

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 4. Vorlesung (Teil 1)

ULRICH HUSEMANN, KATHRIN VALERIUS

Bildquelle: CMS

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Auflösung Aufgabe 6

- Welche der folgenden Aussagen zu virtuellen Teilchen sind korrekt? A. Virtuelle Teilchen können mit Teilchendetektoren nachgewiesen werden. B. Virtuelle Photonen können invariante Massen $\neq 0$ besitzen.

 - C. Die Wirkung eines Magnetfeldes kann als Kopplung an ein virtuelles Photon betrachtet werden.
 - D. Aufgrund der Unschärferelation kann an Vertizes mit virtuellen Teilchen die Viererimpulserhaltung verletzt sein.
 - E. Im Prozess $e^+e^- \rightarrow \mu^+\mu^-$ wird ein virtuelles Photon in e^+e^- -Paarvernichtung erzeugt, propagiert eine kurze Zeit und zerfällt in ein $\mu^+\mu^-$ -Paar.

Kapitel 3

Experimentelle Methoden

Übersicht

- Beschleuniger und Detektoren: wichtige Werkzeuge für die Kern- und Teilchenphysik
 - **Detektoren** (Kapitel 3.1–3.7):
 - Grundlagen: Wechselwirkungen von Teilchen mit Materie
 - Detektionstechniken: Messung von Energie, Impuls, Teilchenart
 - Detektorsysteme
- **Beschleuniger** (Kapitel 3.8): Funktionsprinzipien und Bauformen

\bigcirc
\mathbb{N}
\bigcirc
O
ဂု
N
\bigcirc
\square
フ

Wechselwirkungen

- Wechselwirkungen von Teilchen (inklusive Photonen) mit Materie:
 - Viele verschiedene physikalische Effekte, abhängig von Teilchenart und Ladung, Energiebereich, Nachweismedium
 - Wechselwirkungen selten analytisch berechenbar → aufwändige Simulationsrechnungen (Monte-Carlo-Methode)
 - Exzellentes Verständnis der Wechselwirkungen → optimales **Design** von Beschleunigern und Detektoren

Simulation eines Luftschauers

Simulation eines Higgs-Boson-Zerfalls

Geladene Teilchen: $z \neq 0$

Teilchenklasse	Beispiele	Wichtigste Prozesse
geladene Teilchen	Myonen μ [±] , Pionen π [±] , Protonen p, Antiprotonen p̄	Ionisation , Anregung von Atomen, Cherenkovstrahlung
sehr leichte Teilchen	Elektronen/Positronen e [±]	Bremsstrahlung $(\rightarrow \text{elektromagnetische Kaskade}),$ lonisation
geladene Hadronen	Pionen π [±] , Protonen p, Antiprotonen p̄	lonisation, Kernreaktionen $(\rightarrow$ hadronische Kaskade), Zerfälle

Neutrale Teilchen: z = 0

Teilchen	Wichtigste Prozesse	Bemerkung
Photonen γ	Absorption (Photoeffekt), Streuung (Compton-Effekt), Kaskaden (Paarbildung)	exponentielle Abschwächung, keine definierte Reichweite
Hadronen, z. B. neutrale Kaonen K ⁰ , Neutronen n	Streuung, Kernreaktionen (→ hadronische Kaskade), Zerfälle	
Neutrinos v	Nur schwache Wechselwirkung: geladene und neutrale Ströme (→ später)	

Teilchenenergie

Energiebereich	Strahlungsquelle
eV	sichtbares Licht, Sek
keV	Röntgenstrahlung, E
MeV	Alphateilchen, Photo Zyklotron
GeV	Beschleunigung mit
TeV	Hochenergiebeschle TeV-Gammastrahlen
≫ TeV	Kosmische Beschleu Quasare, supermass

n

- undärelektronen, thermische Neutronen
- lektronen aus Betazerfall
- onen aus Kernanregung, Beschleunigung mit
- Synchrotron, Teilchen in Luftschauern
- uniger (z. B. LHC), aus Universum
- uniger (Kandidaten: aktive Galaxienkerne, z. B. sive schwarze Löcher; Reste von Supernovae)

Nachweismedium

Eigenschaften des Nachweismediums beeinflussen Wechselwirkung:

