

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 5. Vorlesung (Teil 1)

ULRICH HUSEMANN, KATHRIN VALERIUS

www.kit.edu

Kurze Wiederholung

- Energieverlust schwerer geladener Teilchen: hauptsächlich lonisation Mittlerer Energieverlust durch geladene Teilchen mit 0,1 $\leq \beta \gamma \leq 1000$:
- **Bethe-Gleichung**
 - Reichweite: größter Energieverlust am Ende der Wegstrecke \rightarrow Bragg-Peak Dünne Absorber: dE/dx-Fluktuationen \rightarrow Landau-Verteilung Dicke Absorber: Vielfachstreuung

 - → Energieverlust und Streuwinkel ungefähr gaußverteilt
 - Anwendungen:
 - dE/dx: Teilchenidentifikation über Messung der Geschwindigkeit β Bragg-Peak: Tumortherapie mit Schwerionen

 $-\left\langle \frac{\mathrm{d}E}{\mathrm{d}X} \right\rangle \sim \beta^{-2} \ln \beta^2 \gamma^2$

Kurze Wiederholung

- Spezialfall: Energieverlust von Elektronen/Positronen

 - gleich
- zur Energie des Teilchens:

$$-\left(\frac{\mathrm{d}E}{\mathrm{d}X}\right)_{\mathrm{rad}} = \frac{E}{X_0} \operatorname{mit} X_0 = \left(4\alpha \, r_{\mathrm{e}}^2 \, N_A \frac{Z^2}{A} \ln\left(\frac{183}{Z^{1/3}}\right)\right)^{-1}$$

Strahlungslänge $X_0 \sim Z^{-2}$: charakteristische Materialkonstante \rightarrow Elektronenenergie nach X_0 auf Bruchteil 1/e reduziert

Identische Streupartner in Absorber: gleiche Masse, Pauli-Prinzip Dominante Effekte: E klein \rightarrow lonisation, E groß \rightarrow Bremsstrahlung Kritische Energie: Energieverlust durch Ionisation und Bremsstrahlung

Energieverlust durch Bremsstrahlung in guter Näherung proportional

Auflösung Aufgabe 8

- Was unterscheidet den Energieverlust von Elektronen in Materie von dem schwerer geladener Teilchen?
 - A. Aufgrund der geringen Masse von Elektronen ist die Bremsstrahlung für hohe Energien der dominante Effekt.
 - B. Aufgrund der geringen Masse von Elektronen ist die Bremsstrahlung für niedrige Energien der dominante Effekt.
 - C. Der Energieverlust ist für Elektronen und Positronen derselbe.
 - D. Bei der Streuung an Hüllenelektronen muss beachtet werden, dass die Streupartner identische Teilchen sind.

Kapitel 3

Experimentelle Methoden

Cherenkov- und Übergangsstrahlung

Kapitel 3.3

Cherenkov-Strahlung

Geladenes Teilchen in Medium mit Brechungsindex n mit Geschwindigkeit größer als Phasengeschwindigkeit des Lichts im Medium ($v_{ph} = c/n$) → charakteristische Strahlung (P. A. Cherenkov, 1934; theoretische Erklärung: I. M. Frank, I. Y. Tamm, 1937)

<u>www.no</u>

Cherenkov-Strahlung

Physikalisches Bild (klassische Elektrodynamik): **asymmetrische Polarisation** des Mediums für große $\beta = v/c$

mittleres Dipolmoment = 0 \rightarrow keine Strahlung

→ kontinuierliches Photonenspektrum

Moderne Experimentalphysik III (4010061) – 5. Vorlesung

mittleres Dipolmoment $\neq 0$ → Cherenkov-Strahlung

Cherenkov-Strahlung

Spektrum der Cherenkov-Photonen: (pro Energie E_{γ} und Strecke x im Medium)

$$\frac{\mathrm{d}^2 N_{\gamma}}{\mathrm{d} E_{\gamma} \,\mathrm{d} x} = \begin{cases} 0 & \beta \\ \frac{\alpha z^2}{\hbar c} \left(1 - \frac{1}{\beta^2 n^2(E_{\gamma})}\right) & \beta \end{cases}$$

