

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 12. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

Auflösung Aufgabe 22

- Welche der Aussagen zur Farbwechselwirkung sind korrekt?
 - A. Das statische Potenzial ist coulombartig für kleine Abstände und linear für große Abstände > 1 fm.
 - B. Die Kopplungskonstante wird stärker für kleine Abstände.
 - C. Die Produktionsrate von Hadronen in e+e--Kollisionen ist proportional zur Zahl der Farbladungen.
 - D. In der Natur gibt es nur Hadronen, die aus Quark-Antiquark-Paaren oder drei Quarks bzw. Antiquarks bestehen.
 - E. Die asymptotische Freiheit in der QCD führt zur Bildung von Jets.

Kurze Wiederholung

- Wechselwirkungen in der QCD:
 - Farbladungen der Quarks (Farbe) und Gluonen (Farbe+Antifarbe)
 - \blacksquare Farbe als physikalischer Freiheitsgrad: z. B. **Antisymmetrie** der Ω^- -Wellenfunktion
 - Zahl der Farbladungen: z. B. aus **Verhältnis** des hadronischen und μ+μ-Wirkungsquerschnitts in e+e--Kollisionen als Funktion der Schwerpunktsenergie √s
- Laufende Kopplungskonstanten:
 - QED: Abschirmung der Ladung durch Vakuumpolarisation
 → größere Kopplung für größere Impulsüberträge (= kleinere Abstände)
 - QCD: Antiabschirmung der Farbladung (Gluonen) dominiert Abschirmung (Quarks)
 - → kleinere Kopplung für größere Impulsüberträge → asymptotische Freiheit
- Quarks mit hohen Impulsen: Jets (3-Jet-Ereignisse → Entdeckung des Gluons)

Kapitel 6.4

Struktur der Nukleonen und Partonmodell

Motivation: Struktur der Nukleonen

- Studium der Nukleonenstruktur: interessant "an sich"
 - Wie teilt sich der Impuls der Nukleonen auf die Partonen auf?
 - Woher kommt der Spin der Nukleonen? (hier nicht behandelt)
- Wichtige Eingangsgröße für Experimente mit Hadronen:
 - Beispiel: Proton-Proton-Kollisionen am LHC \rightarrow eigentlich Kollisionen zwischen **Partonen** (mit Bruchteilen x_i der Protonenimpulse p_i)

- Physikalische Interpretation der LHC-Ergebnisse
 - → sehr genaue Kenntnis der Struktur des Protons benötigt

Erinnerung: Inelastische eN-Streuung

- Inelastische Streuung:
 - Unelastischer Energieübertrag auf Target
 - Targetnukleon bricht auf, hadronisches **System** mit Masse *W* ≥ *M* nimmt Rückstoß auf
- Kinematik: **Iorentzinvariante** Größen
 - Impulsübertrag: $Q^2 = -q^2 = -(p p')^2$
 - Energieübertrag: $\nu = \frac{P \cdot q}{M} \rightarrow \nu^* = E E'$ Inelastizität: $y = \frac{P \cdot q}{P \cdot p} \rightarrow y^* = \frac{E E'}{E}$ Laborsystem

 - Invariante Masse des hadronischen Systems: $W^2 = (P + q)^2 = M^2 + 2M\nu - Q^2$
- Bedingung für tiefinelastische Streuung (engl.: deep inelastic scattering, DIS): W^2 , v^2/c^4 , $Q^2/c^2 \gg M^2$

Rückstoß: hadronisches System (Masse W)

eN-Streuung: Impulsübertrag durch virtuelles Photon

e⁺p-Kollision bei HERA

(DESY, 1992–2007, Experimente H1 und ZEUS)

Erinnerung: Inelastische eN-Streuung

Differenzieller Wirkungsquerschnitt für inelastische eN-Streuung:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{4\pi\alpha^2(\hbar c)^2}{Q^4} \left[\frac{1-y}{x} F_2(x,Q^2) + y^2 F_1(x,Q^2) + \mathcal{O}(M/E) \right]$$

Inelastisch → abhängig von zwei Variablen, z. B. Impulsübertrag Q² und Bjorken-Skalierungsvariable

$$x \equiv x_{\rm Bj} \equiv \frac{Q^2}{2M\nu} = \frac{Q^2}{2P \cdot q}$$

- \blacksquare $F_{1,2}$: Strukturfunktionen des Nukleons (dimensionslos)
- Experimentell: Bjorken-Skalierungsverhalten → für tiefinelastische Streuung hängt differenzieller Wirkungsquerschnitt (näherungsweise) nur von einer Variable ab (z. B. x_{Bj})