- Kernladung: elektromagnetische Effekte proportional zu Kernladungszahl Zⁿ (Exponent *n* unterschiedlich für unterschiedliche Effekte)
- Dichte und Aggregatzustand: Zahl der Streuzentren pro Fläche, Bindung der Streuzentren
- Elektrische und magnetische Felder im Medium
- Leitfähigkeit: z. B. elektronische Eigenschaften von Normalleitern Halbleitern – Supraleitern

Teilchennachweis

Impulsmessung

10

Moderne Experimentalphysik III (4010061) – 4. Vorlesung

Energiemessung **Myondetektor** Kalorimeter elektromagnetisch hadronisch

Teilchenidentifikation

"Außen"

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 4. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

Bildquelle: CMS

www.kit.edu

Energieverlust geladener Teilchen

Kapitel 3.1

Energieverlust durch lonisation

- Grundlegender Prozess: inelastische Stöße mit Elektronen
- Ionisation: dominanter Effekt bei schweren Teilchen (µ, p, …), charakterisiert über spezifischen Energieverlust dE/dx
- Nachweis: Keime für Kondensation von Gasbläschen, Drift von Elektronen/Ionen in E/B-Feld, Elektron-Loch-Paare im Halbleiter, ...

Moderne Experimentalphysik III (4010061) – 4. Vorlesung

- Alkali metal
- Alkaline earth metal
- Transition metal
- Post-transition metal
- Metalloid
- Nonmetal
- Halogen
- Noble gas
- Lanthanide
- Actinide

nach Sponk, Ionization energy, CC BY-SA 3.0

Energieverlust durch Strahlung

- Grundlegender Prozess: Wechselwirkung mit elektromagnetischen Feldern (im Vakuum oder im Medium) → elektromagnetische Strahlung Emission über großen Energiebereich: µeV bis GeV Strahlungsarten: Bremsstrahlung, Synchrotronstrahlung, Cherenkovstrahlung,
- Übergangsstrahlung
- Strahlung = dominanter Effekt bei **leichten** Teilchen (besonders e[±])
- Diverse Nachweistechniken, abhängig von Strahlungsenergie (Radiowellen, optischer Bereich, Röntgenstrahlung, Gammastrahlung)

lonisationsverluste

Bethe-Gleichung: (früher: Bethe-Bloch-Formel)

$$-\left\langle \frac{dE}{dX} \right\rangle = 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{l^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Näherungsformel f
 ür mittleren Energieverlust durch lonisation Gültig für Teilchen mit Ladung ze und 0.1 $\leq \beta \gamma \leq 1000$
- Herleitung:
 - Ladung ze an Elektronen \rightarrow Impuls- und Energieübertrag
 - relativistische Effekte, Spin, Effekte des Mediums

Klassischer Ansatz (Bohr, 1913): inelastischer Stoß eines Teilchens mit Korrekturen: Bindung der Elektronen im Atom, Quantenmechanik,

Bethe-Gleichung =1 für Elektronen

• Rutherford:
$$|\Delta \vec{p}| = \frac{2\vec{z}e^2}{4\pi z_0 \vee b} \cdot 2 \cos \frac{\theta}{2}$$

$$\frac{ze}{einlanfindes Teilchen} \times$$

$$N_{e} = n_{e} \cdot 2\overline{u}b \cdot db \cdot dx$$

$$\overline{Pn}\overline{r}ahlolichte}$$

• Energieverlast des Teilchens:

$$-\frac{dE}{dx} = \frac{2\pi ue \cdot 4z^2 e^4}{2(4\pi z_0)^2 ue^2} \int_{b}^{buos} \frac{db}{b}$$

$$= \frac{\pi ue \cdot 4z^2 e^4}{(4\pi z_0)^2 ue^2} \ln \frac{buos}{bmin}$$

٠

Bethe-Gleichung

- Weitere Ersetzungen: Klassischer Elektronenradius: r_e
 - Anzahldichte: r
 - Massenbelegung:
 - Ionisationsenergie:

$$-\frac{dE}{dX} = 4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \frac{1}{2} \ln \frac{(m_e c^2 \beta^2 \gamma^2)^2}{I^2}$$

$$e^{2}$$

$$e^{2} = \frac{e^{2}}{4\pi\epsilon_{0} m_{e}c^{2}}$$

$$h_{e} = N_{A} \cdot \varrho \cdot \frac{Z}{A}$$

$$\begin{aligned} \mathbf{X} &= \varrho \cdot \mathbf{X} \\ \mathbf{I} &\equiv h \left\langle \nu_{\mathsf{e}} \right\rangle \end{aligned}$$

