fermis Goldene Regel):

- **Dynamik** des Prozesses enthalten in Matrixelement = Element der Streumatrix (Matrix der quantenmechanischen Übergangsamplituden von Anfangs- in Endzustand)
- Aus Lagrange-Dichte: Rechenregeln zur störungstheoretischen Berechnung von Matrixelementen ableitbar \rightarrow Feynman-Regeln
- Graphische Darstellung: Feynman-Diagramme

$\sigma = \frac{|\text{Matrixelement}|^2}{\text{Fluss der einlaufenden Teilchen}} \cdot \text{Phasenraum}$

R. P. Feynman vor seinem Van

symmetrymagazine.org

Feynman-Diagramme

- Elemente der Feynman-Regeln:
 - Externe Linien \rightarrow ein-/auslaufende Teilchen
 - \checkmark Vertizes \rightarrow Kopplung zwischen Teilchen
 - Propagatoren (= interne Linien) → Austausch virtueller Teilchen im Prozess
- Beispiel: $e^+e^- \rightarrow \mu^+\mu^-$

Bausteine für Feynman-Diagramme

Vertex

Matrixelement:

$$\mathcal{M} = \overline{v}(p_2)(-ie\gamma^{\mu})u(p_1)\frac{-ig_{\mu\nu}}{(p_1+p_2)^2+i\varepsilon}\overline{u}(p_3)(-ie\gamma^{\nu})v$$

Weitere Details: T. Ohl, Feynman Diagrams for Pedestrians, Maria Laach 2018

Virtuelle Teilchen

- Nützliche Konzepte der **perturbativen** Quantenfeldtheorie:
 - Propagatoren entsprechen virtuellen Teilchen
 - Virtuelle Teilchen: keine dynamischen Freiheitsgrade der Theorie, nicht detektierbar, nur Überträger von Kräften
 - Unschärferelation: virtuelle Teilchen gehorchen nicht $m^2c^2 = E^2/c^2 - p^2$ (Jargon: "nicht auf der Massenschale", engl.: "off mass shell"), aber Viererimpuls an jedem Vertex erhalten

Beispiele:

- Elektromagnetische Kraft: Austausch virtueller Photonen mit Massenquadrat $k^2c^2 = (p_1c + p_2c)^2 \neq 0$
- Modell aus Kernphysik: Austausch virtueller Pionen Vakuumpolarisation: virtuelles Teilchen-Antiteilchen-Paar

Aufgabe 6

- Welche der folgenden Aussagen zu virtuellen Teilchen sind korrekt? A. Virtuelle Teilchen können mit Teilchendetektoren nachgewiesen werden. B. Virtuelle Photonen können invariante Massen $\neq 0$ besitzen.
 - C. Die Wirkung eines Magnetfeldes kann als Kopplung an ein virtuelles Photon betrachtet werden.
 - D. Aufgrund der Unschärferelation kann an Vertizes mit virtuellen Teilchen die Viererimpulserhaltung verletzt sein.
 - E. Im Prozess $e^+e^- \rightarrow \mu^+\mu^-$ wird ein virtuelles Photon in e^+e^- -Paarvernichtung erzeugt, propagiert eine kurze Zeit und zerfällt in ein $\mu^+\mu^-$ -Paar.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold_1080516&client_id=produktiv

Quantenelektrodynamik

- **QED**: Quantenelektrodynamik (Feynman, Schwinger, Tomonaga, ca. 1948) Relativistische Quantenfeldtheorie des Elektromagnetismus Eichsymmetrie: U(1) – Invarianz der QM-Phase \rightarrow Eichboson: Photon A

 - Kopplung an elektrische Ladung (Kopplungskonstante: Feinstrukturkonstante α)

Wechselwirkungen der QED:

- Geladene Teilchen: Absorption und Abstrahlung von Photonen
- Kraftübertragung durch Austausch virtueller Photonen Reelle Photonen masselos und elektrisch neutral:
- unendliche Reichweite

Quantenchromodynamik

- **QCD**: Quantenchromodynamik (ca. 1970)
 - Theorie der starken Wechselwirkung von Quarks
 - Eichsymmetrie: SU(3) "Farbe" → Eichbosonen: 8 Gluonen G^a
 - Kopplung an 3 Farbladungen rot, grün, blau (Kopplungskonstante: α_{s})
- Wechselwirkungen der QCD:
 - Farbgeladene Teilchen: Absorption und Abstrahlung von Gluonen
 - Kraftübertragung durch Austausch virtueller Gluonen
 - Gluonen masselos, aber farbgeladen: Reichweite ca. 10-15 m

Quark-Gluon-Kopplung

Gluon-Selbstwechselwirkung

Elektroschwache Theorie

Weinberg, Glashow, Salam (ca. 1968): vereinheitlichte Theorie der elektromagnetischen Wechselwirkung (QED) und der schwachen Wechselwirkung (z. B. Betazerfall)

