

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 12. Vorlesung (Teil 1)

ULRICH HUSEMANN, KATHRIN VALERIUS

Auflösung Aufgabe 21

- Welche der folgenden Aussagen zu Quarkonia sind korrekt? A. Das J/ ψ ist eine Mischung aus zwei Zuständen mit denselben
- Quantenzahlen, daher der Doppelname.
 - B. Die im MIT-Experiment 598 gemessene Breite der J/ ψ -Resonanz ist durch Effekte der Detektorauflösung dominiert.
 - C. Am AGS konnte die Energie des Protonenstrahls eingestellt werden, so dass die Schwerpunktsenergie für $q\bar{q} \rightarrow e^+e^-$ präzise bekannt war.
 - D. Die J/ ψ -Resonanz besitzt dieselben Quantenzahlen wie das Photon.
 - E. Die Bindungsenergie von Quark und Antiquark im J/ ψ kommt hauptsächlich durch die Coulombanziehung dieser Teilchen zustande.

Kurze Wiederholung: Quarkonium

- Quarkonium: gebundener qq-Zustand
 - Historische Bedeutung: Etablierung der Quarks als physikalische Realität
 - 1974: Entdeckung des J/ ψ an BNL und SLAC und theoretische Interpretation als gebundener cc-Zustand
 - **1977:** Entdeckung des Υ am Fermilab \rightarrow gebundener bb-Zustand
- Anwendungen:
 - Spektroskopie: Vielzahl von Übergängen zwischen Quarkonia unterschiedlicher Quantenzahlen
 - **B-Fabriken**: gezielte BB-Produktion über $e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$
 - Statisches QCD-Potenzial zwischen q \bar{q} aus Termschema

Farbwechselwirkungen in der QCD

Kapitel 6.3

Farbladung in der QCD

- Farbladung der Quarks:
 - Quarks tragen rot, grün, blau
 - Antiquarks tragen antirot, antigrün, antiblau
 - Hadronen sind immer farbneutral (Gruppentheorie, SU(3)-Gruppe: "Farbsingulett")

Farbladung der Gluonen

- Unterschied zur QED: Photon elektrisch neutral **8 Gluonen**: (Gruppentheorie: SU(3)-Farboktett): $r\bar{g}, r\bar{b}, g\bar{b}, g\bar{r}, b\bar{r}, b\bar{g}, (r\bar{r}-g\bar{g})/\sqrt{2}, (r\bar{r}+g\bar{g}-2b\bar{b})/\sqrt{6}$
- Farbladung erhalten in allen QCD-Prozessen
- Gluonenaustausch: gebundene Quarks ändern ständig die Farbladung

Quark-Antiquark-Annihilation

Farbladung in der QCD: Kraftwirkung

- sich an \rightarrow Mesonen (q \overline{q}) stabil
- Antisymmetrische Zustände im Farbraum ziehen sich an \rightarrow Baryonen und Antibaryonen (qqq, $\overline{q}\overline{q}\overline{q})$ stabil
- Weitere mögliche stabile Kombinationen: exotische Hadronen
 - **Tetraquarks** (qqqq) → signifikantes Signal im Experiment
 - **Pentaquarks** (qqqqqq)
 - → signifikantes Signal im Experiment
 - Glueballs (gg, ggg, ...)
 - \rightarrow experimentell noch unklar

Gleiche Farbladungen stoßen sich ab, Farbe und Antifarbe ziehen

Farbe als physikalischer Freiheitsgrad

- Vorhersage des Quarkmodells: Ω–-Baryon (Quarkinhalt sss) als Teil des Dekupletts mit $J^P = 3/2^+ \rightarrow$ Entdeckung 1964
 - Wellenfunktion ohne Farbladung: symmetrisch → Widerspruch zu Pauliprinzip

$$|\Omega^{-}\rangle' = \psi_{Ort} \cdot \psi_{Spin} \cdot \psi_{Flav}$$

P = +1 \rightarrow symmetrisch $J = 3/2 \rightarrow \psi_{\text{Spin}} = |\uparrow\uparrow\uparrow\rangle$ \rightarrow symmetrisch

