

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 16. Vorlesung (Teil 1)

ULRICH HUSEMANN, KATHRIN VALERIUS

Auflösung Aufgabe 27b

- Welche Aussagen über die Quarkmischung sind korrekt?
- A. Nur der relative Mischungswinkel zwischen Massen- und Flavoreigenzuständen der Quarks ist relevant.
- B. Aufgrund der Unitarität der CKM-Matrix bilden bestimmte Kombinationen ihrer Elemente ein Dreieck in der komplexen Ebene.
- C. Es gibt drei unabhängige Unitaritätsdreiecke, nur eines davon ist experimentell gut zugänglich.
- D. Die Elemente der CKM-Matrix können mit dem GIM-Mechanismus vorhergesagt werden.
- E. Die CKM-Matrix ist hierarchisch aufgebaut: Übergänge innerhalb einer Familie sind viel wahrscheinlicher als Übergänge zwischen Familien.

Kurze Wiederholung

- Elektroschwache Theorie: vereinheitlichte Theorie der elektromagnetischen und schwachen Wechselwirkungen (Glashow, Salam, Weinberg)
 - **Eichgruppe SU(2)**_L x U(1)_Y \rightarrow vier masselose Eichfelder W[±], W⁰, B
 - Weinberg-Drehung (θ_W) und spontane Symmetriebrechung \rightarrow physikalische Eichbosonen W[±], Z (massiv) und γ (masselos)
 - Vorhersagen: "Stärke" der schwachen WW; Verhältnis $m_W = m_Z \cos \theta_W$; Existenz neutraler Ströme, Kopplungen und Massen der Fermionen, ...
- Schlüsselexperimente zur elektroschwachen Theorie:
 - Nachweis der neutralen Ströme in Neutrino-Streuung (1973)
 - Direkter Nachweis der massiven Eichbosonen W und Z am SppS (1983) Direkter Nachweis des Higgs-Bosons am LHC (2012)

Kurze Wiederholung

Cabibbo 1963: Universalität geladener Ströme für Leptonen und Hadronen \rightarrow Quarkmischung

GIM-Mechanismus (Glashow, Iliopoulos, Maiani, 1970):

- Unterdrückung flavorändernder neutraler Ströme durch destruktive Interferenz von Streuamplituden mit u- und c-Quarks \rightarrow Vorhersage des **Charm-Quarks**
- Beschreibung durch **Quarkmischung** (= Drehung im Flavorraum) innerhalb von zwei Quarkfamilien mit Cabibbo-Winkel θ_{c}

CKM-Matrix (Kobayashi, Maskawa 1973):

- CP-Verletzung f
 ür Quarks nur mit mindestens drei Quarkfamilien
- Quarkmischung: CKM-Matrix = unitäre 3×3-Matrix mit vier Freiheitsgraden (3 Beträge, 1 Phase)
- Experimentell: starke Hierarchie der Matrixelemente \rightarrow kleine Mischung
- **Grafische Darstellung: Unitaritätsdreieck** \rightarrow Fläche ~ CP-Verletzung

Kapitel 8

Moderne Teilchenphysik

Überblick

- **Erster Einblick** in moderne Teilchenphysik:
 - Physikalische Ideen
 - Experimentiertechniken
 - Ausgewählte Resultate
- Drei Themenkomplexe:
 - Physik an **Hadron-Collidern**: Beispiele vom LHC
 - Präzisionsphysik an e+e--Collidern: Beispiele von LEP und B-Fabriken
 - **Neutrinophysik** mit und ohne Beschleuniger
- Nur ausgewählte Beispiele, weitere Details: vertiefende Vorlesungen zur Teilchenphysik im Masterstudium (Teilchenphysik I/II)

Vergleich der Ansätze (stark vereinfacht)

	e+eCollider	Hadron-Collider	Neutrinos
Verfügbare Energie	maßgeschneidert auf Fragestellung, begrenzt durch Beschleuniger	sehr hoch (Protonen beschleunigt)	maßgeschneidert au Fragestellung
Ereignisrate	mittel bis hoch (abhängig von Fragestellung)	sehr hoch (hohe Kollisionsrate)	gering (geringer Wirkungsquerschnitt
Präzision	sehr hoch (Kollision von Elementarteilchen)	mäßig bis hoch (Kollision von Hadronen)	oft gering (geringe Ereignisrate
Entdeckungs- potenzial	indirekt, hoch (Abweichungen in Präzisionsmessungen)	direkt, sehr hoch (erster Vorstoß in neue Energiebereiche)	hoch

