

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 15. Vorlesung, Teil 1

ULRICH HUSEMANN, KATHRIN VALERIUS

רר

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Aufgabe 26

- Welche der folgenden Aussagen zum Higgs-Mechanismus sind korrekt?
 - A. Durch die Kopplung ans Higgs-Feld bekommen sowohl die Eichbosonen als auch die Fermionen des Standardmodells ihre Masse.
 - B. Das Standardmodell sagt die Masse des Higgs-Bosons voraus.
 - C. Spontane Symmetriebrechung bedeutet, dass der Grundzustand eines Systems nicht die Symmetrie der Lagrange-Dichte besitzt.
 - D. Ohne den Higgs-Mechanismus wird für die Streuung longitudinaler W-Bosonen bei hohen Energien ein zu großer Wirkungsquerschnitt erwartet.
 - E. Die typische Energieskala der elektroschwachen Wechselwirkung ist durch die Higgs-Boson-Masse gegeben.
 - Bitte beantworten Sie die Frage anonym auf ILIAS [link].

Moderne Experimentalphysik III (4010061) – 14. Vorlesung

Kurze Wiederholung

- Fermi-Theorie der schwachen Wechselwirkung (= Feldtheorie ohne Austauschteilchen) nicht renormierbar → mehrere Schritte zur Lösung
 - Einführung von Austauschteilchen: massiv, kurzlebig, Spin 1
 - Einfügen der Paritätsverletzung: V–A-Struktur der "schwachen Ströme"
- Austauschteilchen als Eichbosonen: Theorie mit Hindernissen
 - Forderung nach Lorentz-Invarianz, Renormierbarkeit, nichtverschwindender Masse der Eichbosonen
 - 1954: Yang u. Mills generalisieren Feldtheorie, nicht-abelsche Eichgruppe
 - 1964: Higgs* gibt Eichbosonen nach Yang & Mills eine Masse; neues Feld
 - 1971: t'Hooft u. Veltman weisen Renormierbarkeit von Yang-Mills-Higgs nach

* etwa gleichzeitig mit Englert, Brout, Guralnik, Hagen, Kibble

Kurze Wiederholung

- Verschränkung zw. schwacher und elektromagnetischer Wechselwirkung
 - Gemeinsamkeiten: Beide WW greifen an verschiedenen Teilchen je mit universeller Kopplungsstärke an; beide haben Austauschteilchen mit Spin 1
 - Unterschiede: Reichweite unendlich bzw. extrem kurz; Erhaltung von P- und C-Symmetrien gegenüber maximaler Verletzung

Glashow-Salam-Weinberg-Theorie mit spontaner Symmetriebrechung

- Eichtheorie **SU(2)**_L **x U(1)**_Y führt auf 4 Eichfelder W[±], W⁰, B
 - → Masseneigenzustände (Z⁰, A) aus Weinberg-Drehung (θ_W) von W⁰, B
 - → Spontane Symmetriebrechung führt auf korrekte Eichbosonmassen
- **Vorhersagen:** "Stärke" der schwachen WW; Verhältnis $m_W = m_Z \cos\theta_W$; Existenz neutraler Ströme, Kopplungen und Massen der Fermionen, ...

Einordnung und Übersicht

Moderne Experimentalphysik III (4010061) - 15. Vorlesung

Sommersemester 2020

Kapitel 7.3

Schlüsselexperimente der elektroschwachen Wechselwirkung

Entdeckung der neutralen Ströme

- Wichtige Vorhersage der elektroschwachen Theorie: neutrale Ströme
 - Suche in Streuung geladener Teilchen: Überlagerung durch viel stärkere elektromagnetische Wechselwirkung → sehr schwierig
 - Besser: Neutrino-Wechselwirkungen mit Elektronen oder Nukleonen
 - Beispiel: Neutrino-Elektron-Streuung, Strahl aus Myon-Neutrinos

7

Signatur: elektromagnetischer Schauer

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Sommersemester 2020

Neutrinostrahlen

- **Neutrinostrahlen** (z. B. CERN PS, seit 1970):
 - Grundidee: Protonenstrahl auf Target \rightarrow Hadronen (π , K)

→ Neutrinostrahl aus Zerfall der Hadronen

- Impuls- und Ladungsselektion der Hadronen: magnetisches Horn (van der Meer, 1961) = gepulster Toroidmagnet
- Weitere Komponenten: Zerfallsstrecke f
 ür Myonen, Absorber f
 ür Myonen und Hadronen

cerncourier.com

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Blasenkammer: Gargamelle

- 12 m³ "schwere" Flüssigkeit (Freon), Optik-instrumentiert
- Starkes Magnetfeld (2 Tesla)
- Neutrinostrahl aus dem (S)PS
- Betrieb: 1970-1979

