

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 11. Vorlesung (Teil 1)

ULRICH HUSEMANN, KATHRIN VALERIUS

Kurze Wiederholung

- Theta-Tau-Rätsel: Zwei unterschiedliche Teilchen (θ^+ , τ^+), dieselbe Masse? Vorschlag: Test der Paritätsverletzung in schwacher Wechselwirkung
- (Lee, Yang, 1956)
- Wu-Experiment (1957):
 - Vorzugsrichtung des Elektronenimpulses relativ zum Kernspin im Betazerfall von ${}^{60}Co \rightarrow Paritätsverletzung$
 - Experimentell: Ausrichtung des Kernspins durch adiabatische Entmagnetisierung
- Goldhaber-Experiment (1958):
 - Messung der Neutrinohelizität bei Elektroneneinfang von ^{152m}Eu \rightarrow C und P **maximal** verletzt
 - Experimentell: Kernresonanzfluoreszenz

Kurze Wiederholung

- System neutraler Kaonen:
 - Mischung von K⁰ und \overline{K}^0 durch schwache Wechselwirkung $\rightarrow K^0 - \overline{K}^0 Oszillationen$
 - Physikalische Teilchen: K_{L}^{0} ("K-long"), K_{S}^{0} ("K-short") \rightarrow CP-Eigenzustände?
- Cronin-Fitch-Experiment (1964):
 - K⁰_L-Strahl (BNL) \rightarrow Nachweis von K⁰_L $\rightarrow \pi\pi$ mit Doppelarmspektrometer
 - Ca. 0.2% der K⁰ (erwarteter CP-Eigenwert –1) zerfallen in $\pi\pi$ (CP = +1) \rightarrow **CP-Verletzung in der Mischung** von K⁰ und \overline{K}^0
 - (= indirekte CP-Verletzung, 10⁻³-Effekt)
 - Spätere Experimente: System neutraler Kaonen zeigt auch **CP-Verletzung im Zerfall** (= direkte CP-Verletzung, 10⁻⁶-Effekt)

Einschub: Feynman-Diagramme

Bisher: Feynman-Diagramme für einfachste Prozesse (in führender **Ordnung** Störungstheorie)

10. Vorlesung: neue Klassen von Feynman-Diagrammen

Form der Diagramme)

Diagramme höherer Ordnung mit internen Schleifen (engl.: loops), auf Niveau der fundamentalen Teilchen

Moderne Experimentalphysik III (4010061) – 11. Vorlesung

- Boxdiagramme und Pinguindiagramme (benannt nach geometrischer

QCD: Quarks, Gluonen und Hadronen

Kapitel 6

Uberblick

Geschichte der Quarks:

- 1950er Jahre: neue seltsame **Teilchen** \rightarrow "Teilchenzoo"
- **1960er Jahre: Quarkmodell** \rightarrow Quarks als mathematisches Hilfsmittel
- 1970er Jahre: Partonmodell, Entdeckung der **Charm-** und **Bottom-Quarks** \rightarrow Quarks als physikalische **Realität**
- **QCD** als Theorie der starken Wechselwirkung:
 - **3 Farbladungen** (und Antifarbe) als physikalische Freiheitsgrade
 - Bindungszustände schwerer Quarks → QCD-Potenzial
 - **QCD-Kraft:** stark bei großen Abständen, schwach bei kleinen Abständen Erweiterung des Partonmodells auf QCD-Effekte

http://www.particlezoo.net

Quarkmodell der Hadronen

Kapitel 6.1

Isospinsymmetrie

- Erinnerung: Isospinsymmetrie zwischen Proton und Neutron Ahnliche Massen von p und $n \rightarrow Anordnung$ als (starkes) **Isospin-Duplett** Nukleon = $\begin{pmatrix} |p\rangle \\ |n\rangle \end{pmatrix}$ =
 - Mathematischer Formalismus analog zu Spin: SU(2)-Symmetrie
- Erweiterung des Isospinkonzepts aufs Quarks (zunächst nur u, d): Ähnliche (effektive) Massen von u und d \rightarrow Anordnung als Isospin-Duplett

$$|q\rangle = \begin{pmatrix} |u\rangle \\ |d\rangle \end{pmatrix} =$$

$$= \left(\begin{array}{c} |T = \frac{1}{2}, T_3 = +\frac{1}{2} \\ |T = \frac{1}{2}, T_3 = -\frac{1}{2} \end{array} \right)$$

$$\begin{pmatrix} |T = \frac{1}{2}, T_3 = +\frac{1}{2} \\ |T = \frac{1}{2}, T_3 = -\frac{1}{2} \end{pmatrix}$$