Schwelleneffekt

Reale Medien: $n = n(E_{\gamma}) \rightarrow \text{Dispersion}$

Abstrahlung unter Kegel mit Öffnungswinkel $\theta_c \rightarrow$ **Cherenkov-Winkel** Huygenssches Prinzip: konstruktive Interferenz der Photonen, Schockwelle $\cos \theta_c = \frac{c/n \cdot t}{\beta ct} = \frac{1}{n\beta}$ c/n·t θ_c $\leq 1/n$ βct > 1/n

Cherenkov-Zähler

- Schwellenzähler (engl.: threshold counter):
 - Minimale Geschwindigkeit für Cherenkov-Strahlung: $\beta_{thr} = v_{min}/c = 1/n$ → Teilchenidentifikation über **Beobachtung** von Cherenkov-Strahlung
 - Beispiel Wasser (n = 1,33): $\beta_{thr} = 0,75$
 - \rightarrow Pion mit p = 1 GeV/c: $\beta = pc/E = 0.98 \rightarrow$ Strahlung
 - \rightarrow Proton mit p = 1 GeV/c: $\beta = pc/E = 0,71 \rightarrow$ keine Strahlung
 - Herausforderung: Materialien mit passendem Brechungsindizes

- Abbildung des Cherenkov-Kegels (engl.: imaging counter): Bestimmung der **Teilchengeschwindigkeit** β über Messung des Cherenkov-Winkels θ_c
 - Mit bekanntem Impuls p und $\beta = pc/E$: Teilchenidentifikation über Masse

Cherenkov-Zähler: Beispiele

- LHCb-Experiment (CERN):
 - Ringabbildender Cherenkov-Zähler (engl.: ring-imaging Cherenkov = RICH)
 - Unterscheidung: Protonen, Kaonen, Pionen
- Luftschauer-Nachweis:
 - Cherenkov-Licht aus kosmischen Luftschauern, z. B. durch kosmische **TeV-Gammastrahlung**
 - Gleichzeitige ("stereoskopische") Beobachtung mit mehreren Teleskopen
 - Derzeit: H.E.S.S. (Namibia), MAGIC (La Palma) \rightarrow Zukunft: CTA

Übergangsstrahlung

Charakteristische Strahlung beim Übergang zwischen Vakuum und Medium mit **Permittivität** ε_r mit Intensität (V. L. Ginzburg, I. M. Frank, 1945)

$$I = \alpha \, z^2 \, \gamma \frac{\hbar \omega_p}{3} \quad \text{mit} \quad \omega$$

(Klassisches) physikalisches Bild: **Dipol** zwischen Ladung und Spiegelladung

Anwendung: Übergangsstrahlungsdetektor Bestimmung Lorentzfaktor γ : Intensitätsmessung für viele Übergänge (dünne Folien) Mit bekanntem Impuls p ($\beta \approx 1$) und $\gamma = E/mc^2$: Teilchenidentifikation über Masse

 $v_p^2 = \frac{n_e e^2}{\varepsilon_r \varepsilon_0 m_c}$ Plasmafrequenz

Kurze Zusammenfassung

Cherenkovstrahlung

Geladene Teilchen mit $\beta > c/n$ in Medium mit **Brechungsindex** *n*

Abhängig von **Geschwindigkeit** β

Schwelleneffekt

Moderne Experimentalphysik III (4010061) – 5. Vorlesung

Übergangsstrahlung

Geladenen Teilchen beim Übergang zwischen Medien mit unterschiedlichen Permittivitäten

Abhängig von Lorentzfaktor γ

Keine Schwelle

Wechselwirkungen von **Photonen mit Materie**

Kapitel 3.4

Überblick: WW von Photonen

- Kleine Energien (< 1 MeV): photoelektrischer</p> Effekt (außerdem: Rayleigh- und Compton-Streuung)
- Mittlere Energien (1 MeV): Compton-Effekt
- Hohe Energien (>2 *m*_e): e⁺e⁻-**Paarbildung**
- **Absorption** von Photonen: Lambert-beersches Gesetz für Intensität

