

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 17. Vorlesung (Teil 1)

ULRICH HUSEMANN, KATHRIN VALERIUS

CMS Bildquelle:

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Auflösung Aufgabe 29

- Welche Aussagen zur Physik an B-Fabriken sind korrekt?
 - A. Werden B⁺-B⁻-Paare erzeugt, so bilden diese bis zum Zerfall eines der B-Mesonen ein verschränktes Quantensystem.
 - B. Werden B⁰-B⁰-Paare erzeugt, so bilden diese bis zum Zerfall eines der B-Mesonen ein verschränktes Quantensystem.
 - C. In asymmetrischen e⁺e⁻-Collidern lassen sich Zerfallslängen besser bestimmen als in symmetrischen.
 - D. CP-Verletzung in der Interferenz lässt sich beobachten, wenn B⁰ und B⁰ in unterschiedliche CP-Eigenzustände zerfallen.
 - E. Die $\Upsilon(4S)$ -Resonanz liegt unterhalb der BB-Produktionsschwelle.

Kurze Wiederholung

- Präzisionsmessungen bei LEP:
 - $e^+e^- \rightarrow Z \rightarrow f\bar{f}$ (Z-Resonanz): Messung von Z-Boson-Masse und Breite, Zahl der leichten Neutrinoflavors u.v.m.
 - $e^+e^- \rightarrow \gamma^*/Z \rightarrow W^+W^-$: Messung der W-Boson-Masse
 - Messungen der Standardmodellparameter \rightarrow elektroschwacher Fit
 - Experimente an **B-Fabriken**: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow BB$
 - Asymmetrische e⁺e⁻-Collider \rightarrow Boost des BB-Systems \rightarrow bessere Rekonstruktion von **Zerfallslängen**(differenzen)
 - Neutrale B-Mesonen: Mischung der starken Eigenzustände durch schwache Wechselwirkung $\rightarrow B^0-\overline{B}^0-Oszillationen$
 - $B^0 \rightarrow J/\psi K^0s$: **CP-Verletzung** in Interferenz aus Mischung und Zerfall

Physik am Hadron-Collider

Kapitel 8.2

Hadron-Hadron-Kollisionen

- Hadron-Collider = QCD-Maschine \rightarrow "Breitbandstrahl" von Partonen
- Schwierigkeiten mit QCD-Rechnungen:
 - **Confinement**: Partonen immer in farbneutrale Hadronen eingebunden
 - Asymptotische Freiheit: quasi-freie Partonen bei hohen Energien
- Herausforderung: zuverlässige Berechnung messbarer Größen

Moderne Experimentalphysik III (4010061) – 17. Vorlesung

QCD-Faktorisierung

Wirkungsquerschnitt = PDFs \otimes harter Prozess \otimes Hadronisierung

Prozesse bei unterschiedlichen Energieskalen faktorisieren

Bindung in Hadronen: einige 100 MeV

Streuprozess: 10 GeV bis TeV

Hadron-Collider: Kinematik

- **Transversalimpuls** (engl.: transverse momentum):
- Impulsbruchteile x_1 und x_2 der Partonen in Hadronen unbekannt: \mathbf{z} -Boost des Schwerpunktsystems unbekannt \rightarrow transversale Größen

$$\vec{p}_{\mathsf{T}} = \begin{pmatrix} p_x \\ p_y \end{pmatrix},$$

Impulserhaltung in transversaler xy-Ebene: Strahlteilchen vor Kollision: $p_T \approx 0 \rightarrow$ Teilchen *i* im Endzustand: $\sum \vec{p}_{T,i} \approx 0$ Falls Teilchen nicht beobachtet (z. B. Neutrinos): fehlender **Transversalimpuls** (oft auch: missing transverse energy, MET)

$$p_{\rm T} \equiv \sqrt{p_x^2 + p_y^2}$$

$\vec{p}_{T}^{\text{miss}} = -\sum \vec{p}_{T,j}$ *j*: alle **sichtbaren** Teilchen