Präzisionsphysik an e⁺e⁻-Collidern

Kapitel 8.1

Überblick

- Historisch erste Kollisionsexperimente: Elektron-Positron-Kollisionen Erster Collider: ADA (INFN Frascati, 1961)

 - Kollision von e⁺ und e⁻ einfacher zu realisieren als Kollision von Hadronen
- Höchste erreichbare Energie und Luminosität limitiert:
 - Bauform Speicherring: Radius des Beschleunigers, Energieverlust durch Synchrotronstrahlung (Verlustleistung proportional zu m_e^{-4})
 - Bauform LINAC: Länge des Beschleunigers, Strahl nur einmal verwendet
 - e⁺e⁻-Collider oft maßgeschneidert für Fragestellung, z. B.:

 - LEP 1 (1989–1995): **Z-Resonanz** ($e^+e^- \rightarrow Z$) \rightarrow elektroschwache Physik B-Fabriken: Y(4S)-Resonanz ($e^+e^- \rightarrow b\overline{b}$) \rightarrow Flavorphysik
 - Hohe Luminosität und "saubere" Experimentierumgebung \rightarrow hohe Präzision

Kinematik am e⁺e⁻-Collider

- Schwerpunktsenergie \sqrt{s} der Wechselwirkung:
 - Elektronen/Positronen: Elementarteilchen \rightarrow Schwerpunktsenergie genau **bekannt**, gegeben durch Strahlenergien E_1 , E_2
 - Für $E_1 = E_2 \equiv E_b$: $\sqrt{S} = \sqrt{(p_1 + p_2)^2} = 2E_b$
 - Typische Messgrößen für nachgewiesene Teilchen:
 - **Impuls** $p \rightarrow \text{Spurdetektor}$ und **Energie** $E (\rightarrow \text{Kalorimeter})$
 - **Polarwinkel** *θ* zur Strahlachse und Azimutwinkel ϕ

x: Ringmittelpunkt, y: oben, z: Strahlachse

e⁺e⁻-Collider: Wirkungsquerschnitt

- Prozess $e^+e^- \rightarrow f\bar{f}$ (f: Fermion):
 - Niedrige Energien: reiner **QED-Prozess** (Photonenaustauch)
 - $\sqrt{s} \ge 25$ GeV: Interferenz von Photonen- und Z-Bosonen
 - $\sqrt{s} \approx m_Z$: starke Überhöhung des Wirkungsquerschnitts \rightarrow Z-Resonanz
 - $\sqrt{s} \approx 2m_W$: Schwelle für W+W--Paarerzeugung

Zerfallskanäle des Z-Bosons

Fermion f (Zerfall in ff)	Verzweigungs- verhältnis (PDG 2019)	Nachweis am Collider
Linkshändige Neutrinos	insgesamt 20,000(055)%	kein direkter Nachweis
Links- und rechtshändige geladene Leptonen	je 3,3658(23)%	e, μ "einfach" nachweisbar τ: abhängig von Zerfall
Links- und rechtshändige up-artige Quarks (u, c) in drei Farben	je 11,6(6)%	Jets = Bündel von Hadronen
Links- und rechtshändige down-artige Quarks (d, s, b) in drei Farben	je 15,6(4)%	Jets = Bündel von Hadronen

Sommersemester 2020

Z-Wirkungsquerschnitt

Wirkungsquerschnitt $e^+e^- \rightarrow Z \rightarrow f\bar{f}$:

$$\sigma_{\rm f} = \frac{12\pi(\hbar c)^2 \Gamma_{\rm e}\Gamma_{\rm f}}{(m_Z c^2)^2 \Gamma_Z^2} \cdot \frac{s\Gamma_Z^2}{\Gamma_Z^2} \frac{12\pi(\hbar c)^2 \Gamma_{\rm e}\Gamma_{\rm f}}{(s - (m_Z c^2)^2)^2} \cdot \frac{s\Gamma_Z^2}{(s - (m_Z c^2)^2)^2}$$