Isospinsymmetrie

- Erweiterung des Isospinkonzepts aufs Quarks (Fortsetzung):
 - Unter starker Wechselwirkung: beliebig mit unitärer Transformation (Matrix U) "gedrehte" Zustände im Isospinraum ununterscheidbar

$$|q'\rangle = \begin{pmatrix} |u'\rangle \\ |d'\rangle \end{pmatrix}$$

Analoge Konstruktion für Antiquarks mit derselben unitären Transformation

$$|\overline{\mathbf{q}}\rangle = \begin{pmatrix} -|\overline{\mathbf{d}}\rangle \\ |\overline{\mathbf{u}}\rangle \end{pmatrix} = \begin{pmatrix} |T = \frac{1}{2}, T_3 = +\frac{1}{2}\rangle \\ |T = \frac{1}{2}, T_3 = -\frac{1}{2}\rangle \end{pmatrix} \rightarrow |\overline{\mathbf{q}}'\rangle = U|\overline{\mathbf{q}}\rangle$$

$$= U \begin{pmatrix} |\mathsf{u}\rangle \\ |\mathsf{d}\rangle \end{pmatrix} = U |q\rangle$$

Isospinsymmetrie

Leichte Mesonen: gebundene Zustände aus Quarks und Antiquarks Mögliche Kombinationen der Isospins: Triplett und Singulett **Triplett** mit Isospin $T = 1 \rightarrow$ identifiziert mit **Pionen**

$$|\pi\rangle = \begin{pmatrix} -|u\overline{d}\rangle \\ \frac{1}{\sqrt{2}}(|u\overline{u}\rangle - |d\overline{d}\rangle) \\ |\overline{u}d\rangle \end{pmatrix} =$$

Singulett mit Isospin T = 0: keine Entsprechung in der Natur (\rightarrow später) $|\psi\rangle = \frac{1}{\sqrt{2}}(|u\overline{u}\rangle| + |d\overline{d}\rangle)$ \vee $\boldsymbol{\leftarrow}$

$$\begin{pmatrix} |T = 1, T_3 = +1 \rangle \\ |T = 1, T_3 = 0 \rangle \\ |T = 1, T_3 = -1 \rangle \end{pmatrix} = \begin{pmatrix} -|\pi^+\rangle \\ |\pi^0\rangle \\ |\pi^-\rangle \end{pmatrix}$$

Entdeckung der Strangeness

- 1940er Jahre: neue Teilchen in kosmischer Strahlung
 - Signatur: V⁰ ("neutraler Vertex") \rightarrow heute: K⁰_S $\rightarrow \pi^+\pi^-$, $\Lambda^0 \rightarrow p\pi^-$

Rochester, Butler (1947): stereoskopische Nebelkammeraufnahmen • Wechselwirkung mit Bleiplatte \rightarrow Erzeugung in starker Wechselwirkung Lange Lebensdauer \rightarrow Zerfallslänge $O(cm) \rightarrow$ "seltsame" Teilchen

Entdeckung der Strangeness

- Flavorquantenzahl Strangeness S (Nakano, Nishijima 1953; Gell-Mann 1956)
 - **Erhalten** in starker und elektromagnetischer Wechselwirkung \rightarrow Erzeugung in Prozessen mit $\Delta S = 0$ (heute: ss-Paarerzeugung)
 - **Verletzt** in schwacher Wechselwirkung \rightarrow Zerfall mit $\Delta S = \pm 1$ in Teilchen ohne Strangeness, z. B. K $\rightarrow \pi\pi$ (heute: Übergang s \rightarrow u)
 - Lange Lebensdauer durch kleine Übergangswahrscheinlichkeit für Prozesse mit $\Delta S = \pm 1$ in schwacher Wechselwirkung (heute: erklärt durch Quarkmischung)
- Gell-Mann–Nishijima-Formel: (zunächst) empirischer Zusammenhang zwischen ladungsartigen Quantenzahlen

$$Q = T_3 + \frac{B+S}{2} = T_3 + \frac{Y_S}{2}$$

Heute: erklärt durch Quarkinhalt der Hadronen

mit Q Ladung, T_3 starker Isospin, **B** Baryonenzahl, S Strangeness $Y_S = B + S$ starke **Hyperladung**