Hadron-Collider: Kinematik

Rapidität y: Maß für relativistische Geschwindigkeit (\rightarrow Übung) Definition in Teilchenphysik: Geschwindigkeit parallel zur Strahlachse

$$\beta_z = \frac{v_z}{c} = \frac{p_z c}{E} \equiv \tanh y \quad \rightarrow$$

- Man kann zeigen: Rapiditätsverteilungen dN/dy (Zahl der produzierten Teilchen pro y-Intervall) invariant unter Lorentz-Boosts entlang der z-Achse
- **Pseudorapidität** η : Näherung der Rapidität für $pc \gg mc^2$ ($\rightarrow E \approx pc$)

$$y \underset{pc \gg mc^2}{\approx} \frac{1}{2} \ln \left(\frac{p(1 + \cos \theta)}{p(1 - \cos \theta)} \right) = \frac{1}{2} \ln \frac{\cos^2(\theta/2)}{\sin^2(\theta/2)} = -\ln \tan \frac{\theta}{2} \equiv \eta$$

$$y = \tanh^{-1}\left(\frac{p_z c}{E}\right) = \frac{1}{2}\ln\left(\frac{E + p_z c}{E - p_z c}\right)$$

Nur von **Polarwinkel** *θ* abhängig (nicht von Massen), **nicht** lorentzinvariant

Messung des Wirkungsquerschnitts

- Motivation: Test der QCD bei höchsten Energien
- Erinnerung: Zusammenhang von Wirkungsquerschnitt mit Zahl der Ereignisse und integrierter Luminosität

- Bestandteile der Messung eines Wirkungsquerschnitts:
 - Zahl der beobachteten Ereignisse Nobs: aus Daten
 - Erwarteter Untergrund *N*^{bkg}: aus Simulation und Daten
 - Integrierte Luminosität <u>J</u> Ldt (= Größe des Datensatzes): aus Daten
 - Nachweiseffizienz ε : aus Simulation und Daten

Moderne Experimentalphysik III (4010061) – 17. Vorlesung

Sommersemester 2020

twiki.cern.ch

Top-Quark-Antiquark-Produktion

- **Forschungsgeschichte:**
 - **GIM**-Mechanismus (1970) und CKM-Matrix (1973): 3. Quarkfamilie
 - Entdeckung des Υ (1977): Bottom-Quark als Isospin-Partner
 - **Direkte** Suchen nach Top-Quarks $(1980er Jahre) \rightarrow erfolglos$
 - Indirekte Hinweise: elektroschwacher Fit an Präzisionsdaten (1990er Jahre)
 - **Entdeckung** am Tevatron (1995)
- Überraschung: Top-Quark ca. 40-mal **massiver** als Bottom-Quark

Früher Top-Quark-Kandidat

Top-Quark-Antiquark-Produktion

- tt-Paarproduktion: QCD-Prozess \rightarrow Truth-Erhaltung
- Top-Quark-Zerfall: elektroschwacher Prozess
 - Masse $m_t > m_W + m_b$ und CKM-Matrixelement $|V_{tb}| \approx 1$: Zerfall in reelles W-Boson und b-Quark erlaubt \sim^{W^+} \rightarrow B(t \rightarrow Wb) \approx 100%

- Sehr kurze Lebensdauer ($\tau \approx 5.10^{-25}$ s) → keine gebundenen Zustände
- Auch möglich: elektroschwache Produktion einzelner Top-Quarks

Nachweis von Top-Quarks

Top-Quark-Rekonstruktion

Geladenes Lepton (e oder μ)

Neutrino: fehlender Transversalimpuls

4 Jets aus Quarks

2 der Jets aus B-Zerfällen: b-Tag

- tt-Paar: mehrere Zerfallskanäle, abhängig von Zerfällen der W-Bosonen (2/3 in Hadronen, 1/3 in geladenes Lepton + Neutrino)
 - Beispiel: Lepton+Jets-Kanal
 - Eines der W-Bosonen: W $\rightarrow e\nu / \mu\nu$
 - Eines der W-Bosonen: $W \rightarrow q\bar{q}'$
 - Rekonstruktion: gesamter Detektor benötigt