Erinnerung: Partonmodell

Karlsruher Institut für Technologie

- Interpretation: (naives) Partonmodell (Bjorken, Feynman, 1969)
 - Bei hohen Energien: eN-Streuung
 = (inkohärente) Summe aus
 elastischen Streuprozessen mit
 Bestandteilen des Nukleons ("Partonen")
 - Heute: Partonen = Quarks und Gluonen
 (quasifrei aufgrund asymptotischer Freiheit)
 - Interpretation: für gegebenes x_{Bj} (definiert aus Streukinematik) streut virtuelles Photon an Parton mit Impulsbruchteil x des Nukleons (in geschickt gewähltem Bezugssystem)

Callan-Gross-Relation

- Vorhersage des Partonmodells: Zusammenhang zwischen Strukturfunktionen F₁(x) und F₂(x) aufgrund von Helizitätserhaltung
 - Spin-1/2-Partonen: Callan-Gross-Relation

$$F_1(x) = \frac{1}{2x}F_2(x)$$

- Spin-0-Partonen: $F_1(x) = 0$
- Daten verträglich mit Spin-1/2-Hypothese, aber nicht mit Spin-0-Hypothese
 - → relevante Partonen: Spin 1/2

Naives Partonmodell

- Tiefinelastische Elektron-Nukleon-Streuung im naiven Partonmodell:
 - QCD: asymptotische Freiheit → elastische Streuung von Photonen an einzelnen Spin-1/2-Partonen mit Ladung eie (e: Elementarladung)
 - Inkohärente Summe über alle elastischen Streuprozesse an Partonen → Summation von Wahrscheinlichkeiten ~ |Matrixelement|²
 - Symbolisch:

Naives Partonmodell: Faktorisierung

- DIS kann in zwei Unterprozesse zerlegt werden ("Faktorisierung"):
 - Elementarer Streuprozess zwischen Photon und Spin-1/2-Parton
 - Wahrscheinlichkeit, Partontyp j mit Impulsanteil im Intervall [z_j, z_j+dz_j] in Proton zu finden
 - $f_j(z_j)$: Partonverteilungsfunktion (engl.: parton density function, PDF) mit Normierung

$$\sum_{j} \int_{0}^{1} z_{j} f_{j}(z_{j}) dz_{j} = 1$$

Naives Partonmodell: F2

Vergleich mit DIS-Wirkungsquerschnitt:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{4\pi\alpha^2(\hbar c)^2}{Q^4} \left[\frac{1-y}{x} F_2(x,Q^2) + y^2 F_1(x,Q^2) + \mathcal{O}(M/E) \right]$$

- **Elastische** Streuung an Partonen: y = 0, $F_i(x, Q^2) \rightarrow F_i(x)$
- Für einzelnes punktförmiges Spin-1/2-Parton mit Impuls ziP und Ladung ei:

$$F_2(x) = e_i^2 \cdot \delta(z_i - x)$$

Für alle Spin-1/2-Partonen im Nukleon (Summe über Partontypen j):

$$F_2(x) = \sum_{j} \int e_j^2 \cdot z_j f_j(z_j) \cdot \delta(z_j - x) dz_j = \sum_{j} e_j^2 \cdot x f_j(x)$$

Erweitertes Partonmodell

Karlsruher Institut für Technologie

- Relevante Partonen im naiven Partonmodell:
 - Elektromagnetische Wechselwirkung: geladene Partonen
 - Quarkmodell: Quantenzahlen der Nukleonen durch Valenzquarks gegeben (Proton = |uud>, Neutron = |udd>)
- QCD-Prozesse im Nukleon: erweitertes Partonmodell
 - Emission von Gluonen (= neutrale Spin-1-Partonen) und Aufspaltung von Gluonen in Quark-Antiquark-Paare

Nukleon = Valenzquarks + "See" aus zusätzlichen Quarks und Antiquarks ("Seequarks") sowie Gluonen

Bildquelle: DESY

Strukturfunktion $F_2(x)$

Strukturfunktion $F_2(x)$ für Nukleonen im erweiterten Partonmodell:

$$F_2^{eN}(x) = x \sum_{j} e_j^2 \left[q_j(x) + \overline{q}_j(x) \right]$$

- Summe der mit ei² gewichteten Impulsverteilungen* aller möglichen Quarks und Antiquarks im Nukleon
- u- und d-Quarks: als Valenzquarks und Seequarks
- s-Quarks (im Prinzip auch c, b, t) und alle Antiquarks: nur als Seequarks
- Messprogramm: differenzieller Wirkungsquerschnitt für tiefinelastische eN-Streuung \rightarrow Bestimmung von $F_2(x) \rightarrow$ Rückschlüsse auf PDFs
- Experimentell: Quarks und Antiquarks tragen nur ca. 50% des Gesamtimpulses der Nukleonen, Rest stammt von Gluonen
 - * $q_j(x)$ = Anteil der Partonen mit Impulsbruchteilen zwischen x und x+dx $xq_j(x)$ = Anteil des Protonenimpulses, der von allen Partonen in [x,x+dx] getragen wird

