

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 12. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

Auflösung Aufgabe 22

Welche der Aussagen zur Farbwechselwirkung sind korrekt?

- große Abstände > 1 fm.
- B. Die Kopplungskonstante wird stärker für kleine Abstände. C. Die Produktionsrate von Hadronen in e⁺e⁻-Kollisionen ist proportional zur
- Zahl der Farbladungen.
- D. In der Natur gibt es nur Hadronen, die aus Quark-Antiquark-Paaren oder drei Quarks bzw. Antiquarks bestehen.
- E. Die asymptotische Freiheit in der QCD führt zur Bildung von Jets.

A. Das statische Potenzial ist coulombartig für kleine Abstände und linear für

Kurze Wiederholung

- Wechselwirkungen in der QCD:
 - Wirkungsquerschnitts in e⁺e⁻-Kollisionen als Funktion der Schwerpunktsenergie \sqrt{s}

 - **Farbladungen** der Quarks (Farbe) **und** Gluonen (Farbe+Antifarbe) **E** Farbe als physikalischer Freiheitsgrad: z. B. **Antisymmetrie** der Ω^- -Wellenfunktion Zahl der Farbladungen: z. B. aus Verhältnis des hadronischen und $\mu^+\mu^-$ -
- Laufende Kopplungskonstanten:
 - \rightarrow größere Kopplung für größere Impulsüberträge (= kleinere Abstände)
 - QED: Abschirmung der Ladung durch Vakuumpolarisation QCD: Antiabschirmung der Farbladung (Gluonen) dominiert Abschirmung (Quarks)

- → kleinere Kopplung für größere Impulsüberträge → asymptotische Freiheit
- Quarks mit hohen Impulsen: Jets (3-Jet-Ereignisse \rightarrow Entdeckung des Gluons)

Struktur der Nukleonen und Partonmodell

Kapitel 6.4

Motivation: Struktur der Nukleonen

- Studium der Nukleonenstruktur: interessant "an sich"
 - Wie teilt sich der Impuls der Nukleonen auf die Partonen auf?
 - Woher kommt der **Spin** der Nukleonen? (hier nicht behandelt)
- Wichtige Eingangsgröße für Experimente mit Hadronen:
 - Beispiel: Proton-Proton-Kollisionen am LHC \rightarrow eigentlich Kollisionen zwischen **Partonen** (mit Bruchteilen x_i der Protonenimpulse p_i)

Physikalische Interpretation der LHC-Ergebnisse → sehr genaue Kenntnis der Struktur des Protons benötigt

Erinnerung: Inelastische eN-Streuung

- Inelastische Streuung:
 - Unelastischer Energieübertrag auf Target
 - Targetnukleon bricht auf, hadronisches **System** mit Masse $W \ge M$ nimmt Rückstoß auf
- Kinematik: lorentzinvariante Größen
 - Impulsübertrag: $Q^2 = -q^2 = -(p p')^2$

- Energieübertrag: $\nu = \frac{P \cdot q}{M} \rightarrow \nu^* = E E'$ Inelastizität: $y = \frac{P \cdot q}{P \cdot p} \rightarrow y^* = \frac{E E'}{E}$
- Invariante Masse des hadronischen Systems: $W^2 = (P + q)^2 = M^2 + 2M\nu - Q^2$
- Bedingung für tiefinelastische Streuung (engl.: deep inelastic scattering, DIS): W^2 , v^2/c^4 , $Q^2/c^2 \gg M^2$

Rückstoß: hadronisches System (Masse *W*)

eN-Streuung: Impulsübertrag durch virtuelles Photon

e⁺p-Kollision bei HERA

(DESY, 1992–2007, Experimente H1 und ZEUS)

Erinnerung: Inelastische eN-Streuung

Differenzieller Wirkungsquerschnitt für inelastische eN-Streuung:

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{4\pi\alpha^2(\hbar c)^2}{Q^4} \left[\frac{1-y}{x}F_2(x,Q^2) + y^2F_1(x,Q^2) + \mathcal{O}(M/E)\right]$$

Inelastisch \rightarrow abhängig von zwei Variablen, z. B. Impulsübertrag Q² und **Bjorken-Skalierungsvariable**

 $x \equiv x_{\rm Bi} \equiv$

F_{1,2:} Strukturfunktionen des Nukleons (dimensionslos)

von **einer** Variable ab (z. B. x_{Bj})

$$\frac{Q^2}{2M\nu} = \frac{Q^2}{2P \cdot q}$$

Experimentell: **Bjorken-Skalierungsverhalten** \rightarrow für tiefinelastische Streuung hängt differenzieller Wirkungsquerschnitt (näherungsweise) nur