Lösung: zusätzliche antisymmetrische Farbwellenfunktion $\psi_{\text{Farbe}} = \frac{1}{\sqrt{6}} \epsilon_{ijk} |q_i q_j q_k\rangle \text{ mit } i, j, k = r, g, b$

or/

 $\psi_{\text{Flavor}} = |\text{SSS}\rangle$ \rightarrow symmetrisch

 \rightarrow Gesamtwellenfunktion antisymmetrisch: $|\Omega^-\rangle = \psi_{Ort} \cdot \psi_{Spin} \cdot \psi_{Flavor} \cdot \psi_{Farbe}$

Sommersemester 2020

Anzahl der Farbladungen • Hochenergetische e⁺e⁻-Kollisionen mit Schwerpunktsenergie \sqrt{s} : Erzeugung von Fermionen über virtuelle Photonen im s-Kanal Solution Wirkungsquerschnitt für $e^+e^- \rightarrow$ Hadronen: Kontinuum mit Resonanzen 10 J/ψ -3 10 $\psi(2S)$ -4 Z 10 0 0 0 0 0 0 e^+ -6 10 10 -8 0 10 **10²** √s (GeV) 10

Anzahl der Farbladungen

- Wirkungsquerschnitt für $e^+e^- \rightarrow \mu^+\mu^-$ (Kontinuum): $\sigma_{\mu\mu}(s) = \frac{4\pi\alpha^2(\hbar c)^2}{2}$
- Wirkungsquerschnitt für $e^+e^- \rightarrow$ Hadronen (Kontinuum):
 - Kopplung ans virtuelle Photon proportional zur Ladung der Quarks $q_q = z_q e$ Wirkungsquerschnitt = (inkohärente) Summe über alle "aktiven"
 - **Quarkflavors q** (d. h. \sqrt{s} oberhalb der qq-Produktionsschwelle), jeweils mit N_c Farbladungen

$$\sigma_{\text{had}}(s) = \sum_{i} N_c z_{q_i}^2 \frac{4\pi \alpha^2 (\hbar}{3s}$$

Anzahl der Farbladungen

Erwartung für Stufen im *R*-Verhältnis:

Aktive Flavors	√ S min	R
u, d, s	ca. 1 GeV	2/3
u, d, s, c	ca. 3,7 GeV	10/9
u, d, s, c, b	ca. 10,6 GeV	11/9

Sommersemester 2020

Laufende Kopplung in der QED

- Vakuumpolarisation in der QED:
 - Quantenfeldtheorie: Vakuum besteht aus Quantenfluktuationen
 - QED-Vakuum: virtuelle Elektron-Positron-Paare

- Effekt: "nacktes" Elektron umgeben von Elektron-Positron-Paaren
 - Abschirmung der Ladung
 - Abschirmungseffekt wird schwächer mit kürzerem Abstand zum Elektron (entspricht höherem Impulsübertrag bei Bestimmung der Ladung)

Laufende Kopplung in der QED

Maß f
ür Abstand zur Ladung: Impuls
übertrag Q², z. B. in e^+

E Feinstrukturkonstante α als **laufende** Kopplung

$$\alpha(Q^2) = \frac{\alpha(\mu^2)}{1 - \frac{\alpha(\mu)}{3\pi} \ln\left(\frac{Q^2}{\mu^2}\right)}$$

für Messung von α)

Kopplung ansteigend mit ansteigender Energie **PDG 2019**: $\alpha(0)^{-1} = 137,035999139(31)$ $\alpha(m_7^2)^{-1} = 127,955(10)$

Laufende Kopplung in der QCD

Gluonen tragen selbst Farbladung: Wechselwirkung mit Quarks und anderen Gluonen (vgl. Kapitel 2.5)

Vakuumpolarisation in der QCD:

- Abschirmung der Farbladung durch virtuelle Quark-Antiquark-Paare
- "Verschmierung" der Farbladung durch
- Genauere Rechnung zeigt: Antiabschirmung durch Gluonen dominiert

Laufende Kopplung in der QCD

Energieabhängigkeit der starken Kopplungskonstante α_S :

$$\alpha_{S}(Q^{2}) = \frac{\alpha_{S}(\mu^{2})}{1 + \frac{\alpha_{S}(\mu)}{12\pi} (11N_{c} - 2N_{f}) \ln\left(\frac{Q^{2}}{\mu^{2}}\right)}$$