Der "Eightfold Way"

- Ab 1950er Jahre: viele Hadronen entdeckt ("Teilchenzoo")
- Ordnungsprinzip: Symmetrie (Gell-Mann; Ne'eman, ab 1961)
 - Isospin + Strangeness: Erweiterung der SU(2)-Symmetrie zur SU(3)
 - Beispiel: pseudoskalare Mesonen (π , K) als Oktett (Gruppentheorie: adjungierte **8-Darstellung** der SU(3)-Gruppe)
 - Name aus Buddhismus: "Edler Achtfacher Pfad"

M. Gell-Mann

Y. Ne'eman

knesset.gov.il

Quarks

Three quarks for Muster Mark! Sure he hasn't got much of a bark And sure any he has it's all beside the mark. But O, Wreneagle Almighty, wouldn't un be a sky of a lark To see that old buzzard whooping about for uns shirt in the dark Hohohoho, moulty Mark!

You're the rummest old rooster ever flopped out of a Noah's ark And you think you're cock of the wark. Fowls, up! Tristy's the spry young spark That'll tread her and wed her and bed her and red her Without ever winking the tail of a feather And that's how that chap's going to make his money and mark!

- And he hunting round for uns speckled trousers around by Palmerstown Park?

 - aus James Joyce, Finnegans Wake, 1939

Das Quarkmodell

- Quarks = Erweiterung des Symmetrieprinzips für Hadronen (Gell-Mann 1964, unabhängig davon: Zweig 1964 \rightarrow "Aces")
 - Hadronen verhalten sich so, als ob sie aus drei Quarks (u, d, s) und deren Antiquarks aufgebaut sind (noch keine physikalische Realität)

dū

- Quarks/Antiquarks: fundamentale Darstellungen 3 und $\overline{3}$ der SU(3)-Gruppe • Mesonen: $\mathbf{3} \otimes \mathbf{3}$, Baryonen: $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3}$

uū

dd

us

D
O
Ц С
D
0

Mesonen-Multipletts

- **Pseudoskalare** Mesonen $(J^P = 0^-)$:
 - Spin-Singulett (${}^{1}S_{0}$): alle Spins $\downarrow\uparrow$
 - Gruppentheorie: $\mathbf{3} \otimes \overline{\mathbf{3}} = \mathbf{8} \oplus \mathbf{1} \rightarrow \text{Oktett} + \text{Singulett}$
- **Zustände mit** $T_3 = 0$ und S = 0:
 - Neutrales Pion: $|\pi^0\rangle = \frac{1}{\sqrt{2}}(|u\overline{u}\rangle |d\overline{d}\rangle)$
 - SU(3)-Oktett: $|\eta_8\rangle = \frac{1}{\sqrt{6}}(|u\overline{u}\rangle + |d\overline{d}\rangle 2|s\overline{s}\rangle)$
 - SU(3)-Singulett: $|\eta_1\rangle = \frac{1}{\sqrt{3}}(|u\overline{u}\rangle + |d\overline{d}\rangle + |s\overline{s}\rangle)$
 - Singulett und Oktett haben dieselben Quantenzahlen → physikalische Teilchen = Mischzustände

 $\langle |\eta \rangle \rangle \quad (\cos \theta)$

 $\sin \theta$

$$-\sin\theta \\ \cos\theta \end{pmatrix} \begin{pmatrix} |\eta_8\rangle \\ |\eta_1\rangle \end{pmatrix}$$

experimentell: kleine Mischung, $\theta \approx -15^{\circ}$

Mesonen-Multipletts

- **Vektormesonen** $(J^P = 1^-)$:
 - Spin-Triplett (${}^{3}S_{1}$): Spins $\uparrow\uparrow$
 - Flavor-Oktett und Flavor-Singulett analog zu pseudoskalaren Mesonen
- **Zustände mit** $T_3 = 0$ und S = 0:
 - Neutrales ρ -Meson: $|\rho^0\rangle = \frac{1}{\sqrt{2}}(|u\overline{u}\rangle |d\overline{d}\rangle)$
 - Mischzustände: tan $\theta = 1/\sqrt{2}$ ("ideale Mischung") → Zustände mit u/d und Zustände mit s entkoppeln

$$|\phi\rangle = -|\mathbf{S}\overline{\mathbf{S}}\rangle$$

$$|\omega\rangle = \frac{1}{\sqrt{2}}(|u\overline{u}\rangle + |d\overline{d}\rangle)$$