Strukturfunktion $F_2(x)$

Einfachstes Modell: **drei unabhängige Valenzquarks** $\rightarrow F_2 = \delta(1/3)$

■ Gluonaustausch zwischen Valenzquarks → Verschmierung

■ Gluonaustausch und Gluonabstrahlung → Seequarks

nach: Halzen, Martin, Quarks & Leptons

Skalenverletzungen

- Karlsruher Institut für Technologie
- Anschaulich: Elektronenstrahl ≈ Mikroskop (virtuelle Photonen)
 - Kleines Q² → geringe Auflösung des Photon-Parton-Vertex
 - Großes Q² → hohe Auflösung des Photon-Parton-Vertex, Effekte der Gluonen werden sichtbar
- Konsequenz: Skalenverletzungen
 - = Abweichung vom Bjorken-Skalierungsverhalten
 - \rightarrow Strukturfunktionen werden **Q**²-abhängig: $F(x,Q^2)$
 - Gluonabstrahlung: zusätzliche Gluonen bei kleineren x, Quarkimpuls ebenfalls zu kleineren x verschoben
 - Quark-Antiquark-Paare aus Gluonen: zusätzliche Quarks und Antiquarks bei kleineren x

Messung von $F_2(x,Q^2)$

Skalenverletzung

Bjorken-Skalierungsverhalten

Skalenverletzung

- Skalierungsverhalten für mittlere Werte von *x*: *F*₂ unabhängig von Q²
- Verhalten für steigendes Q²:
 Skalenverletzung durch Gluonen
 - Weniger Partonen mit großem x
 - \rightarrow F_2 fällt mit Q^2 ab
 - Mehr Partonen mit kleinen x
 - \rightarrow F_2 steigt mit Q^2 an

Partonverteilungen

- Beschreibung der inneren Struktur von Nukleonen mittels PDFs:
 - PDFs (bisher) **nicht** aus ersten Prinzipien **berechenbar**
 - PDFs = universelle Eigenschaft von Nukleonen → können in einem Prozess (z. B. tiefinelastische Streuung: F₂) bestimmt und auf andere Prozess angewendet werden

- **Evolution** der PDFs: **Bestimmung** einer PDF bei Q₀²
 - → **Berechnung** der PDF bei beliebigen andere Q² (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-Gleichung, kurz: **DGLAP-Gleichung**)

Partonverteilungen

- Unterschiedliche Physikprozesse (DIS, Jets, ...) sensitiv auf unterschiedliche PDF-Kombinationen
- Strategie: gemeinsame Anpassung vieler Messungen (HERA, LHC, Tevatron, Fixed Target) an parametrisierte Form der PDFs ("PDF-Fit")
- Beispiel: NNPDF3.0

Aufgabe 23

- Welche der folgenden Aussagen zum Partonmodell sind korrekt?
 - A. PDFs sind universelle Wahrscheinlichkeitsdichten für Partonen mit einem Impulsbruchteil *x* eines Nukleons.
 - B. Der gesamte Impuls eines Nukleons wird von Spin-1/2-Partonen getragen.
 - C. Für die Physik am LHC ist eine genaue Kenntnis der Proton-PDFs wichtig.
 - D. Mit steigendem Impulsübertrag Q² beinhalten Nukleonen weniger Gluonen mit geringen Impulsen.
 - E. In guter Näherung gibt es zusätzlich zu den Valenzquarks im Nukleon gleich viele Quarks und Antiquarks.
- Bitte beantworten Sie diese Frage anonym auf ILIAS:
 https://ilias.studium.kit.edu/goto.php?target=fold_1080516&client_id=produktiv

Kurze Zusammenfassung

- Tiefinelastische Streuung:
 - Wirkungsquerschnitt parametrisiert durch Strukturfunktionen
 - Partonmodell: Beschreibung der Strukturfunktionen durch gewichtete Summe aus Partonverteilungen (PDFs)
 - Erweitertes Partonmodell: QCD-Wechselwirkung der Quarks und Gluonen
 - → Proton = drei Valenzquarks + See aus Quarks, Antiquarks, Gluonen
 - → Bjorken-Skalierungsverhalten verletzt
- Partonverteilungen:
 - Universelle Eigenschaften des Nukleons, nicht ab initio berechenbar
 - lacktriangle PDF aus Messungen bei festem $Q^2 o Q^2$ -Evolution durch DGLAP-Gleichungen
 - Experimente mit Fixed-Target-Aufbauten und an HERA, Tevatron, LHC: Messung der Strukturfunktionen in tiefinelastischer Streuung und andere Prozesse
 - → PDFs aus Anpassung an Daten