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Sommersemester 2020

Neutrino-Elektron-NC

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Neutrino-Elektron-NC

Ergebnisse von Gargamelle:

- Zweifelsfreier Nachweis von neutralen schwachen Strömen
- Indirekter Nachweis des Z⁰-Bosons,
 d. h. Bestätigung der Vorhersagen der elektroschwachen Theorie
 - Wirkungsquerschnitt für Neutrino-Elektron-Streuung abhängig von θ_W
 - 1 (!!) Aufnahme liefert $\sin^2\theta_W = 0,35 \pm 0,25;$ später: $\sin^2\theta_W = 0,22$
 - Damit genaue Vorhersagen der Kopplungen g, g' und der Massen von W[±] und Z⁰ möglich

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Entdeckung des W- und Z-Bosons

- **Direkter Nachweis** der W- und Z-Bosonen (ab 1981):
 - Ziel: Produktion **reeller** W- und Z-Bosonen \rightarrow Nachweis über **Zerfall**
 - Untere Schranke aus Neutrino-Nukleon-Streuung: $m_w > 60 \text{ GeV}/c^2$
 - Geeignetes Experiment: Teilchendetektor an Hadron-Collider (Fixed Target und e⁺e⁻-Collider: Strahlenergien um 1980 nicht realistisch)
- Produktionsprozess: **Drell-Yan-Prozess**
 - Ideal: Annihilation von **Valenz**quarks und -antiquarks $\rightarrow p\overline{p}$ -Collider

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Entdeckung des W- und Z-Bosons

- Herausforderung Beschleuniger:
 - Valenz(anti)quarks: Impulsbruchteil $x \approx 0.2$ → benötigte Schwerpunktsenergie zur Erzeugung von Teilchen mit ca. 100 GeV/c²: $\sqrt{s} \approx 500$ GeV
 - Umbau des CERN-SPS zum SppS (Rubbia, 1976)
 - Erzeugung von Antiprotonen: Protonenstrahl auf Target, Selektion und stochastische Kühlung der Antiprotonen (van der Meer, 1968)
- Herausforderung **Experimente** (UA1, UA2):
 - Größtmögliche Abdeckung des Raumwinkels
 - Schnelle elektronische Auslese

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Sommersemester 2020

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

amplifier

Stochastische

Kühlung

S. van der Meer

C. Rubbia

transverse pick-up

transverse

kicker

Entdeckung des W- und Z-Bosons

- Nachweis des **W-Bosons**: $W \rightarrow \ell v$
 - Zweikörperzerfall des W-Bosons ~ in Ruhe: Impulse von Elektron und Neutrino entgegengesetzt
 - **Geladenes Lepton** (e oder μ): saubere Signatur
 - Neutrino über fehlenden Transversalimpuls (nicht erfüllte Impulserhaltung senkrecht zum Strahl, Details später)
- Nachweis des **Z-Bosons**: $Z \rightarrow \ell \ell$
 - Paar geladener Leptonen mit umgekehrten Ladungsvorzeichen
 - Rekonstruktion der invarianten Masse

Phys. Lett. B126 (1983) 398

Ereignisse

Moderne Experimentalphysik III (4010061) - 15. Vorlesung

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 15. Vorlesung, Teil 2

ULRICH HUSEMANN, KATHRIN VALERIUS

רר

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Entdeckung des Higgs-Bosons

- Offene Frage: Massen der W- und Z-Bosonen durch Brout-Englert-Higgs-Mechanismus? → direkter Nachweis des Higgs-Bosons
 - Vor Entdeckung: Masse des Higgs-Bosons einziger unbekannter Parameter des Standardmodells
 - Theoretische Erwartungen:
 - Direkte Suchen (LEP, bis 2000):

- $100 \text{ GeV}/c^2 \lesssim m_{\text{H}} \lesssim 850 \text{ GeV}/c^2$
- *m*_H > 115 GeV/*c*² (95% C.L.)
- Anpassung an Präzisionsdaten (bis 2011): $m_{\rm H}$ < 161 GeV/ c^2 (95% C.L.)
- Wichtigster Produktionsprozess am Hadron-Collider: gg-Fusion → Kopplung an masselose Gluonen über Dreiecksdiagramme mit Fermionen, hauptsächlich Top-Quarks