Resultat: Energieverlust schwerer Teilchen in Materie durch Ionisation

Bethe-Gleichung

- Weitere Verbesserungen dieser Näherung:
 - Vollständige quantenmechanische Rechnung: $m_e c^2 \beta^2 \gamma^2 \rightarrow 2 \cdot m_e c^2 \beta^2 \gamma^2$
 - Maximaler relativistischer Energieübertrag in einzelner Kollision: Berücksichtigung der Masse M des einfallenden Teilchens

$$T_{\max} = \frac{2m_{\rm e}c^2\beta^2\gamma^2}{1+2\gamma\frac{m_{\rm e}}{M} + \left(\frac{m_{\rm e}}{M}\right)^2}$$

- T_{max} und Spin des Elektrons: relativistischer Anstieg **E** Fermi-**Dichtekorrektur** δ : E-Feld des Teilchens durch **Polarisation** des Medium abgeschwächt \rightarrow geringerer relativistischer Anstieg
- Gleichung ergibt nur **mittleren** Energieverlust: $\left\langle \frac{dE}{dX} \right\rangle$

 $pprox 2m_{
m e}c^2\beta^2\gamma^2$ für $2\gamma m_{
m e}\ll M$

Bethe-Gleichung auf einen Blick

(engl.: mass stopping power)

Z Z, A N_A T_{max} $\delta(\beta\gamma)$

Ladungszahl des einfallenden Teilchens Kernladungzahl und molare Masse des Nachweismediums Avogadro-Konstante maximaler Energieübertrag Fermi-Dichtekorrektur Ionisationsenergie \rightarrow früher Bloch-Näherung: $I \simeq 10 \text{ eV} \cdot Z$ heute tabelliert: http://pdg.lbl.gov/2019/AtomicNuclearProperties/

Spezifischer Energieverlust geladener Teilchen mit 0,1 $\leq \beta \gamma \leq 1000$:

Mittlerer Spezifischer Energieverlust

Moderne Experimentalphysik III (4010061) – 4. Vorlesung

Beobachtungen

- Abhängigkeit von Absorbermaterial: Energieverlust ~Z
- Abhängigkeit von $\beta\gamma$:
 - **Kleine** $\beta \gamma$: β^{-2} -Abhängigkeit
 - Breites Minimum bei $\beta \gamma \simeq 3-4$ \rightarrow minimal ionisierende Teilchen (MIP)
 - Logarithmischer Anstieg und Plateau

Aufgabe 7

- Welche der folgenden Aussagen über den mittleren Energieverlust schwerer geladener Teilchen in Materie sind richtig?
 - A. Der wichtigste physikalische Prozess ist die Strahlung.
 - B. Der wichtigste physikalische Prozess ist die Ionisation.
 - C. Der Energieverlust hängt von der Masse des Teilchens ab.
 - D. Der Energieverlust hängt von der Geschwindigkeit des Teilchens ab.
 - E. Der Energieverlust hängt von der Ladung des Teilchens ab.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 4. Vorlesung (Teil 3)

ULRICH HUSEMANN, KATHRIN VALERIUS

Bildquelle: CMS

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Auflösung Aufgabe 7

- Welche der folgenden Aussagen über den mittleren Energieverlust schwerer geladener Teilchen in Materie sind richtig?
 - A. Der wichtigste physikalische Prozess ist die Strahlung.
 - B. Der wichtigste physikalische Prozess ist die Ionisation.
 - C. Der Energieverlust hängt von der Masse des Teilchens ab.
 - D. Der Energieverlust hängt von der Geschwindigkeit des Teilchens ab.
 - E. Der Energieverlust hängt von der Ladung des Teilchens ab.