Baryonen-Multipletts

- Gruppentheorie: Konstruktion von Multipletts aus Fundamentaldarstellung für drei Quarks: $\mathbf{3} \otimes \mathbf{3} \otimes \mathbf{3} = \mathbf{10} \oplus \mathbf{8} \oplus \mathbf{8} \oplus \mathbf{1}$
- Pauli-Prinzip: Gesamtwellenfunktion von Baryonen (= Fermionen) antisymmetrisch unter Austausch zweier Quarks
 - Ortsanteil: betrachte nur Bahndrehimpuls $\ell = 0 \rightarrow \text{immer symmetrisch}$
 - Heute bekannt: Farbanteil → immer **antisymmetrisch**
 - Spinanteil: abhängig von Kombination der drei Spins, J = 3/2 ($\uparrow\uparrow\uparrow$) immer **symmetrisch**, J = 1/2 ($\uparrow\uparrow\downarrow$) **gemischt** symmetrisch/antisymmetrisch
 - Flavor-Oktetts (8) gemischt \rightarrow können mit J = 1/2 kombiniert werden
 - Flavor-Dekuplett (10) symmetrisch \rightarrow kann mit J = 3/2 kombiniert werden

Baryonen-Multipletts

Baryonen-Oktett (J = 1/2)

Wichtige Vorhersage des Quarkmodells: neuer Zustand $|\Omega\rangle = |sss\rangle$, $m_{\Omega} \sim 1680 \text{ MeV}/c^2$ (ca. 150 MeV/ c^2 mehr als m_{Ξ}) \rightarrow Entdeckung 1964

Baryonen-Dekuplett (J = 3/2)

Aufgabe 20

- Welche der folgenden Aussagen zum Quarkmodell sind korrekt? A. Die starke Wechselwirkung erhält Flavorquantenzahlen, die schwache Wechselwirkung erlaubt Flavoränderungen.

 - B. Die geladenen Pionen bilden ein Isospin-Duplett.
 - C. Vektormesonen sind gebundene Quark-Antiquark-Zustände mit Spin 0 und negativer Parität.
 - D. Die Hyperladung ist die Summe aus Baryonenzahl und Flavorquantenzahl(en).
 - E. Im Quarkmodell sind Baryonen mit symmetrischer Spin- und symmetrischer Flavorwellenfunktion möglich.
- Bitte beantworten Sie diese Frage anonym auf ILIAS:

https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Flavorsymmetrie und Quarkmassen

- Flavorsymmetrie: keine exakte Symmetrie in der Natur Explizite Brechung durch unterschiedliche Massen der Quarks

 - Beispiel Flavor-SU(3): Brechung durch deutliche größere (effektive) Masse des s-Quarks im Vergleich zu u- und d-Quark

Definition: Quarkmassen

- Freie Fermionen: Masse = Polmasse (grob: Masse in Dirac-Gleichung, Lagrange-Dichte, Feynman-Diagrammen, ...)
- → Masse "nackter" Quarks: Stromquarkmasse (engl.: current quark mass) QCD-Störungstheorie: Quarkmassen abhängig von Energieskala μ \rightarrow "laufende" Quarkmassen $m = m(\mu)$
- Aber: Quarks nur im Limit sehr hoher Energien quasi-frei (vgl. Partonmodell)

Flavorsymmetrie und Quarkmassen

PDG 2018	U	d	S	C	b	t
Masse (MeV/c ²)	2.16 ^{+0.49} –0.26	4.67 ^{+0.48} –0.17	93 +11_5	1270±20	4180 +30_20	172.900 ±400
	MS-bar	-Masse: m ^{MS} (µ =	= 2 GeV)	$m^{\overline{MS}}(m_c)$	$m^{\overline{\text{MS}}}(m_{b})$	~Polmasse

