

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 18. Vorlesung, Teil 1

ULRICH HUSEMANN, KATHRIN VALERIUS

CMS Bildquelle:

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Auflösung Aufgabe 30

- Welche Aussagen zur Top-Quark- und Higgs-Boson-Physik am Hadron-Collider sind korrekt?
- A. Top-Quarks können sowohl über die starke als auch über die elektroschwache Wechselwirkung produziert werden.
- B. Das Higgs-Boson koppelt an die Masse, daher kann es nicht in Gluon-Gluon-Fusion produziert werden.
- C. Das Higgs-Boson ist ein pseudoskalares Teilchen.
- D. Zerfälle des Higgs-Bosons in zwei Gluonen sind aufgrund des hohen Untergrunds in der Praxis ungeeignet.
- E. Die Massen des Top-Quarks, des W-Bosons und des Higgs-Bosons sind über Quantenkorrekturen verknüpft.

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Kurze Wiederholung

- Grundlagen der Physik am Hadron-Collider:
 - Kinematik: transversale Größen (z. B. Transversalimpuls, fehlender Transversalimpuls, transversale Masse), (Pseudo-)Rapidität
 - Berechnung von Wirkungsquerschnitten: QCD-Faktorisierung (PDFs \otimes harter Streuprozess \otimes Hadronisierung)
 - **Messung** von Wirkungsquerschnitten: $\sigma = \frac{N^{obs} N^{bkg}}{\int \mathcal{L} dt \cdot \varepsilon}$
- Beispiel 1: Produktion von Top-Quarks
 - Rekonstruktion von isolierten Leptonen und Jets
 - Identifikation von **Jets**, besonders Jets aus B-Hadronen ("B-Tagging")
 - Beispiel 2: Präzisionsmessung der Masse des W-Bosons

Kurze Wiederholung

Higgs-Boson-Physik am LHC heute: genaue Vermessung der Eigenschaften des Higgs-Bosons

- Etablierung aller Produktions- und Zerfallskanäle
- Messung der Kopplungsstärken an Eichbosonen und Fermionen
- Genaue Bestimmung der Higgs-Boson-Masse → Konsistenz der Massen von W-Boson, Top-Quark und Higgs-Boson?
- Hypothesentest: Quantenzahlen des Higgs-Bosons $J^P = 0^+$?

wikimedia commons

Neutrinophysik

Kapitel 8.3

Uberblick Neutrinophysik

- Untersuchung der **Neutrino-Eigenschaften** Neutrinomassen und Mischung von Neutrinoflavors? **CP-Verletzung** im Neutrinosektor?
- Experimentelles Werkzeug: intensive Neutrinoquellen mit bekannter Energie und Flavorzusammensetzung
 - **Kernreaktoren**: Elektron-Antineutrinos aus Betazerfall
 - **Beschleuniger**: Myon- und Elektron-(Anti-)Neutrinos aus Pion-Zerfall
 - **Terrestrische** Quellen ("Geoneutrinos" aus Betazerfall natürlicher Nuklide) **Sonne**: Elektron-Neutrinos aus Kernfusion

 - **Astrophysikalische** Quellen (Urknall, Supernovae, aktive Galaxienkerne)

Überblick Neutrinophysik

Kurze Forschungsgeschichte:

- 1930: Neutrino-Postulat
- 1956: Entdeckung \overline{v}_{e}
- 1962: Entdeckung v_{μ}

- 1968: Sonnenneutrino-Rätsel "verschwindender" Neutrinos
- 1987: Detektion von Neutrinos aus Supernova 1987A
- 1989: Drei Familien leichter Neutrinos (LEP)

Allgemeine Übersicht: All Things Neutrino (Fermilab)

Uberblick Neutrinophysik

Kurze Forschungsgeschichte:

- 1998 (Super-Kamiokande) und 2001 (SNO): Neutrino-Flavor-Oszillationen
- 2000: Entdeckung v_{τ} (DONUT)
- 2013: Erste Neutrinos mit PeV-Energien aus dem Weltall (IceCube)
- 2017: Erster Hinweis auf Quelle höchstenergetischer Neutrinos
- 2017: Nachweis der kohärenten Neutrino-Kern-Streuung (COHERENT)

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Neutrinoquellen: meV bis EeV

Moderne Experimentalphysik III (4010061) – 18. Vorlesung

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Neutrinoquellen (natürliche und menschengemachte) über weiten Energiebereich

Elektroschwacher Wirkungsquerschnitt (CC) für elastische Streuung

 $\overline{\nu}_{e} + e^{-} \rightarrow \overline{\nu}_{e} + e^{-}$

Neutrinoquellen: Flüsse

Neutrinos passieren Materie (fast) ungehindert \rightarrow Herausforderung für Experimente (Nachweismethoden, Akkumulation von Statistik) → Vorteilhaft für die Untersuchung von Eigenschaften der Neutrinoquellen

Reaktor-v bis zu 10⁸ pro (s·cm²) (1 km Abstand)

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Aus dem Inneren der Sonne erreichen uns in jeder Sekunde 65 Milliarden **Neutrinos** pro cm²!