Rekonstruktion

- **Leptonen** aus W- (und Z-) Zerfällen: isoliert und mit hohem Transversalimpuls
- **Jets** = Bündel von Hadronen:
 - Sequenzielle Rekombinationsalgorithmen (LHC: <u>Anti-kt-Algorithmus</u>)
 - Spezialfall B-Jets = Jets aus B-Hadronen: lange Lebensdauer (1,5 ps) wegen CKM-Unterdrückung ($|V_{cb}| \approx 0,04$) → versetzte Sekundärvertizes → B-Tagging-Algorithmen

W-Boson-Masse am Hadron-Collider

- **Produktion/Zerfall** von W-Bosonen am Hadron-Collider: Produktion von W-Bosonen: Drell-Yan-Prozess
 - (vgl. W-/Z-Entdeckung)
 - Für Präzisionsmessungen: leptonischer Zerfall W $\rightarrow \ell \nu$: isoliertes Lepton und fehlender Transversalimpuls durch Neutrino \rightarrow gut rekonstruierbar

Messung der **W-Boson-Masse** am Hadron-Collider:

- Annahme: fehlender Transversalimpuls in Ereignissen mit W-Bosonen nur durch transversale Komponente des Neutrinoimpulses $p_{T^{\nu}}$
- \square $p_{z^{\nu}}$ unbekannt: keine vollständige Rekonstruktion der invarianten W-Boson-Masse aus Zerfallsprodukten möglich
- Alternative: transversale Größen mit guter Korrelation zur W-Boson-Masse

W-Boson-Masse am Hadron-Collider

- Betrachte differenziellen Wirkungsquerschnitt als Funktion von
 - **Transversalimpulse** des Leptons p_T^{ℓ} und des Neutrinos p_T^{ν}
 - **Transversale Masse** des W-Bosons:

$$m_T^2 \equiv (E_T^\ell + E_T^
u)^2 - (ec{p}_T^\ell + ec{p}_T^
u)^2 pprox$$

- Skizze der Analyse:
 - Signatur: Flanke im Wirkungsquerschnitt → Jacobi-Kante
 - Likelihood-Anpassung von Schablonen (engl.: template fit) für unterschiedliche mw
 - Einzelmessungen an Tevatron und LHC: genauer als LEP-Kombination (ca. 19 MeV)

Winkel zwischen ℓ und ν

 $2 |\vec{p}_T^{\ell}| |\vec{p}_T^{\nu}| (1 - \cos \Delta \phi_{\ell \nu}))$

Kurze Zusammenfassung

- Grundlagen der Physik am Hadron-Collider:
 - Kinematik: transversale Größen (z. B. Transversalimpuls, fehlender Transversalimpuls, transversale Masse), (Pseudo-)Rapidität
 - Berechnung von Wirkungsquerschnitten: QCD-Faktorisierung (PDFs \otimes harter Streuprozess \otimes Hadronisierung)
 - **Messung** von Wirkungsquerschnitten: $\sigma = \frac{N^{obs} N^{bkg}}{\int \mathcal{L} dt \cdot \varepsilon}$
- Beispiel 1: Produktion von Top-Quarks
 - Rekonstruktion von isolierten Leptonen und Jets
 - Identifikation von Jets, besonders Jets aus B-Hadronen ("B-Tagging")
 - Beispiel 2: Präzisionsmessung der Masse des W-Bosons

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2019 – 17. Vorlesung (Teil 2)

ULRICH HUSEMANN, KATHRIN VALERIUS

Kurze Wiederholung

- Grundlagen der Physik am Hadron-Collider:
 - Kinematik: transversale Größen (z. B. Transversalimpuls, fehlender Transversalimpuls, transversale Masse), (Pseudo-)Rapidität
 - Berechnung von Wirkungsquerschnitten: QCD-Faktorisierung (PDFs \otimes harter Streuprozess \otimes Hadronisierung)
 - **Messung** von Wirkungsquerschnitten: $\sigma = \frac{N^{obs} N^{bkg}}{\int \mathcal{L} dt \cdot \varepsilon}$
- Beispiel 1: Produktion von Top-Quarks
 - Rekonstruktion von isolierten Leptonen und Jets
 - Identifikation von **Jets**, besonders Jets aus B-Hadronen ("B-Tagging")
 - Beispiel 2: Präzisionsmessung der Masse des W-Bosons