020

Energieverlust geladener Teilchen

Kapitel 3.1

Teilchenidentifikation mit d*E*/d*x*

- **Teilchenidentifikation**
 - (engl.: particle identification, PID) zur experimentellen Trennung von Teilchenarten
 - Spurdetektor: Impulsmessung $(\rightarrow \text{später})$
 - Spezifischer Energieverlust: Bestimmung von $\beta\gamma$ im β^{-2} -Bereich
 - Bestimmung der Masse des Teilchens aus $p = \gamma M v = \beta \gamma M c$

Reichweite in Materie

- Mittlere Reichweite: Integration der Bethe-Gleichung (Annahme: kontinuierliches Abbremsen des Teilchens)
- Energiedosis als Funktion der Weglänge:
 - Peak am Ende der Weglänge: **Bragg-Peak**
 - Peak ausgeprägter f
 ür schwere lonen
 - Medizinische Anwendung: Tumortherapie mit Teilchenstrahlen (z. B. HIT = Heidelberger Ionenstrahl-Therapiezentrum)

dE/dx-Fluktuationen

- Energieverlust in **dünnen** Absorbern:
 - Energieverlust (lange Ausläufer)

Vielfachstreuung

- Energieverlust in dicken Absorbern:
 - Geringere Fluktuationen als bei dünnen Schichten
 - (zentraler Grenzwertsatz: Summe von Zufallsvariablen)

Ablenkung in dicken Absorbern:

- Vielfache Coulomb-Streuung (engl.: multiple Coulomb scattering) unter kleinen Winkeln
- Hadronen: zusätzlich hadronische Wechselwirkungen (\rightarrow später)

Vielfachstreuung

- Molière-Theorie der Vielfachstreuung:
 - Streuwinkel θ ungefähr gaußverteilt (zentraler Grenzwertsatz), außer für große Streuwinkel

$$\sqrt{\langle \theta_x^2 \rangle} \equiv \theta_0 = \frac{13.6 \,\text{MeV}}{\beta cp}$$

mit X_0 Strahlungslänge = materialspezifische Massenbelegung (\rightarrow später)

Relevanz für Design von **Teilchendetektoren**:

Standardabweichung des Streuwinkels (für Streuung in der Ebene): $\frac{Y}{2} \frac{X}{\sqrt{\frac{X}{X_0}}} \left[1 + 0.038 \ln \left(\frac{X}{X_0} \right) \right]$

Auflösung (z. B. Impuls, Energie) durch Vielfachstreuung begrenzt Geeignete Materialien: kleine Kernladungszahl Z (z. B. Beryllium, Z = 4)

Kurze Zusammenfassung

- Mittlerer Energieverlust durch Teilchen mit Ladung ze und 0,1 $\leq \beta \gamma \leq 1000$: **Bethe-Gleichung** $-\left\langle \frac{\mathrm{d}E}{\mathrm{d}X} \right\rangle \sim \beta^{-2} \ln \beta^2 \gamma^2$
 - Reichweite: größter Energieverlust am Ende der Wegstrecke \rightarrow Bragg-Peak Dünne Absorber: dE/dx-Fluktuationen \rightarrow Landau-Verteilung

 - Dicke Absorber: Vielfachstreuung → Energieverlust und Streuwinkel ungefähr gaußverteilt
 - Anwendungen:
 - \blacksquare dE/dx: Teilchenidentifikation über Messung der Geschwindigkeit β
 - Bragg-Peak: Tumortherapie mit Schwerionen

Energieverlust schwerer geladener Teilchen: hauptsächlich lonisation

Energieverlust von Elektronen

Kapitel 3.2

Moderne Experimentalphysik III (4010061) – 4. Vorlesung

Bremsstrahlungsspektrum

- Charakteristische monoenergetische Linien durch Fluoreszenz (z. B. K_{α}-Linie)

Anwendung: Röntgenröhre

Kontinuierliches Spektrum bis zur maximalen Elektronenenergie *E*₀

Kritische Energie

Definition: bei kritischer Energie Ec sind Energieverlust durch lonisation und Bremsstrahlung identisch

$$\left(\frac{\mathrm{d}E}{\mathrm{d}X}\right)_{\mathrm{ion}} = \left(\frac{\mathrm{d}E}{\mathrm{d}X}\right)_{\mathrm{rad}}$$