- (Schwerpunktsenergie)² s
- **Masse** *m*_z und **totale Breite** Γ_z des Z-Bosons (= Summe Partialbreiten)
- **Partialbreite** Γ_e für Erzeugung e⁺e⁻ \rightarrow Z
- **Partialbreite** Γ_f für Zerfall Z \rightarrow ff
- Korrektur auf QED-Effekte

Genaue Interpretation: Anpassung an elektroschwache Rechnungen

Sommersemester 2020

Z-Resonanz: wichtige Resultate

- Bislang genauste Messung von mz: LEP-Mittelwert: m_z = 91,1875(21) GeV/c² Relative Unsicherheit: $2,3.10^{-5}$ (2,1 MeV)
- Anzahl leichter Neutrinoflavors ($m_v < m_Z/2$):
 - **Totale Z-Breite:** $\Gamma_Z = \Gamma_{inv} + 3\Gamma_{lep} + \Gamma_{had}$
 - Unsichtbare Z-Breite im SM: $\Gamma_{inv} = 3\Gamma_{v}$
 - Messidee: falls mehr Neutrinoflavors
 - \rightarrow größerer Beitrag von Γ_{inv} zu Γ_Z
 - \rightarrow kleinerer **beobachtbare Breite**, z. B. Γ_{had}
 - \rightarrow geringere Höhe der Z-Resonanz (Breite gleich)
 - LEP: $N_{\nu} = 2,9840(82) \rightarrow \text{verträglich mit } N_{\nu} = 3 (2 \text{ Standardabweichungen})$

W-Bosonen am e⁺e⁻-Collider

Minimale Schwerpunktsenergie $\sqrt{s} \geq 2 m_w$

Sommersemester 2020

W-Boson-Masse bei LEP 2

- Methode 1: Schwellenscan
 - Masse aus Anstieg des Wirkungsquerschnitts an Produktionsschwelle
- Methode 2: direkte Rekonstruktion
 - Invariante Masse aus Zerfallsprodukten der W-Bosonen
 - \blacksquare Zerfallskanäle: W+W- \rightarrow q \overline{q} ' q" \overline{q} ''' und W+W- \rightarrow q $\bar{q}' \ell \nu$
- Kombiniertes Resultat:

 $m_{\rm w} = 80,376(25)(22) \, {\rm GeV}$

 \rightarrow relative Unsicherheit: 4.10⁻⁴ (33 MeV)

Sommersemester 2020

Aufgabe 28

- Welche Aussagen zur W- und Z-Physik an e+e--Collidern sind korrekt?
 - A. Da Elementarteilchen zur Kollision gebracht werden, ist der Anfangszustand komplett bekannt.
 - B. Die Massen von Elementarteilchen können über Scans der Kollisionsenergie bestimmt werden.
 - C. Sowohl W- als auch Z-Bosonen koppeln gleich stark ("demokratisch") an alle Fermionen.
 - D. Die Masse des Z-Bosons ist auf etwa 20 MeV genau bekannt.
 - E. Der Anteil der unsichtbaren Breite an der Gesamtbreite des Z-Bosons sinkt mit steigender Anzahl leichter Neutrinoflavors.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Kurze Zusammenfassung

- Experimente an e⁺e⁻-Collidern bei höchsten Energien: Präzisionsmessungen zum Test der elektroschwachen Theorie
- **LEP 1**: Schwerpunktsenergie $\sqrt{s} \approx 91$ GeV \rightarrow Z-Resonanz Prozess: $e^+e^- \rightarrow Z \rightarrow f\bar{f}$
 - Zentrale Resultate: (bis heute) weltbeste Z-Boson-Masse und Breite
 - Zahl der leichten Neutrinoflavors aus Resonanzkurve: kompatibel mit $N_{\nu} = 3$
- **LEP 2**: Schwerpunktsenergie $\sqrt{s} \ge 160$ GeV
 - Beispiel: Masse des W-Bosons aus Scan der Produktionsschwelle
 - Suche nach dem Higgs-Boson (→ später)

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 16. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

Auflösung Aufgabe 28

- Welche Aussagen zur W- und Z-Physik an e+e--Collidern sind korrekt?
 - A. Da Elementarteilchen zur Kollision gebracht werden, ist der Anfangszustand komplett bekannt.
 - B. Die Massen von Elementarteilchen können über Scans der Kollisionsenergie bestimmt werden.
 - C. Sowohl W- als auch Z-Bosonen koppeln gleich stark ("demokratisch") an alle Fermionen.
 - D. Die Masse des Z-Bosons ist auf etwa 20 MeV genau bekannt.
 - E. Der Anteil der unsichtbaren Breite an der Gesamtbreite des Z-Bosons sinkt mit steigender Anzahl leichter Neutrinoflavors.