Physik am Hadron-Collider

Kapitel 8.2

Überblick: Higgs-Boson-Physik

- Forschungsgeschichte (Teil 1):
 - Vor Entdeckung: Masse des Higgs-Bosons einziger unbekannter Parameter des Standardmodells
 - **Theoretische** Erwartungen: 100 GeV/*c*² ≤ *m*_H ≤ 850 GeV/*c*²
 - Direkte Suche bei LEP (bis 2000): *m*_H > 115 GeV/*c*² (95% C.L.)
 - Anpassung an Präzisionsdaten (bis 2011): *m*_H < 161 GeV/*c*² (95% C.L.)

Uberblick: Higgs-Boson-Physik

- Forschungsgeschichte (Teil 2):
 - Direkte Suche am **Tevatron** (bis 20⁴11): Anzeichen für Higgs-Boson mit $m_{\rm H}$ ²⁰ zwischen 115 GeV/c² und 145 GeV/c²
 - **Higgs-Entdeckung** am LHC (2012): signifikantes Signal (fünf Standardabweichungen) nur in Kombination mehrerer Zerfallskanäle $(H \rightarrow \gamma \gamma, H \rightarrow ZZ, H \rightarrow WW)$
 - Ab 2012: ist das gefundene Teilchen das Higgs-Boson des Standardmodells? \rightarrow Messungen von Masse, Quantenzahlen, Kopplungen an Fermionen und Bosonen

2013
0520

Higgs-Boson-Produktion

Vektorboson-Fusion

Assoziierte Produktion mit W und Z

Assoziierte Produktion mit t und b

Moderne Experimentalphysik III (4010061) – 17. Vorlesung

Higgs-Boson-Zerfall

ans Higgs-Boson

Higgs-Boson-Zerfall

- Masselose Teilchen: keine direkte Kopplung ans Higgs
 - Kopplung: Schleife mit virtuellen oder W-Bosonen
 - **Gluonen:** nur Fermion-Schleife

Schleife — Interferenz

Masse des Higgs-Bosons

- Genaue Bestimmung von *m*_H am LHC:

Moderne Experimentalphysik III (4010061) – 17. Vorlesung

Vollständige Rekonstruktion des Endzustands, geringer/gut verstandener Untergrund \rightarrow Herausforderung: gute **Kalibration** von Impuls/Energie

Besonders geeignet: $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ (Entdeckungskanäle)

Stat Syst	
Total Stat Syst	
126.02 ± 0.51 (± 0.43 ± 0.27) GeV	
124.70 \pm 0.34 (\pm 0.31 \pm 0.15) GeV	
124.51 \pm 0.52 (\pm 0.52 \pm 0.04) GeV	4 (2)
125.59 \pm 0.45 (\pm 0.42 \pm 0.17) GeV	
125.07 \pm 0.29 (\pm 0.25 \pm 0.14) GeV	
125.15 \pm 0.40 (\pm 0.37 \pm 0.15) GeV	
125.09 \pm 0.24 (\pm 0.21 \pm 0.11) GeV	
127 128 129	

Relative Unsicherheit: 2.10⁻³ 5154 Autor/inn/en!

Update CMS 2020: PLB 805 (2020) 135425): *m*_H = 125,38(14) GeV

Kopplungen des Higgs-Bosons

- Frage: Koppelt Higgs-Boson an die Masse von Elementarteilchen (SM: Fermionen ~m_f, Bosonen ~m_V²)?
 - Analyse aller Produktions- und Zerfallskanäle (und deren Korrelationen):
 - **Entdeckungskanäle** $H \rightarrow ZZ \rightarrow 4\ell$, $H \rightarrow \gamma\gamma$: sauber, hohe Massenauflösung
 - H→W+W-→ℓvℓv: großer Wirkungsquerschnitt, schlechte Massenauflösung (zwei Neutrinos)
 - Fermionische Zerfälle H → bb̄, H → τ⁺τ⁻: hoher Untergrund, mäßige Massenauflösung