- Stromquarkmassen
 - **masse** = effektive Masse von u, d: $m_{u,p} \approx m_{d,p} \approx 300 \text{ MeV}/c^2$

 - der QCD-Wechselwirkung (Gluonen und Seequarks)
 - Schwere Quarks (c, b, t): Stromquarkmasse dominant

Massen der Hadronen aus leichten Quarks (u, d, s): viel größer als

Nukleonen: $m_N \approx 940 \text{ MeV}/c^2 \approx 100 (2m_u + m_d) \rightarrow \text{Konstituentenquark-}$

Vergleich von $m_{\pi} \approx 140 \text{ MeV}/c^2$ und $m_{\text{K}} \approx 500 \text{ MeV}/c^2 \rightarrow m_{\text{s,K}} \approx 360 \text{ MeV}/c^2$

Physikalischer Grund: Großteil der Masse stammt aus Bindungsenergie

Hadronenmassen aus Gitter-QCD

Moderne Experimentalphysik III (4010061) – 11. Vorlesung

Kurze Zusammenfassung

- **Teilchenzoo:** Entdeckung vieler Hadronen seit späten 1940er Jahren, insbesondere "seltsame" Teilchen
- Ordnungsprinzip: Flavorsymmetrie
 - Startpunkt: **Isospinsymmetrie** SU(2) zwischen Nukleonen
 - Neue Quantenzahl Strangeness \rightarrow Erweiterung auf Flavor-SU(3)
- Weitergehende Erklärung: Quarkmodell
 - Hadronen verhalten sich so, als ob sie aus drei Konstituenten u, d, s (und deren Antiquarks) aufgebaut sind (noch keine physikalische Realität)
 - Teilchenzoo = SU(3)-Multipletts f
 ür Mesonen und Baryonen
 - Erfolg: Vorhersage des Ω^- = Baryon aus drei Strange-Quarks

Kurze Zusammenfassung

Flavorsymmetrie nicht exakt in der Natur: Brechung durch unterschiedliche Quarkmassen

- = Massen als frei angenommener "nackter" Quarks
- Masse der Hadronen: Konstituentenquarkmassen

Massen der Quarks in zugrunde liegender Theorie: Stromquarkmassen

→ effektive Masse unter Berücksichtigung der QCD-Bindungsenergie

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 11. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

Auflösung Aufgabe 20

- Welche der folgenden Aussagen zum Quarkmodell sind korrekt?
 - A. Die starke Wechselwirkung erhält Flavorquantenzahlen, die schwache Wechselwirkung erlaubt Flavoränderungen.
 - B. Die geladenen Pionen bilden ein Isospin-Duplett.
 - C. Vektormesonen sind gebundene Quark-Antiquark-Zustände mit Spin 0 und negativer Parität.
 - D. Die Hyperladung ist die Summe aus Baryonenzahl und Flavorquantenzahl(en).
 - E. Im Quarkmodell sind Baryonen mit symmetrischer Spin- und symmetrischer Flavorwellenfunktion möglich.

Kurze Zusammenfassung

- insbesondere "seltsame" Teilchen
- Ordnungsprinzip: Flavorsymmetrie Startpunkt: Isospinsymmetrie SU(2) zwischen Nukleonen Neue Quantenzahl Strangeness \rightarrow Erweiterung auf Flavor-SU(3)
 - Weitergehende Erklärung: Quarkmodell
 - Hadronen verhalten sich so, als ob sie aus drei Konstituenten u, d, s (und deren Antiquarks) aufgebaut sind (noch keine physikalische Realität)
 - Teilchenzoo = SU(3)-Multipletts f
 ür Mesonen und Baryonen
- Quarkmassen: Stromquarkmassen (Massen "nackter" Quarks) und Konstituentenguarkmassen (effektive Massen in Hadronen)