 $I(X) = I_0 \exp[-\mu X]$

 μ : Absorptionskoeffizient \rightarrow proportional zu Wirkungsquerschnitt des Absorptionsprozesses $(1/\mu = \text{mittlere freie Weglänge})$

(b) Lead (Z = 82) • - experimental σ_{tot} 1 Mb **Totaler** s/atom) **Wirkung**squerschnitt für Photonen in Blei $\sigma_{Rayleigh}$ 1 kb Cross section К_{пис} g.d.r. 1 b $\bar{\mathbf{K}}_{e}$ $\sigma_{Compton}$ 10 mb10 eV 1 keV 1 MeV 1 GeV Photon Energy

pdg.lbl.gov

Lambert-beersches Gesetz

~ mittlere freie Weglange 1/2

Photoelektrischer Effekt

- Charakteristische Absorptionskanten: Schwellen für Photoionisation an Energieniveaus der Atome
- Emission eines **Photoelektrons** mit $E_{kin} = hv E_b$ (*E_b*: Bindungsenergie)
- **Z⁵:** wichtig für **große Kernladungszahlen Z**

Photoelektrischer Effekt: Absorption von Photonen in Elektronenhülle Wirkungsquerschnitt (mit $\varepsilon = E_{\gamma}/m_ec^2$ "reduzierte Photonenenergie"): $\sigma_{\mathsf{PE}} = \frac{8\pi}{3} r_{\mathsf{e}}^2 \mathbf{Z}^5 \alpha^4 \frac{1}{\varepsilon^{\delta}} \operatorname{mit} \delta = \begin{cases} 3,5 & \text{falls } \varepsilon \ll 1\\ 1 & \text{falls } \varepsilon \gg 1 \end{cases}$

Compton-Effekt

- Inelastische Streuung eines Photons an quasi-freien Hüllenelektronen (A. H. Compton 1922):
 - Energieverlust abhängig von Streuwinkel θ

$$E'_{\gamma} = \frac{E_{\gamma}}{1 + \varepsilon (1 - \cos \theta)}$$

Elektronen: kontinuierliches Energiespektrum mit Compton-Kante für Rückstreuung (und Photopeak)

Wirkungsquerschnitt ~ E_{γ}^{-1} (exakte Berechnung: Klein-Nishina-Formel)

Elektron-Positron-Paarbildung

- Umwandlung eines Photons in ein e⁺e⁻-Paar:
 - **Schwelleneffekt** durch Umwandlung der Photonenenergie in Masse des e⁺e⁻-Paars \rightarrow nur möglich für $\varepsilon = E_{\gamma}/m_ec^2 \ge 2$
 - Impulserhaltung: nur in Coulombfeld eines Atomkerns (oder eines Hüllenelektrons) möglich

Paarbildung: totaler Wirkungsquerschnitt für $\varepsilon \gg 1$

- Absorptionskoeffizient bei Paarbildung:
- Totaler Wirkungsquerschnitt für Paarbildung: $\sigma_P = 4\alpha r_e^2 Z^2 \left| \frac{7}{9} \ln \left(\frac{183}{Z^{1/3}} \right) \frac{1}{54} \right|$

Sommersemester 2020

Exakte Berechnung: QED (Bethe, Heitler, Proc. Roy. Soc. Lond. A146 (1934) 83)