Erinnerung: Partonmodell

- Interpretation: (naives) **Partonmodell** (Bjorken, Feynman, 1969)
 - Bei hohen Energien: eN-Streuung = (inkohärente) Summe aus elastischen Streuprozessen mit Bestandteilen des Nukleons ("Partonen")
 - Heute: Partonen = Quarks und Gluonen (quasifrei aufgrund asymptotischer Freiheit)
 - Interpretation: für gegebenes x_{Bi} (definiert aus Streukinematik) streut virtuelles Photon an Parton mit Impulsbruchteil x des Nukleons (in geschickt gewähltem Bezugssystem)

Callan-Gross-Relation

- Vorhersage des Partonmodells: **Zusammenhang zwischen** Strukturfunktionen $F_1(x)$ und $F_2(x)$ aufgrund von Helizitätserhaltung Spin-1/2-Partonen: Callan-Gross-Relation $F_1(x) = \frac{1}{2x}F_2(x)$
 - Spin-0-Partonen: $F_1(x) = 0$
- Daten verträglich mit Spin-1/2-Hypothese, aber nicht mit Spin-0-Hypothese → relevante Partonen: Spin 1/2

Naives Partonmodell

- - \rightarrow Summation von Wahrscheinlichkeiten ~ |Matrixelement|²

Symbolisch:

Tiefinelastische Elektron-Nukleon-Streuung im naiven Partonmodell: **QCD:** asymptotische Freiheit \rightarrow elastische Streuung von Photonen an einzelnen Spin-1/2-Partonen mit Ladung ei e (e: Elementarladung) Inkohärente Summe über alle elastischen Streuprozesse an Partonen

Naives Partonmodell: Faktorisierung

- DIS kann in zwei Unterprozesse zerlegt werden ("Faktorisierung"):
 - Elementarer Streuprozess zwischen Photon und Spin-1/2-Parton
 - Wahrscheinlichkeit, Partontyp *j* mit Impulsanteil im Intervall [z_i , z_i +d z_i] in Proton zu finden
 - **f**_{*i*}(z_i): **Partonverteilungsfunktion** (engl.: parton density function, PDF) mit Normierung

$$\sum_{j} \int_0^1 z_j f_j(z_j) \, \mathrm{d} z_j = 1$$

Naives Partonmodell: F₂

Vergleich mit DIS-Wirkungsquerschnitt: $\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\,\mathrm{d}O^2} = \frac{4\pi\alpha^2(\hbar c)^2}{O^4} \left[\frac{1-y}{x}F_2\right]$

Elastische Streuung an Partonen: y = 0, $F_i(x, Q^2) \rightarrow F_i(x)$

 $F_2(x) = \sum \int e_j^2 \cdot z_j f_j(z_j)$

$$F_2(x, Q^2) + y^2 F_1(x, Q^2) + \mathcal{O}(M/E)$$

- Für einzelnes punktförmiges Spin-1/2-Parton mit Impuls z_iP und Ladung e_i : $F_2(x) = e_i^2 \cdot \delta(z_i - x)$
 - Für **alle** Spin-1/2-Partonen im Nukleon (Summe über Partontypen *j*):

$$\delta(z_j - x) dz_j = \sum_j e_j^2 \cdot x f_j(x)$$

Erweitertes Partonmodell

- Relevante Partonen im naiven Partonmodell:
 - Elektromagnetische Wechselwirkung: geladene Partonen
 - Quarkmodell: Quantenzahlen der Nukleonen durch **Valenzquarks** gegeben (Proton = |uud>, Neutron = |udd>)

QCD-Prozesse im Nukleon: erweitertes Partonmodell Emission von Gluonen (= neutrale Spin-1-Partonen) und Aufspaltung von Gluonen in Quark-Antiquark-Paare

Nukleon = Valenzquarks + "See" aus zusätzlichen Quarks und Antiquarks ("Seequarks") sowie Gluonen

Strukturfunktion $F_2(x)$

- Summe der mit e² gewichteten Impulsverteilungen* aller möglichen Quarks und Antiquarks im Nukleon
- u- und d-Quarks: als Valenzquarks und Seequarks
- s-Quarks (im Prinzip auch c, b, t) und alle Antiquarks: nur als Seequarks
- Messprogramm: differenzieller Wirkungsquerschnitt für tiefinelastische eN-Streuung \rightarrow Bestimmung von $F_2(x) \rightarrow$ Rückschlüsse auf PDFs
- Experimentell: Quarks und Antiquarks tragen nur ca. 50% des Gesamtimpulses der Nukleonen, Rest stammt von Gluonen
 - $q_i(x)$ = Anteil der Partonen mit Impulsbruchteilen zwischen x und x+dx $xq_i(x)$ = Anteil des Protonenimpulses, der von allen Partonen in [x,x+dx] getragen wird