Kurze Wiederholung

- Experimente an e⁺e⁻-Collidern bei höchsten Energien: Präzisionsmessungen zum Test der elektroschwachen Theorie
- **LEP 1**: Schwerpunktsenergie $\sqrt{s} \approx 91$ GeV \rightarrow Z-Resonanz Prozess: $e^+e^- \rightarrow Z \rightarrow f\bar{f}$
 - Zentrale Resultate: (bis heute) weltbeste Z-Boson-Masse und Breite
 - Zahl der leichten Neutrinoflavors aus Resonanzkurve: kompatibel mit N_{ν} = 3
- **LEP 2**: Schwerpunktsenergie $\sqrt{s} \ge 160$ GeV
 - Beispiel: Masse des W-Bosons aus Scan der Produktionsschwelle
 - Suche nach dem Higgs-Boson (→ später)

Präzisionsphysik an e⁺e⁻-Collidern

Kapitel 8.1

Massen von W, Z, Top und Higgs

Elektroschwache Theorie:

Verknüpfung von W- und Z-Masse über schwachen Mischungswinkel

 $m_W^2 = \frac{g^2 v^2}{\Lambda}, \quad m_Z^2 = \frac{v^2}{\Lambda}(g^2 + g'^2)$ $\rightarrow m_W = m_Z \cos \theta_W$

Quantenkorrekturen zu Propagatoren f
ür W- und Z-Bosonen ("Schleifendiagramme"): Verknüpfung von W-und Z-Massen mit Massen von Higgs-Boson und Top-Quark

Heute: präzise Messungen der Massen von W, Z, Top und Higgs \rightarrow Test der elektroschwachen Theorie auf Niveau von Quantenkorrekturen

 $g' \ln(m_{\rm H} / m_{\rm W})$ schwache Abhängigkeit (logarithmisch)

 $\sim G_F m_t^2$ starke Abhängigkeit (quadratisch)

Elektroschwacher Fit

Historisch: Vorhersage der Top- und Higgs-Masse vor Entdeckung

Elektroschwacher Fit

- **Globale Anpassung** aller freien Parameter der elektroschwachen Theorie (21):
 - Viele Präzisionsmessungen (z. B. LEP, SLC, Tevatron, LHC)
 - Resultat dargestellt als Pull (Abweichung Oindirekt – O normiert auf Unsicherheit σ_{tot})
 - Standardmodell **konsistent**: $\chi^2/n_{dof} = 18,6/15 \rightarrow p-Wert^*: 0,23$

*p-Wert = Wahrscheinlichkeit, beobachtete Übereinstimmung mit Daten oder schlechter zu finden, wenn Nullhypothese (Standardmodell) korrekt

Asymmetrische e⁺e⁻-Collider

- **B-Fabriken** auf Y(4S)-Resonanz: BB-Paar im e⁺e⁻-Schwerpunktsystem praktisch in Ruhe erzeugt
 - **Asymmetrischen** Strahlenergien:
 - Bewegtes Schwerpunktsystem → **Zerfallslängen** im Laborsystem einfacher rekonstruierbar
 - SuperKEKB-Beschleuniger (seit 2018): $E_1 = 7 \text{ GeV}, E_2 = 4 \text{ GeV} \rightarrow \text{Lorentz-Boost} \text{ des}$ Schwerpunktsystems

$$\beta \gamma = \left(\frac{pc}{mc^2}\right)_{\Upsilon(4S)} = \frac{E_1 - E_2}{\sqrt{s}}$$

KEKB Nikko LER 3.5 GeV ositrons K2K **Beam Line** 8.0 GeV PF-AR 12 GeV **Proton** Synchrotror Fuj Oho **Photon** Factory LINAC 8.0 GeV e[⁺]3.5 GeV Positron Generator pprox 0,28 e 3.7 GeV Krib, KEKB.png, gemeinfrei e 1.7 GeV