Konsequenz: dieselbe Kopplung bei sehr hohen Energien (= sehr kleinen Abständen)

Elektroschwache Theorie

- Eichsymmetrie: $SU(2)_L \times U(1)_Y$
 - **4 masselose Eichbosonen**: $W = (W^+, W^0, W^-)$ für SU(2)_L, B für U(1)_Y \rightarrow keine Übereinstimmung mit Experiment (massive W[±], Z; Photon)
 - Ladungen: schwacher Isospin (Kopplungskonstante g) und schwache **Hyperladung** (Kopplungskonstante g')
- Brout-Englert-Higgs-Mechanismus (1964):
 - Eichbosonen als masselos erwartet (sonst: Verletzung der Eichinvarianz)
 - Lösung: neuer Mechanismus zur Massenerzeugung durch neues skalares **Feld** \rightarrow Anregungen des Feldes = **Higgs-Boson** (Spin 0)
 - Mischung von W und B mit schwachem Mischungswinkel θ_W (auch: Weinberg-Winkel) \rightarrow physikalische Eichbosonen: W⁺, W⁻, Z, Photon

Elektroschwache Wechselwirkungen

- Photonaustausch: **QED**-Wechselwirkungen, Kopplung an alle geladenen Teilchen
- W-Boson-Austausch: geladene Ströme, Kopplung nur an "linkshändige" Teilchen ("Paritätsverletzung")
- Z-Boson-Austausch: neutrale Ströme, (unterschiedliche) Kopplung an alle Teilchen
- W und Z tragen schwachen Isospin, W auch elektrische Ladung --> Selbstwechselwirkungen
- W- und Z-Bosonen sehr massiv $(m_W \approx 80,4 \text{ GeV/c}^2, m_Z \approx 91,2 \text{ GeV/c}^2)$: Reichweite ca. $10^{-18} \text{ m} \rightarrow \text{schwache Kraft}$

Elementarteilchen

- Anordnung der Elementarteilchen:
 - 6 Quarks, 6 Leptonen (+ Antiteilchen)
 - Je drei Familien (auch: Generationen) mit ähnlichen Eigenschaften
 - Jede Familie: **Duplett**
- Ladungen (in Einheiten von e):
 - Quarks: drittelzahlig (+2/3, -1/3)
 - Leptonen: ganzzahlig (0, -1)
- Wechselwirkungen:
 - W- und Z-Bosonen: alle Teilchen
 - QED: alle geladenen Teilchen
 - QCD: alle farbgeladenen Teilchen

Die Quarks Elektrische Elektrische Ladung Ladung -1/3 e +2/3 e Down Up -1/3 e +2/3 e Strange Charm -1/3 e **Bottom** +2/3 e Тор Die Leptonen Elektrische Elektrische Ladung Ladung **Elektron-**-1 e Elektron 0 **Neutrino** Myon--1 e 0 Myon Neutrino Tau--1 e 0 Tau Neutrino

Hadronen im Standardmodell

- Wichtige Eigenschaft der QCD: Confinement
 - → freie Teilchen sind immer farbneutral
 - Keine freien Quarks
 - Bindung zu **Hadronen** (altgriechisch: hadrós = dick, stark) über QCD-Wechselwirkung von Quarks und Gluonen **Baryonen**: Quark + Quark + Quark (+ Gluonen) Mesonen: Quark-Antiquark-Paar (+ Gluonen)
- Weitere Klassifizierung der Hadronen (\rightarrow später): Quarkinhalt (engl.: flavor) leichte Quarks, Strangeness, Charm, Beauty (= Bottomness), Truth (= Topness) Spin und Parität, z. B. Skalar, Pseudoskalar, Vektor

Neutron

Kurze Zusammenfassung

- **Standardmodell** der Teilchenphysik:
 - Mathematisch: relativistische Quantenfeldtheorie
 - Einführung von Wechselwirkungen über Eichprinzip
 - **Feynman-Diagramme**: Veranschaulichung und Rechenregeln
- Wechselwirkungen im Standardmodell:
 - **QCD**: starke Wechselwirkung \rightarrow Gluonaustausch, wirkt auf alle farbgeladenen Teilchen
 - **Elektroschwache** Wechselwirkung = vereinheitlichte Theorie der schwachen und elektromagnetischen Wechselwirkung → W/Z-Austausch, wirkt auf Teilchen mit schwachem Isospin/Hyperladung \rightarrow Photonenaustausch, wirkt auf alle **geladenen** Teilchen
- **Teilcheninhalt** des Standardmodells: 6 Quarks und 6 Leptonen in 3 Familien (und deren Antiteilchen)