Teilchenzoo: Entdeckung vieler Hadronen seit späten 1940er Jahren,

Quarkonium

Kapitel 6.2

Uberblick: Quarkonium

Schwere Quarks: Charm, Bottom, Top

- Paarweise Erzeugung in starker oder elektromagnetischer Wechselwirkung \rightarrow Flavorquantenzahlen Charm C, Beauty B', Truth T erhalten
- Mesonen mit Charm- oder Bottom-Quarks: lange Lebensdauer $O(10^{-13} \text{ bis } 10^{-12} \text{ s}) \rightarrow \text{Zerfälle in schwacher Wechselwirkung}$
- Ausnahme Top-Quark: extrem kurze Lebensdauer (ca. 5·10⁻²⁵ s) → keine gebundenen Zustände
- Gebundenes qq-System: Quarkonium
 - **Charmonium** (cc) und **Bottomonium** (bb)
 - QCD-Analogon von Positronium, "Atom" der starken Wechselwirkung
 - Ein Quark bewegt sich im Potenzial des anderen \rightarrow Rückschlüsse auf **QCD-Potenzial** (\rightarrow später)

Karlsruher Institut für Technologie

dingercatadventures.blogspot.com B dingercatadventures.blogspot.de

Entdeckung des J

- Proton-Synchrotron AGS (BNL):
 - 28-GeV-Protonen auf Be-Target: "Breitbandstrahl" von Partonen
 - **MIT-Experiment 598** (S. Ting et al.): magnetisches Doppelarmspektrometer mit MWPC, Cherenkovzähler, Bleiglas-ECAL
 - **p** + Be \rightarrow e⁺ + e⁻ + X:

Rekonstruktion der invarianten Masse des e⁺e⁻-Paars \rightarrow **Resonanzen**?

NobelPrize.org

Entdeckung des ψ

- e+e--Collider SPEAR (SLAC):
 - Schwerpunktsenergie durchstimmbar: $\sqrt{s} = 2,6 \text{ GeV} - 4,8 \text{ GeV}$ → hohe Energieauflösung
 - **MARK I** (B. Richter et al.): Funkenkammern, Blei-Szintillator-ECAL und Szintillationszähler in Solenoidmagnet, Myonsystem aus Funkenkammern
 - Suche nach Resonanzen in

 $e^+ + e^- \rightarrow \gamma^* \rightarrow \text{Hadronen}, \mu^+\mu^-, e^+e^-$

Karlsruher Institut für Technologie NobelPrize.org MUON SPARK CHAMBERS FLUX RETURN------SHOWER COUNTERS COIL END CAP-TRIGGER COUNTERS SPARK CHAMBERS PIPE COUNTER COMPENSATING SOLENOID ACUUM CHAMBER '-LUMINOSITY MONITOR

B. Richter

2. An exploded view of the SLAG-LBL magnetic detector.

NobelPrize.org

Moderne Experimentalphysik III (4010061) – 11. Vorlesung

NobelPrize.org

Novemberrevolution

- Quarkmodell (Gell-Mann; Zweig 1964)
 - November 1974:
 - Gemeinsame Ankündigung der Entdeckung eines neues Teilchens J (BNL) **bzw.** ψ (SLAC) \rightarrow heute: **DoppeIname J**/ ψ
 - **Zwei Wochen später: Entdeckung einer** weiteren Resonanz ψ ' am SLAC, heute ψ (2S)
 - Theoretische Interpretation: gebundener cc-Zustand (Appelquist, Politzer, PRL 34, 43; de Rújula, Glashow, PRL 34, 46)
 - "Novemberrevolution": historisch wichtigster Schritt zur Etablierung von Quarks als physikalische Realität

\rightarrow viertes Quark postuliert (Glashow, Iliopoulos, Maiani = GIM 1970)

Charmonium-Termschema

Moderne Experimentalphysik III (4010061) – 11. Vorlesung

Weitere gebundene cc-Zustände Spektroskopische Notation: $n^{2s+1}\ell_J$ \rightarrow Beispiel: J/ ψ : 1 ³S₁

Zerfallsbreite: Schmale Resonanzen unterhalb Open-Charm-Schwelle $(2 \times \text{Masse } D^0 = c\bar{u}),$ z. B. $\Gamma(J/\psi) = 93 \text{ keV}/c^2$ pdg.lbl.gov

Charmonium-Spektroskopie

Crystal-Ball-Detektor am SPEAR (SLAC): Funkenkammer und 732 Nal-Szintillatoren, kugelförmig um Kollisionspunkt