Strukturfunktion $F_2(x)$ für Nukleonen im erweiterten Partonmodell: $F_2^{eN}(x) = x \sum e_i^2 \left[q_i(x) + \overline{q}_i(x) \right]$

Strukturfunktion $F_2(x)$

Einfachstes Modell: drei unabhängige Valenzquarks $\rightarrow F_2 = \delta(1/3)$

Gluonaustausch zwischen Valenzquarks \rightarrow Verschmierung

Gluonaustausch und **Gluonabstrahlung** → Seequarks

Skalenverletzungen

- Anschaulich: Elektronenstrahl \approx Mikroskop (virtuelle Photonen)
 - **Kleines** $Q^2 \rightarrow$ **geringe Auflösung** des Photon-Parton-Vertex
 - **Großes** $Q^2 \rightarrow$ **hohe Auflösung** des Photon-Parton-Vertex, Effekte der Gluonen werden sichtbar
- Konsequenz: Skalenverletzungen
 - = Abweichung vom Bjorken-Skalierungsverhalten \rightarrow Strukturfunktionen werden **Q**²-abhängig: $F(x, Q^2)$

 - **Gluonabstrahlung:** zusätzliche Gluonen bei kleineren x, Quarkimpuls ebenfalls zu kleineren x verschoben
 - Quark-Antiquark-Paare aus Gluonen: zusätzliche Quarks und Antiquarks bei kleineren x

Messung von $F_2(x,Q^2)$

- Skalierungsverhalten für mittlere Werte von x: *F*² unabhängig von Q²
- Verhalten für steigendes Q²: Skalenverletzung durch Gluonen
 - Weniger Partonen mit großem x \rightarrow F_2 fällt mit Q² ab
 - Mehr Partonen mit kleinen x \rightarrow F_2 steigt mit Q² an

Partonverteilungen

- Beschreibung der inneren Struktur von Nukleonen mittels PDFs:
 - PDFs (bisher) nicht aus ersten Prinzipien berechenbar
 - PDFs = universelle Eigenschaft von Nukleonen \rightarrow können in einem Prozess (z. B. tiefinelastische Streuung: F_2) bestimmt und auf andere Prozess angewendet werden
 - **Evolution** der PDFs: **Bestimmung** einer PDF bei Q_0^2 Lipatov-Altarelli-Parisi-Gleichung, kurz: DGLAP-Gleichung)

\rightarrow **Berechnung** der PDF bei beliebigen andere Q² (Dokshitzer-Gribov-

Partonverteilungen

Unterschiedliche Physikprozesse (DIS, Jets, ...) sensitiv auf unterschiedliche PDF-**Kombinationen**

Strategie: gemeinsame **Anpassung** vieler Messungen (HERA, LHC, Tevatron, Fixed Target) an parametrisierte Form der PDFs ("PDF-Fit") Beispiel: NNPDF3.0

Aufgabe 23

- Welche der folgenden Aussagen zum Partonmodell sind korrekt? A. PDFs sind universelle Wahrscheinlichkeitsdichten für Partonen mit einem Impulsbruchteil x eines Nukleons.
 - B. Der gesamte Impuls eines Nukleons wird von Spin-1/2-Partonen getragen.
 - C. Für die Physik am LHC ist eine genaue Kenntnis der Proton-PDFs wichtig.
 - D. Mit steigendem Impulsübertrag Q² beinhalten Nukleonen weniger Gluonen mit geringen Impulsen.
 - E. In guter Näherung gibt es zusätzlich zu den Valenzquarks im Nukleon gleich viele Quarks und Antiquarks.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Kurze Zusammenfassung

- Tiefinelastische Streuung:
 - Wirkungsquerschnitt parametrisiert durch Strukturfunktionen
 - **Partonverteilungen** (PDFs)
 - - → Bjorken-Skalierungsverhalten verletzt
- Partonverteilungen:
 - Universelle Eigenschaften des Nukleons, nicht ab initio berechenbar

 - \rightarrow PDFs aus Anpassung an Daten

Partonmodell: Beschreibung der Strukturfunktionen durch gewichtete Summe aus

Erweitertes Partonmodell: QCD-Wechselwirkung der Quarks und Gluonen → Proton = drei Valenzquarks + See aus Quarks, Antiquarks, Gluonen

PDF aus Messungen bei festem $Q^2 \rightarrow Q^2$ -Evolution durch DGLAP-Gleichungen Experimente mit Fixed-Target-Aufbauten und an HERA, Tevatron, LHC: Messung der Strukturfunktionen in tiefinelastischer Streuung und andere Prozesse