Yukawa-Kopplung

- Fermionen: Yukawa-Kopplung ans Higgs-Boson
 - **Indirekte** Hinweise: Higgs-Produktion in Gluon-Gluon-Fusion und Zerfall in Photonen (modellabhängig: ggf. unbekannte weitere Teilchen in Schleife)
 - Erster direkter Nachweis: Evidenz für Zerfall $H \rightarrow \tau \tau$ (Nature Phys. 10 (2014) 557)
 - Modellunabhängige Messung der Kopplungsstärke: assoziierte ttH-Produktion (und tHq/tHW) \rightarrow erstmals 2018 beobachtet (<u>CMS</u>, <u>ATLAS</u>)

Quantenzahlen des Higgs-Bosons

- Analysestrategie: Quantenzahlen des Higgs-Bosons
 - Geeignete Zerfallskanäle: bosonische Zerfälle
 - Aufwändige Analyse der Kopplungsstruktur, hier nur einfache Argumente **Hypothesentest**: alternative Hypothese gegen Standardmodell ($J^P = 0^+$)
- Einfaches Beispiel: Test auf Spin 0 in H \rightarrow WW $\rightarrow \ell \nu \ell \nu$
 - Spin 0: Zerfall in W⁺ und W⁻ mit derselben Helizität (hier: rechtshändig)
 - $W \rightarrow \ell \nu$ ist V–A-Zerfall: linkshändiges ℓ^{-} , rechtshändiges $\ell^+ \rightarrow$ Leptonen in dieselbe Richtung emittiert
 - Winkelverteilungen der Leptonen: → kleiner Öffnungswinkel für Spin 0

Quantenzahlen des Higgs-Bosons

- Spin-1-Hypothese: bereits ausgeschlossen
 - Landau-Yang-Theorem:
 - massives Spin-1-Teilchen kann nicht in zwei masselose Spin-1-Teilchen zerfallen
 - \blacksquare Hauptproduktionskanal gg \rightarrow H und Beobachtung von Zerfall H $\rightarrow \gamma \gamma$: Widerspruch zu Landau-Yang-Theorem falls Higgs-Boson Spin 1 besitzt
- **Spin-2**-Hypothese:
 - Aufwändige Winkelanalysen (z. B. $H \rightarrow ZZ^{(*)}$)
 - Resultat: alle alternativen Hypothesen ausgeschlossen (>99% Konfidenzniveau)

Aufgabe 30

- Collider sind korrekt?
 - A. Top-Quarks können sowohl über die starke als auch über die elektroschwache Wechselwirkung produziert werden.
 - B. Das Higgs-Boson koppelt an die Masse, daher kann es nicht in Gluon-Gluon-Fusion produziert werden.
 - C. Das Higgs-Boson ist ein pseudoskalares Teilchen.
 - D. Zerfälle des Higgs-Bosons in zwei Gluonen sind aufgrund des hohen Untergrunds in der Praxis ungeeignet.
 - E. Die Massen des Top-Quarks, des W-Bosons und des Higgs-Bosons sind über Quantenkorrekturen verknüpft.

Bitte beantworten Sie diese Frage anonym auf ILIAS:

Welche Aussagen zur Top-Quark- und Higgs-Boson-Physik am Hadron-

https://ilias.studium.kit.edu/goto.php?target=fold 1080516&client id=produktiv

Zusammenfassung: Higgs-Physik

Higgs-Boson-Physik am LHC heute: genaue Vermessung der Eigenschaften des Higgs-Bosons Etablierung aller Produktions- und Zerfallskanäle Genaue Bestimmung der Higgs-Boson-Masse → Konsistenz der Massen von W-Boson, Top-Quark und Higgs-Boson? Messung der Kopplungsstärken an Eichbosonen und Fermionen Hypothesentest: **Quantenzahlen** des Higgs-Bosons $J^P = 0^+$?