 $\mu_{P} = \sigma_{P} \frac{N_{A}}{\Lambda}$

www.zw-jena.de

Strahlungslänge

$$X_{0} = \left(4\alpha r_{e}^{2} N_{A} \frac{Z^{2}}{A} \ln\left(\frac{183}{Z^{1/3}}\right)\right)^{-1} \rightarrow \sigma_{P} = 4\alpha r_{e}^{2} Z^{2} \left[\frac{7}{9} \ln\left(\frac{183}{Z^{1/3}}\right) - \frac{1}{54}\right] \approx \frac{7}{9} Z^{2} \left[\frac{1}{9} \ln\left(\frac{1}{2} \frac{1}{3}\right) - \frac{1}{54}\right] = \frac{1}{2} Z^{2} \left[\frac{1}{2} \ln\left(\frac{1}{2} \frac{1}{3}\right) - \frac{1}{54}\right] = \frac{1}{2} Z^{2} \left[\frac{1}{3} \ln\left(\frac{1}{3} \frac{1}{3}\right) - \frac{1}{2} \left[\frac{1}{3} \ln\left(\frac{1}{3} \frac{1}{3}\right) - \frac{1}{54}\right] = \frac{1}{2} Z^{2} \left[\frac{1}{3} \ln\left(\frac{1}{3} \frac{1}{3}\right) - \frac{1}{54}\right] =$$

 \rightarrow gleichzeitig Massenbelegung, für die gilt: Elektronen-Energie auf 1/e reduziert X₀ entspricht 7/9 der mittleren freien Weglänge von Photonen \rightarrow Intensität der Photonen auf Bruchteil $e^{-7/9} \approx 0,46$ abgefallen

Vergleich von Absorptionskoeffizient für Photonen mit Strahlungs**länge X**₀ aus Energieverlust von Elektronen durch Bremsstrahlung

 X_0 : charakteristisch sowohl für Bremsstrahlung als auch für Paarbildung

Elektromagnetischer Schauer

- Elektronen und Photonen bei hohen Energien ($E \gg E_c$)
 - Primäres Elektron: Photonen durch Bremsstrahlung Primäres Photon: Elektron-Positron-Paar durch Paarbildung
- Konsequenz: hochenergetische Photonen und Elektronen induzieren Kaskade aus Paarbildung und Bremsstrahlung → elektromagnetischer Schauer
 - Aussterben des Schauers: mittlere e[±]-Energie unterhalb kritischer Energie *E*_c
 - Charakteristische Länge: Strahlungslänge X₀
 - Laterale Ausdehnung: 90% der Energie innerhalb von
 - **Molière-Radius** R_M (95% in 2 R_M), Faustformel: $R_M = \frac{1}{2}$

40-GeV-Elektron auf Bleiglas

21 MeV

 E_c

X₀

Heitler-Modell

Einfaches Modell elektromagnetischer Schauer (Heitler 1954):

- Prozesse: Paarbildung $\gamma \rightarrow e^+e^-$ und Bremsstrahlung $e^\pm \rightarrow e^\pm \gamma$ (Verdopplung: $1 \rightarrow 2$) Typische Länge (in Einheiten der Massenbelegung) für beide Prozesse: $X = X_0 \ln 2$ Energie teilt sich gleichmäßig auf alle N Teilchen auf, für jedes Teilchen: $E = E_0/N$ Abbruch der Kaskade bei kritischer Energie: $E_e = E_c$

- Nach *n* Generationen:
 - Länge des Schauers:
 - **Zahl der Schauerteilchen:** $N = 2^n = \exp\left[\frac{X_n}{X_0}\right]$
- **Schauermaximum** bei Erreichen von *E*_c:
 - Maximale Anzahl von Teilchen: $N_{\text{max}} = \frac{E_0}{F_a}$
 - Zahl der Generationen:

Aufgabe 9

- Was charakterisiert die Wechselwirkung von hochenergetischen Photonen mit Materie?
 - A. Nach einer Strahlungslänge ist die Photonenintensität auf e^{-7/9} abgefallen. B. Nach einer Strahlungslänge ist die Photonenenergie auf e^{-7/9} abgefallen. C. Ein einzelnes Photon kann durch Vielfachstreuung Energie verlieren. D. Ein einzelnes Photon verliert primär durch Compton-Streuung Energie. E. Ein einzelnes Photon wird entweder durch eine Wechselwirkung absorbiert oder passiert die Materie ungehindert.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Kurze Zusammenfassung