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Entdeckung des Higgs-Bosons

- Geeignete Zerfallskanäle abhängig von m_H, am wichtigsten für Higgs-Entdeckung:
 - H → ZZ(*) → 4 Leptonen (e, μ): sehr sauber über weiten *m*_H-Bereich
 - **H** $\rightarrow \gamma \gamma$: sehr sauber

nur für $m_{\rm H} \approx 160 \ {\rm GeV}/c^2$

Signatur: Peak in invarianter Masse

LHC Higgs Cross Section Working Group

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

Kandidat für $H \rightarrow \gamma \gamma$

 $H \to ZZ^{(\star)} \to 4 \mathscr{C}$ im Laufe der Zeit

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Sommersemester 2020

Aufgabe 27a

- Welche der folgenden Aussagen über die Entdeckung des W-, Z- und Higgs-Bosons sind korrekt?
 - A. Zur Entdeckung werden reelle Bosonen am Beschleuniger erzeugt und durch ihre Zerfallsprodukte nachgewiesen.
 - B. Die typische Signatur eines W-Boson-Zerfalls sind zwei unter 180° emittierte geladene Leptonen.
 - C. Zur Entdeckung des Higgs-Bosons haben insbesondere die Zerfälle in zwei Photonen und in zwei Z-Bosonen beigetragen.
 - D. Vor Verwendung in einem Collider werden Protonen und Antiprotonen stochastisch gekühlt.
 - E. Bei LHC-Energien bieten Proton-Antiproton-Collider keinen großen Vorteil mehr gegenüber Proton-Proton-Collidern.
- Bitte beantworten Sie die Frage anonym auf ILIAS [link].

Zusammenfassung & Ausblick

- Schlüsselexperimente der elektroschwachen Theorie:
 - Nachweis der neutralen Ströme in Neutrino-Streuung (1973)
 - Direkter Nachweis der massiven
 Eichbosonen W und Z am SppS (1983)
 - Direkter Nachweis des **Higgs-Bosons** am LHC (2012)
- Weitere Details: Kapitel 8 Moderne Teilchenphysik
 - Präzisionsphysik an e⁺e⁻-Collidern:
 Z-Resonanz und B-Mesonen
 - Physik am Hadron-Collider: Top-Quarks, Higgs-Bosonen, ...

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Sommersemester 2020

Ausblick: Präzisionsmessungen

30 Jahre LEP

CERN Courier, Sept. / Okt. 2019

Offene Fragen vor LEP (Auszug):

- Familienstruktur des Standardmodells?
- Präzise Massen der W/Z-Bosonen?
- Gilt die Leptonuniversalität?
- Wirkungsquerschnitte elektroschwacher Prozesse?
- Genauer Wert des schwachen Mischungswinkels?
- Existenz und Masse des Higgs-Bosons?

→ Kap. 8: Moderne Teilchenphysik

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Sommersemester 2020

Ausblick: Präzisionsmessungen

30 Jahre LEP

CERN Courier, Sept./Okt. 2019

→ Kap. 8: Moderne Teilchenphysik

(a) Anzahl leichter Neutrinoflavors, (b) Leptonuniversalität, (c) Higgs-Vorhersage, (d) starke Kopplungskonstante, (e) Wirkungsquerschnitte, (f) WW-Divergenztest

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Sommersemester 2020

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 15. Vorlesung, Teil 3

ULRICH HUSEMANN, KATHRIN VALERIUS

רר

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Aufgabe 27a

- Welche der folgenden Aussagen über die Entdeckung des W-, Z- und Higgs-Bosons sind korrekt?
 - A. Zur Entdeckung werden reelle Bosonen am Beschleuniger erzeugt und durch ihre Zerfallsprodukte nachgewiesen.
 - B. Die typische Signatur eines W-Boson-Zerfalls sind zwei unter 180° emittierte geladene Leptonen.
 - C. Zur Entdeckung des Higgs-Bosons haben insbesondere die Zerfälle in zwei Photonen und in zwei Z-Bosonen beigetragen.
 - D. Vor Verwendung in einem Collider werden Protonen und Antiprotonen stochastisch gekühlt.
 - E. Bei LHC-Energien bieten Proton-Antiproton-Collider keinen großen Vorteil mehr gegenüber Proton-Proton-Collidern.
- Bitte beantworten Sie die Frage anonym auf ILIAS [link].