Aufgabe 21

- Welche der folgenden Aussagen zu Quarkonia sind korrekt?
 - A. Das J/ ψ ist eine Mischung aus zwei Zuständen mit denselben Quantenzahlen, daher der Doppelname.
 - B. Die im MIT-Experiment 598 gemessene Breite der J/ ψ -Resonanz ist durch Effekte der Detektorauflösung dominiert.
 - C. Am AGS konnte die Energie des Protonenstrahls eingestellt werden, so dass die Schwerpunktsenergie für q $\overline{q} \rightarrow e^+e^-$ präzise bekannt war.
 - D. Die J/ ψ -Resonanz besitzt dieselben Quantenzahlen wie das Photon.
 - E. Die Bindungsenergie von Quark und Antiquark im J/ ψ kommt hauptsächlich durch die Coulombanziehung dieser Teilchen zustande.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Entdeckung des Upsilons

Fermilab Proton Center (1977):

- 400-GeV-Protonen auf Cu- und Pt-Targets
- Detektor: Doppelarmspektrometer (Lederman et al.)

L. M. Lederman

FNAL

Entdeckung des Upsilons

- Fermilab Proton Center (1977):

 - invarianter Masse von µ+µ-

Bottomonium-Termschema

Bottomonium-Spektroskopie analog zur Charmonium-Spektroskopie

R-Fahriken

PHYSICAL REVIEW LETTERS

d for the first time as a narrow annihilations.^{3,4} We now re-⁵ from a scan of the center-ofion 10.46 GeV < W < 10.64 GeV at

gathered with the large magnetic A cylindrical proportional wire rift chamber form the track deluminum solenoid. Outside the containing planar drift chambers, rs, time-of-flight counters, and e shower detectors. Surrounding bly is an iron hadron filter with or muon detection. The trigger nts required three charged tracks ctor in coincidence with two times in separate octants.

hadronic events were selected east three charged tracks formrtex within ± 8 cm of the interthe beam axis and within ± 2.5 the beam, and a total charged t 3 GeV. A subtraction, typicalwas made for events not coming collisions, by use of the obents with vertices outside the n region. The trigger and eventcies were calculated by Monte

FIG. 1. Hadronic cross sections corrected for acceptance, as a function of center-of-mass energy, WThere is an additional overall systematic error of $\pm 15\%$, arising mainly from the uncertainty in the detester accontance (a) Total hadronic aross section

11. Vorlesung

Sommersemester 2020

~ GeV

Statisches QCD-Potenzial

- - Gebundene cc- und bb-Zustände: **n** = 1, 2: Ähnlichkeit mit Positronium, $E_n \sim 1/n^2$ Bessere Übereinstimmung bei bb, da nichtrelativistische Näherung für relative Geschwindigkeit besser erfüllt (Virialtheorem)
- Ansatz: Cornell-Potenzial $V(r) = -\frac{4}{3} \frac{\alpha_s(1/r^2)\hbar c}{r} + kr$
 - Kurze Abstände: Einzelgluonaustausch → coulombartige Wechselwirkung
 - Große Abstände: QCD-Confinement → lineares Potenzial Heute: Potenzial aus Berechnungen der Gitter-QCD

gemeinfre

Statisches QCD-Potenzial

Lineares Potenzial für große q \overline{q} -Abstände ($r \ge 0.5$ fm):

- **Farbgeladene** Gluonen \rightarrow gespannter **Farbstring** mit $k \approx 1$ GeV/fm
- Trennung farbgeladener Teilchen: Ausbildung von Flussschläuchen \rightarrow für $r \ge 1$ fm: Bildung **neuer qq-Paare** energetisch günstiger

Feldlinien: QCD vs. QED

Gitter-QCD: qq-Flussschlauch

Kurze Zusammenfassung

- Quarkonium: gebundener qq-Zustand
 - Historische Bedeutung: Etablierung der Quarks als physikalische Realität
 - \blacksquare 1974: Entdeckung des J/ ψ an BNL und SLAC und theoretische Interpretation als gebundener cc-Zustand
 - **1977:** Entdeckung des Υ am Fermilab \rightarrow gebundener bb-Zustand
- Anwendungen:
 - Spektroskopie: Vielzahl von Übergängen zwischen Quarkonia unterschiedlicher Quantenzahlen
 - **B-Fabriken**: gezielte $B\overline{B}$ -Produktion über $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$
 - Statisches QCD-Potenzial zwischen q \overline{q} aus Termschema