- Dominante Prozesse für Wechselwirkung von **Photonen** in Materie Niedrige Energien (E_{γ} < 1 MeV): photoelektrischer Effekt \rightarrow Absorption Mittlere Energien ($E_{\gamma} \approx 1$ MeV): **Compton-Effekt** \rightarrow Energieverlust • Hohe Energien ($E_{\gamma} > 1$ MeV): **Paarbildung** \rightarrow Absorption

- **Strahlungslänge X**₀: charakteristisch für Bremsstrahlung (Energie auf 1/e abgefallen) und für Paarbildung (7/9 der mittleren freien Weglänge)
- **Elektromagnetische Schauer**: hochenergetische e[±] und γ bilden Kaskade aus Bremsstrahlung und Paarbildung (Heitler-Modell)
- Anwendung: elektromagnetisches Kalorimeter \rightarrow destruktive Energiebestimmung für e[±] und γ über Schauereigenschaften (\rightarrow später)

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 5. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

www.kit.edu

Auflösung Aufgabe 9

- Was charakterisiert die Wechselwirkung von hochenergetischen Photonen mit Materie?
 - A. Nach einer Strahlungslänge ist die Photonenintensität auf e^{-7/9} abgefallen.
 - B. Nach einer Strahlungslänge ist die Photonenenergie auf e^{-7/9} abgefallen.
 - C. Ein einzelnes Photon kann durch Vielfachstreuung Energie verlieren.
 - D. Ein einzelnes Photon verliert primär durch Compton-Streuung Energie.
 - E. Ein einzelnes Photon wird entweder durch eine Wechselwirkung absorbiert oder passiert die Materie ungehindert.

Hadronische Wechselwirkungen

Kapitel 3.5

Hadronische WW und Luftschauer

- Wechselwirkungen von Hadronen in Materie:
 - Alle Hadronen: Prozesse der starken Wechselwirkung \rightarrow hadronische (und elektromagnetische) **Schauer**
 - **Geladene** Hadronen: zusätzlich elektromagnetische Wechselwirkung

 μ^+

Hadronische WW-Länge

- **länge** λ (auch: nukleare Absorptionslänge)
 - Intensitätsverlauf (Absorption):

$$I(X) = I_0 \exp\left[-\frac{X}{\lambda}\right] \text{ mit } \lambda = \left(\sigma_{\text{ine}}\right)$$

(σ_{inel} : inelastischer Wirkungsquerschnitt für Kernreaktionen)

- Werte für *λ*: tabelliert
- Charakteristisch: λ deutlich größer als X₀, starke **Fluktuationen** um mittleres λ

Charakteristische Längenskala: hadronische Wechselwirkungs-

nel $\frac{N_A}{A}$

Material	<mark>λ (g/cm²)</mark>	λlg (cm)	<i>Х₀/ϱ</i> (с
H ₂ (gasf.)	52,0	6,209·10 ⁵	7,527.
Wasser	83,3	83,3	36
Argon (fl.)	119,7	85,77	14
Eisen	132,1	16,77	1,
Blei	199,6	17,59	0,5

Kurze Zusammenfassung

- Hadronischer Schauer: kompliziertes Zusammenspiel vieler Prozesse
 - Produktion sekundärer Hadronen (überwiegend Pionen)
 - Zerfälle von geladenen Pionen und Myonen
 - Zusätzlich: Kernanregung und -abregung, Kernspaltung, intra- und internukleare Kaskaden ("Spallation")
 - Zerfall neutrale Pionen: $\pi^0 \rightarrow \gamma \gamma \rightarrow elektromagnetische Subkaskade$
- Charakteristische Skala f
 ür Ausdehnung hadronischer Schauer: hadronische Wechselwirkungslänge λ
- Anwendungen:
 - Luftschauerexperimente: Erdatmosphäre als hadronisches Kalorimeter
 - Hadronisches Kalorimeter: destruktive Energiebestimmung f
 ür Hadronen

Detektionstechniken

Kapitel 3.6

Übersicht

- Klassifizierung von Teilchendetektoren z. B. nach
 - **Messgrößen**, z. B. Ort, Impuls, Energie, Teilchenart
 - **Detektionstechniken**, z. B. Ionisation von Gasen und Halbleitern, Szintillationslicht, Cherenkov- und Übergangsstrahlung, Phasenübergänge
- Kombination von Detektoren zu Detektorsystemen, angepasst an physikalisches Problem und experimentelle Umgebung, z. B.:
 - Experimente mit Teilchenstrahlen aus Beschleunigern: LHC, KEKb, ...
 - Experimente ohne Beschleuniger: kosmische Strahlung, direkte Suche nach dunkler Materie, ...