Sommersemester 2020

BB-System

- **Zerfallskanäle**: ca. 50% $\Upsilon(4S) \rightarrow B^0 \overline{B}^0$ und 50% $\Upsilon(4S) \rightarrow B^+B^-$
- System neutraler B-Mesonen:

Starke Eigenzustände B⁰ und B⁰ mischen durch elektroschwache Wechselwirkung (analog zu neutralen Kaonen)

verschränkter Quantenzustand \rightarrow Zerfall eines der B-Mesonen

Sommersemester 2020

CP-Verletzung im B-System

- Messidee: betrachte Prozess, in dem B und B in denselben CP-**Eigenzustand zerfallen** \rightarrow "goldener" Kanal: B⁰ \rightarrow J/ ψ K⁰s
- Unterschiedliche Rate f
 ür direkten Zerfall und Umwandlung + Zerfall? → dritte Art der CP-Verletzung (neben direkt und in Mischung): CP-Verletzung in der Interferenz aus Mischung und Zerfall (vgl. Doppelspaltexperiment)
- Experimentell: Messung der **Differenz \Delta z der Zerfallslängen** von B und \overline{B} \rightarrow im Laborsystem (SuperKEKB): $\Delta z = O(130 \ \mu m)$

CP-Verletzur

em

eitabhängige CP-Asymmetrie Differenz der Zerfallszeiten Δt : $\frac{\mathrm{d}\Gamma}{\mathrm{d}t}(\overline{\mathsf{B}}^{\mathsf{U}})$ $\rightarrow \mathrm{J}/\psi\,\mathrm{K}^0_S) - rac{\mathrm{d}\Gamma}{\mathrm{d}t}(\mathrm{B}^0 \rightarrow \mathrm{J}/\psi\,\mathrm{K}^0_S)$ (B) $\rightarrow J/\psi K^0_S) + \frac{d\Gamma}{dt} (B^0 \rightarrow J/\psi K^0_S)$ $sin(\Delta m \Delta t)$ (**cel** β (ϕ_1) im Unitaritätsdreieck Ergebnisse der B-Fabriken $\sin 2\beta = \sin 2\phi_1 = 0,667(26)$ assung (CKMfitter, Sommer 2019): $2\phi_1 = 0,7083^{+0,0127}_{-0,0098}$

Aufgabe 29

- Welche Aussagen zur Physik an B-Fabriken sind korrekt?
 - A. Werden B⁺-B⁻-Paare erzeugt, so bilden diese bis zum Zerfall eines der B-Mesonen ein verschränktes Quantensystem.
 - B. Werden B⁰-B

 ⁰-Paare erzeugt, so bilden diese bis zum Zerfall eines der B-Mesonen ein verschränktes Quantensystem.
 - C. In asymmetrischen e⁺e⁻-Collidern lassen sich Zerfallslängen besser bestimmen als in symmetrischen.
 - D. CP-Verletzung in der Interferenz lässt sich beobachten, wenn B⁰ und B

 ⁰ in unterschiedliche CP-Eigenzustände zerfallen.
 - E. Die $\Upsilon(4S)$ -Resonanz liegt unterhalb der BB-Produktionsschwelle.
- Bitte beantworten Sie diese Frage anonym auf ILIAS: <u>https://ilias.studium.kit.edu/goto.php?target=fold_1080516&client_id=produktiv</u>

7

020

Kurze Zusammenfassung

- Präzisionsmessungen bei LEP:
 - $e^+e^- \rightarrow Z \rightarrow f\bar{f}$ (Z-Resonanz): Messung von Z-Boson-Masse und Breite, Zahl der leichten Neutrinoflavors u.v.m.
 - $e^+e^- \rightarrow \gamma^*/Z \rightarrow W^+W^-$: Messung der W-Boson-Masse
 - Messungen der Standardmodellparameter \rightarrow elektroschwacher Fit
 - Experimente an **B-Fabriken**: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$
 - **Asymmetrische** e^+e^- -Collider \rightarrow **Boost** des BB-Systems \rightarrow bessere Rekonstruktion von **Zerfallslängen**(differenzen)
 - Neutrale B-Mesonen: Mischung der starken Eigenzustände durch schwache Wechselwirkung $\rightarrow B^0-\overline{B}^0-Oszillationen$
 - $B^0 \rightarrow J/\psi K^0s$: **CP-Verletzung** in Interferenz aus Mischung und Zerfall