Kapitel 7.4

Quarkmischung

Überblick

- Eigenzustände der starken und schwachen Wechselwirkung im allgemeinen unterschiedlich:
 - Konsequenz: Masseneigenzustände = physikalische Teilchen als Mischzustände von Eigenzuständen der schwachen Wechselwirkung
 - Beispiel: neutrale Kaonen K⁰ und $\overline{K}^0 \rightarrow K^0_S$ und K^0_L (vgl. Kapitel 5.3)
- Forschungsgeschichte:
 - 1963: erste Konzepte der Mischung geladener Ströme (Cabibbo)
 - 1970: GIM-Mechanismus zur Unterdrückung neutraler Ströme mit Flavoränderung (Glashow, Iliopoulos, Maiani)
 - 1973: Mischung von drei Quarkfamilien (Kobayashi, Maskawa)

Universalität geladener Ströme?

Geladene Ströme: universelle Kopplung g bzw. G_F, aber experimentell

Lösung (Cabibbo, 1963): g universell, aber Mischung von Strömen

In moderner Sprache: Quark, das mit W-Boson wechselwirkt, ist Linearkombination der Masseneigenzustände u, d, s

$$\begin{aligned} |u'\rangle &= |u\rangle \\ |d'\rangle &= \cos\theta_C |d\rangle + \sin\theta_C |s\rangle \\ |s'\rangle &= \cos\theta_C |s\rangle - \sin\theta_C |d\end{vmatrix}$$

mit Cabibbo-Winkel $\theta_C \approx 13^{\circ}$

N. Cabibbo

cerncourier.com

GIM-Mechanismus

■ Vergleich der Verzweigungsverhältnisse von K⁺ → $\mu^+\nu_{\mu}$ (CC) und K⁰_L → $\mu\mu$ (flavorändernder neutraler Strom, engl.: FCNC): **FCNC stark unterdrückt** → mit Cabibbo-Theorie und drei Quarks (u, d, s) nicht zu erklären

- Lösung: **GIM-Mechanismus** (Glashow, Iliopoulos, Maiani, 1970)
 - Zwei Isospin-Dubletts (u,d) und (c,s) \rightarrow **Charm-Quark** (Entdeckung 1974)
 - Downartige Quarks d und s ($I_3 = -1/2$) im Flavorraum um θ_C verdreht
 - **Destruktive Interferenz** von Boxdiagrammen mit u- und c-Quarks \rightarrow perfekte Auslöschung für $m_u = m_c$: Abschätzung für m_c

Quarkmischung: zwei Familien

- Mechanismus der Quarkmischung:
 - W-Bosonen koppeln an linkshändigen Anteil der "gedrehten" Quark-Eigenzustände u', d', s' (ohne definierte Masse)
 - Physikalischer Grund: Higgs-Mechanismus → komplizierte Yukawa-Kopplung der Quarks
 - Beschreibung: 2×2-Mischungsmatrix mit einem reellen Parameter θ_c

$$\begin{pmatrix} |\mathsf{d}'\rangle\\ |\mathsf{s}'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_C & \sin\theta_C\\ -\sin\theta_C & \cos\theta_C \end{pmatrix} \begin{pmatrix} |\mathsf{d}\rangle\\ |\mathsf{s}\rangle \end{pmatrix}$$

Flavoreigenzustände 11' C' ď s' Masseneigenzustände $\Pi = \Pi'$ c = c'd S

Moderne Experimentalphysik III (4010061) – 15. Vorlesung Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Quarkmischung: drei Familien

benötigt mindestens drei Quarkfamilien

mit $V_{\rm CKM}^{\dagger} V_{\rm CKM} = V_{\rm CKM} V_{\rm CKM}^{\dagger} = \mathbb{1}_3$

→ Vorhersage: **Top- und Bottom-Quark**

Erweiterung der Quarkmischung auf drei Familien

(Kobayashi, Maskawa, Prog. Theor. Phys. 49 (1973) 634)