Weitere Grundlagen: Spezialvorlesung Detektoren (Wintersemester)

Gasgefüllte Detektoren

- Gasgefüllte Detektoren:
 - Kammer mit Zählgas (z. B. Argon), Elektroden mit Hochspannung
 - Primärionisation des Zählgases \rightarrow **Drift** von Elektronen (wichtiger Beitrag: Sekundärelektronen) und Ionen zu Elektroden
 - Betrieb als **lonisationskammer**:
 - Bauform: parallele Platten
 - Sammlung und Verstärkung der direkt erzeugten Ladungen
 - Anwendung: Detektion von Gammastrahlung mit hohen Zählraten

Visualisation of ion chamber operation Anode Incident radiation particle Electric field Cathode -----Kev onisation even

Dougsim, lon chamber operation, CC BY-SA 3.0

Gasverstärkung

- Betrieb gasgefüllter Detektoren bei höheren Spannungen:
 - Typische Bauform: zylindrische Kammer mit Anodendraht \rightarrow elektrisches Feld *E(r)* ~ 1/*r* (*r*: Abstand zu Drahtmittelpunkt)
 - Hohes elektrisches Feld nahe am Anodendraht: Gasverstärkung (typisch: Faktor 10⁵) durch **Townsend-Lawine**
 - Ausbreitung von UV-Photonen aus angeregten Ionen in Kammer: weitere Ionisation

Absorption der UV-Photonen durch Löschgas (engl.: quench gas), **z**. **B**. **CO**₂

Gasgefüllte Detektoren: Betriebsmodi

- **Ionisationskammer** (→ vorige Folie)
- **Proportionalkammer**:
 - Betrieb im **Proportionalbereich**
 - Anzahl der Elektron-Ion-Paare proportional zu Primärionisation
- **Geiger-Müller-Zählrohr** (H. Geiger 1908, W. Müller 1928):
 - Betrieb im Plateaubereich (auch: Geiger-Bereich)
 - Anzahl der Elektron-Ion-Paare unabhängig von Primärionisation

DooFi, Kennlin aehlrohr gemeinfrei

Vieldraht-Proportionalkammer

- Aufgabe: Messung der Ortskoordinaten eines Teilchendurchgangs
- Vieldraht-Proportionalkammer: (G. Charpak 1968, engl.: multi-wire proportional chamber, MWPC)
 - Großflächige planare Anordnung vieler paralleler Anodendrähte mit Durchmesser O(100 µm) und Abstand O(mm), Betrieb im Proportionalbereich
 - **Ortsinformation** (eindimensional): elektrisches Signal an angesprochenen Drähten

Schmid, <u>Wire_chamber_E_field.svg</u>, <u>CC BY-SA 3.0</u>

Anodendraht

Weitere Entwicklungen

Driftkammer:

(Heinze, Walenta, Schürlein, 1971) verbesserte Ortsauflösung durch Messung der Driftzeit der Elektronen

Zeitprojektionskammer: (Nygren, 1974, engl: time projection chamber) **3D-Information durch Projektion der** Teilchenspur auf Endplatten und Messung der Driftzeit in homogenem elektrischen Feld