Faustformel f
ür Materialabh
ängigkeit von *E_c* in Festkörpern mit Kernladungszahl Z (genauer: <u>Tabellen</u>)

$$E_c pprox rac{610\,\mathrm{MeV}}{Z+1.24}$$

Strahlungslänge

Z (natürliche Einheiten)

$$-\left(\frac{\mathrm{d}E}{\mathrm{d}X}\right)_{\mathrm{rad}}\approx 4\alpha\,r_{\mathrm{e}}^2\,N_A\frac{Z^2}{A}\ln\left(\frac{183}{Z^{1/3}}\right)\cdot E\equiv\frac{E}{X_0}$$

Definiert mit obiger Gleichung: Strahlungslänge

$$X_{0} = \left(4\alpha \, r_{\rm e}^{2} \, N_{A} \frac{Z^{2}}{A} \ln\left(\frac{183}{Z^{1/3}}\right)\right)^{-1}$$

Radiativer Energieverlust: Näherungsformel für Materialien mit großen

Strahlungslänge: Bemerkungen

- Einheit: g/cm² (Massenbelegung) \rightarrow Länge in cm: X_0/ρ (mit ρ Dichte)
- Nach Durchqueren von Materie mit einer Strahlungslänge X₀: Energie hochenergetischer Elektronen aufgrund von Bremsstrahlung auf Bruchteil 1/e reduziert
- $X_0 \sim Z^{-2}$: kürzere Strahlungslänge in Materialien mit höherer Kernladungszahl $Z \rightarrow$ Abschirmungen: großes Z, z. B. Blei
- Später: $X_0 = 7/9$ der mittleren freien Weglänge für e⁺e⁻-Paarbildung durch hochenergetische Photonen (nah verwandter Prozess)

$X_{0} = \left(4\alpha r_{e}^{2} N_{A} \frac{Z^{2}}{A} \ln\left(\frac{183}{Z^{1/3}}\right)\right)^{-1}$

Strahlungslänge

- Strahlungslänge: charakteristische Materialkonstante

 - Anwendungen: Design von Abschirmungen gegen Strahlung, Materialbudget von Detektoren

Material	X ₀ (g/cm ²)	<i>X₀/ϱ</i> (cm)	E _c (MeV)
H ₂ (gasförmig)	63,04	7,527·10 ⁵	344,80
Wasser	36,08	36,08	78,33
Argon (flüssig)	19,55	14,00	32,84
Eisen	13,84	1,757	21,68
Blei	6,37	0,5612	7,43

Tabelliert z. B. auf http://pdg.lbl.gov/2019/AtomicNuclearProperties/

Tracker Material Budget

Aufgabe 8

- Was unterscheidet den Energieverlust von Elektronen in Materie von dem schwerer geladener Teilchen?
 - A. Aufgrund der geringen Masse von Elektronen ist die Bremsstrahlung für hohe Energien der dominante Effekt.
 - B. Aufgrund der geringen Masse von Elektronen ist die Bremsstrahlung für niedrige Energien der dominante Effekt.
 - C. Der Energieverlust ist für Elektronen und Positronen derselbe.
 - D. Bei der Streuung an Hüllenelektronen muss beachtet werden, dass die Streupartner identische Teilchen sind.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Kurze Zusammenfassung

- Spezialfall: Energieverlust von Elektronen/Positronen
 - **Identische** Streupartner in Absorber: gleiche Masse, Pauli-Prinzip
 - Dominante Effekte: E klein \rightarrow lonisation, E groß \rightarrow Bremsstrahlung
 - Kritische Energie: Energieverlust durch Ionisation und Bremsstrahlung gleich
- Energieverlust durch Bremsstrahlung in guter Näherung proportional zur Energie des Teilchens:

$$-\left(\frac{\mathrm{d}E}{\mathrm{d}X}\right)_{\mathrm{rad}} = \frac{E}{X_0} \operatorname{mit} X_0 = \left(4\alpha \, r_{\mathrm{e}}^2 \, N_A \frac{Z^2}{A} \ln\left(\frac{183}{Z^{1/3}}\right)\right)^{-1}$$

Strahlungslänge $X_0 \sim Z^{-2}$: charakteristische Materialkonstante \rightarrow Elektronenergie nach X_0 auf Bruchteil 1/e reduziert