Beschreibung: unitäre komplexe 3×3-Mischungsmatrix

→ **CKM-Matrix** = Cabibbo–Kobayashi–Maskawa-Matrix

Motivation: Beschreibung der CP-Verletzung im Quarkmodell

- Karlsruher Institut für Technologie
 - M. Kobayashi

T. Maskawa

NobelPrize.org

Physikalische Freiheitsgrade: drei Beträge, eine Phase

 $\begin{pmatrix} |\mathsf{d}'\rangle\\|\mathsf{s}'\rangle\\|\mathsf{b}'\rangle \end{pmatrix} = \begin{pmatrix} V_{\mathsf{ud}} & V_{\mathsf{us}} & V_{\mathsf{ub}}\\V_{\mathsf{cd}} & V_{\mathsf{cs}} & V_{\mathsf{cb}}\\V_{\mathsf{td}} & V_{\mathsf{tc}} & V_{\mathsf{tb}} \end{pmatrix} \begin{pmatrix} |\mathsf{d}\rangle\\|\mathsf{s}\rangle\\|\mathsf{b}\rangle \end{pmatrix} \equiv V_{\mathsf{CKM}} \begin{pmatrix} |\mathsf{d}\rangle\\|\mathsf{s}\rangle\\|\mathsf{b}\rangle \end{pmatrix}$

Eigenschaften der CKM-Matrix

Experimentelle: Beträge der CKM-Matrixelemente (aus PDG 2018)

<i>V</i> _{CKM} =	<mark>0,97420 ± 0,00021</mark>	0,2243 ± 0,0005	<mark>0,00394 ± 0,00036</mark> `
	$0,\!218\pm0,\!004$	$0,\!997\pm0,\!017$	$0,0422 \pm 0,0008$
	0,0081 ± 0,0005	$0,0394 \pm 0,0023$	$1,019 \pm 0,025$

Starke **Hierarchie** der Beträge: Entwicklung in $\lambda = \sin \theta_c \approx 0,225$ ("Wolfenstein-Parametrisierung")

$$V_{\text{CKM}} pprox egin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

Moderne Experimentalphysik III (4010061) – 15. Vorlesung Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Unitaritätsdreieck

Darstellung der Unitaritätsrelation: **Dreiecke** in komplexer Ebene

$$\sum_{i=1}^{3} V_{ij} V_{ik}^{*} = 0 \text{ für } j, k = 1 \dots 3, k > j$$

CP-Verletzung durch komplexe Phase → Fläche = Maß für CP-Verletzung

"Das" Unitaritätsdreieck: erste Spalte × (dritte Spalte)*

Moderne Experimentalphysik III (4010061) – 15. Vorlesung

Aufgabe 27b

- Welche Aussagen über die Quarkmischung sind korrekt?
 - A. Nur der relative Mischungswinkel zwischen Massen- und Flavoreigenzuständen der Quarks ist relevant.
 - B. Aufgrund der Unitarität der CKM-Matrix bilden bestimmte Kombinationen ihrer Elemente ein Dreieck in der komplexen Ebene.
 - C. Es gibt drei unabhängige Unitaritätsdreiecke, nur eines davon ist experimentell gut zugänglich.
 - D. Die Elemente der CKM-Matrix können mit dem GIM-Mechanismus vorhergesagt werden.
 - E. Die CKM-Matrix ist hierarchisch aufgebaut: Übergänge innerhalb einer Familie sind viel wahrscheinlicher als Übergänge zwischen Familien.
 - Bitte beantworten Sie die Frage anonym auf ILIAS [link].

Kurze Zusammenfassung

- Bistorischer Startpunkt: Universalität der schwachen Wechselwirkung
 - Frage: dieselben geladenen Ströme für Leptonen und Hadronen?
 - Cabibbo 1963: ja, aber Quarkmischung

GIM-Mechanismus:

- Erklärung der Unterdrückung flavorändernder neutraler Ströme durch viertes Quark → Vorhersage des Charm-Quarks
- Mechanismus: destruktive Interferenz von Streuamplituden mit u- und c-Quarks, z. B. in Boxdiagrammen
- Beschreibung durch Quarkmischung (= Drehung im Flavorraum) innerhalb von zwei Quarkfamilien mit Cabibbo-Winkel θc

Kurze Zusammenfassung

CKM-Matrix (Kobayashi, Maskawa 1973):

- CP-Verletzung f
 ür Quarks nur mit mindestens drei Quarkfamilien
- Quarkmischung beschrieben durch CKM-Matrix = unitäre 3×3-Matrix mit vier Freiheitsgraden (3 Beträge, 1 Phase)
- Experimentell: starke Hierarchie der Matrixelemente → kleine Mischung
- Grafische Darstellung: Unitaritätsdreieck → Fläche ~ CP-Verletzung

Unitaritätsdreieck: experimenteller Status

Sommersemester 2020

Moderne Experimentalphysik III (4010061) – 15. Vorlesung