Halbleiterdetektoren

- **Prinzip: Halbleiter-Ionisationskammer**
 - \rightarrow Halbleiterdiode (pn-Übergang) in Sperrrichtung
 - Drift + Diffusion + Rekombination von Ladungsträgern O → Verarmungszone frei von Ladungsträgern
 - Betrieb als Detektor: umgekehrte Bias-Spannung (Minuspol an p-Halbleiter): vergrößerte Verarmungszone
 - Teilchendurchgang: Elektron-Loch-Paare
- Anwendungen:
 - Ortsmessung (z. B. LHC): Siliziumdetektoren, Segmentierung in 1D (Streifen) oder 2D (Pixel)
 - **Energiemessung** (z. B. Gammaspektroskopie): Detektoren aus hochreinem Germanium

Szintillationsdetektoren

nach W.R. Leo, <u>Techniques for Nuclear and Particle Physics Experiments</u>, Springer 1994

- Teilchen in (sichtbares) Licht in Szintillatormaterial

Prinzip: Umwandlung von Anregungen im Festkörper durch ionisierende → Nachweis in lichtempfindlichen Detektoren (Photodetektoren)

Anwendungen: Zählung von Teilchendurchgängen, Energiemessung

Szintillatormaterialien

- Anorganische Szintillatoren: dotierte Kristalle mit Farbzentren (z. B. Zustände in Bandlücke)
 - Beispiele: Nal(TI), Csl(Na), PbWO₄ (Bleiwolframat)
 - Hohe Lichtausbeute, aber oft lange **Abklingzeiten** $O(\mu s)$ und teuer (Kristallzüchtung)
- **Organische** Szintillatoren: Anregung von Molekülzuständen in Aromaten
 - **Formen: Kristalle, Flüssigkeiten,** Plastikszintillator
 - Kurze Abklingzeiten O(ns), günstig, aber oft geringe Lichtausbeute

Photodetektoren

- **Photoelektronenvervielfacher** (engl.: photomultiplier tube, PMT)

Jkrieger, Photomultiplier_schema_de.png, gemeinfrei

Photokathode, z. B. Bialkali (Sb-K-Cs): Elektronen über Photoeffekt Verstärkung um Faktor O(10⁶) in O(50 ns) über **Dynoden** (viele Bauformen)

Photodetektoren

Halbleiter-Photodetektoren, z. B. Silizium-Photomultiplier (SiPM)

Avalanche-Photodiode (APD): Absorption von Photonen in Halbleiter und Verstärkung der Elektronen durch Stoßionisation (Faktor 100–1000)

SiPM = Matrix von APDs im **Geiger**-Modus \rightarrow Signal ~ Zahl Photonen

Silizium-Photomultiplier

Aufgabe 10

- Welche der folgenden Aussagen über Detektionstechniken sind korrekt? A. Der Ort eines Teilchendurchgangs kann mit gasgefüllten oder Halbleiterdetektoren bestimmt werden.

 - B. Mit einem Halbleiterdetektor kann man die Energie eines Teilchens bestimmen. C. Die Lichterzeugung in organischen und anorganischen Szintillatoren beruht auf denselben physikalischen Prozessen.

 - D. Szintillatoren erzeugen bei Teilchendurchgang sichtbares Licht, das mit einem Photodetektor nachgewiesen werden kann.
 - E. Zum Betrieb eines PMTs zum Photonennachweis benötigt man eine Betriebsspannung von > 1 kV.
- Bitte beantworten Sie diese Frage anonym auf ILIAS:

https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Kurze Zusammenfassung

- Gasgefüllte Detektoren:
 - Strahlenschutz (Ionisationsmessung), Ortsmessung (Driftkammer, TPC)
 - Primärionisation in Zählgas, Ladungsverstärkung durch Townsend-Lawine
- **Halbleiter**detektoren:
 - Ortsmessung (Spurdetektor) oder Energiemessung (Spektroskopie)
 - Ionisation: Elektron-Loch-Paare in Verarmungszone am pn-Übergang
 - Szintillationsdetektoren:
 - Ionisation: Anregungen im Szintillatormaterial \rightarrow (sichtbares) Licht Nachweis mit Photodetektor, z. B. PMT, SiPM

 - Schneller Teilchenzähler und Energiemessung (Kalorimeter)

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 5. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

www.kit.edu