Gluonen Quarks

Wichtige Erkenntnis (Gross, Politzer, Wilczek, 1974): Für $N_c = 3$ (Zahl der Farbladungen) und $N_f \leq 6$ (Zahl der aktiven Quarkflavors): (11 $N_c - 2 N_f$) > 0 Große $Q^2 \rightarrow$ schwache Kopplung: asymptotische Freiheit Kleine $Q^2 \rightarrow$ starke Kopplung: Confinement

Sommersemester 2020

Laufende Kopplung in der QCD

- Eingangsgrößen aus unterschiedlichen physikalischen Prozessen:
 - Tau-Lepton-Zerfälle
 - Schwere Quarkonia
 - Tiefinelastische Streuung
 - Hadron- und Lepton-Collider
 - Anpassungen an Präzisionsdaten
 - **Gitter-QCD**
- Kombiniertes Resultat: $\alpha_s(m_z^2) = 0,1179(10)$ (konsistentes Laufen über drei Größenordnungen im Impulsübertrag)

Sommersemester 2020

Q [GeV]

Confinement und Jets

- Fragmentierung durch räumliche Trennung von q und q in QCD-Prozessen:
 - Bildung von qq-Paaren energetisch günstiger als weitere räumliche Trennung der Quarks
 - Endzustand: Umwandlung in **farbneutrale** Hadronen mit 100% Wahrscheinlichkeit
 - Für hohe Impulsüberträge, $Q^2 \gtrsim (6 \text{ GeV})^2$: nur kleine Streuung der Hadronen um Flugrichtung "Mutter"quark→ Jets = kollimierte Teilchenbündel
 - Rekonstruktion von Energie und Impuls des Jets → Rückschluss auf Eigenschaften Mutterquark

- DORIS-Beschleuniger (DESY, 1978): Form der Ereignisse in PLUTO-Experiment deutet auf Zerfall $\Upsilon(1S) \rightarrow ggg$ hin
- PETRA-Beschleuniger (DESY, 1979): Ereignisse mit drei Jets in e+e--Kollisionen
 - **Experimente TASSO, MARK-J, PLUTO,**
 - Interpretation: Gluon-Bremsstrahlung

Review: EPJ H35 (2010) 3

Aufgabe 22

- Welche der Aussagen zur Farbwechselwirkung sind korrekt? A. Das statische Potenzial ist coulombartig für kleine Abstände und linear für
 - große Abstände > 1 fm.
 - B. Die Kopplungskonstante wird stärker für kleine Abstände.
 - C. Die Produktionsrate von Hadronen in e⁺e⁻-Kollisionen ist proportional zur Zahl der Farbladungen.
 - D. In der Natur gibt es nur Hadronen, die aus Quark-Antiquark-Paaren oder drei Quarks bzw. Antiquarks bestehen.
 - E. Die asymptotische Freiheit in der QCD führt zur Bildung von Jets.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Kurze Zusammenfassung

- Wechselwirkungen in der QCD:
 - Wirkungsquerschnitts in e⁺e⁻-Kollisionen als Funktion der Schwerpunktsenergie \sqrt{s}

 - **Farbladungen** der Quarks (Farbe) **und** Gluonen (Farbe+Antifarbe) **E** Farbe als physikalischer Freiheitsgrad: z. B. **Antisymmetrie** der Ω^- -Wellenfunktion Zahl der Farbladungen: z. B. aus Verhältnis des hadronischen und $\mu^+\mu^-$ -
- Laufende Kopplungskonstanten:
 - \rightarrow größere Kopplung für größere Impulsüberträge (= kleinere Abstände)
 - QED: Abschirmung der Ladung durch Vakuumpolarisation QCD: Antiabschirmung der Farbladung (Gluonen) dominiert Abschirmung (Quarks)

- → kleinere Kopplung für größere Impulsüberträge → asymptotische Freiheit
- Quarks mit hohen Impulsen: Jets (3-Jet-Ereignisse \rightarrow Entdeckung des Gluons)