"Bio"-v ~4000 pro (s·Person) ⁴⁰K-Zerfall im Körper

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 18. Vorlesung, Teil 2

ULRICH HUSEMANN, KATHRIN VALERIUS

CMS Bildquelle:

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Quellen: Sonnenneutrinos

Kernfusion in der Sonne: Quelle von **Elektron-Neutrinos** (vgl. Kapitel 4.3)

Dreiteilchen-Endzustände → Neutrinospektrum (pp, ⁸B, hep)

Zweiteilchen-Endzustände \rightarrow feste Neutrinoenergie (⁷Be, pep)

Moderne Experimentalphysik III (4010061) – 18. Vorlesung

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Homestake-Experiment

- Experiment in Homestake-Mine: (Davis, 1960er Jahre)
- Radiochemischer Nachweis: 615 Tonnen Tetrachlorethylen in ca. 1500 m Tiefe

 $^{37}\text{Cl} + \nu_e \rightarrow ^{37}\text{Ar} + e^-$

- Zählraten: 0,5 Neutrinos/Tag \rightarrow Auswaschen und Nachweis von **Argonatomen** (über Elektroneneinfang)
- Nur ca. 1/3 des erwarteten Neutrinoflusses aus der Sonne \rightarrow Experiment falsch oder Sonnenmodell falsch?
- Heute: Experiment und Sonnenmodell richtig → Umwandlung zwischen Neutrinoflavors

Neutrinofluss im Standard-Sonnenmodell

Sonnenneutrinos: SNO

- Befund: signifikantes **Neutrinodefizit** in Experimenten, die auf schwachem geladenem Strom (CC) beruhen
- Sudbury Neutrino Observatory (1999–2006): Schwerwasser-(D₂O)-Cherenkov-Detektor \rightarrow Schwelle ca. 5 MeV: ⁸B-Neutrinos
- 1. Geladener Strom $v_e + d \rightarrow e^- + p + p \rightarrow nur v_e$
- 2. Neutraler Strom $v_x + d \rightarrow v_x + p + n \rightarrow alle v$
- 3. Elastische Streuung $v_x + e^- \rightarrow v_x + e^- \rightarrow alle v$
- Schlussfolgerung aus Verhältnissen der Raten für Prozesse 1–3: v_e umgewandelt in v_μ und v_τ

Quellen: Atmosphärische Neutrinos

Moderne Experimentalphysik III (4010061) – 18. Vorlesung Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Neutrinos aus Luftschauern:

- Wechselwirkung der kosmischen Strahlung, z. B. mit N- oder O-Kernen \rightarrow hadronischer Schauer
 - Zerfallskette: $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ $\rightarrow e^+ \nu_e \overline{\nu}_{\mu}$
 - \rightarrow 2:1-Mischung aus v_{μ} und v_{e}
- Neutrinoenergien: 0,5 GeV bis 50 GeV (vgl. Sonnenneutrinos: <10-20 MeV)

Atmosphärische Neutrinos: Super-K

http://www-sk.icrr.u-tokyo.ac.jp/sk/

Moderne Experimentalphysik III (4010061) – 18. Vorlesung

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Super-Kamiokande (Kamioka-Mine, seit 1996): Wasser-Cherenkov-Detektor (50 kt)

Atmosphärische Neutrinos: Super-K

 Super-Kamiokande (Kamioka-Mine, seit 1996):
Wasser-Cherenkov-Detektor (50 kt)
Messung: Zenitwinkelabhängigkeit der Elektron- und Myonrate → Oszillation ν_μ → ν_τ

http://www-sk.icrr.u-tokyo.ac.jp/sk/

Moderne Experimentalphysik III (4010061) – 18. Vorlesung

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Quellen: Spallation Neutron Source

Von der Neutronen- zur Neutrinoquelle:

- Protonenstrahl auf neutronenreiches Flüssig-Quecksilber-Target \rightarrow ca. 20 n pro getroffenem Hg-Kern
- Gepulster Neutronenstrahl (f = 60 Hz, $\Delta t = 1 \ \mu s$) \rightarrow experimentelle Vorteile gegenüber kontinuierlichen Neutronenstrahlen (z. B. Reaktor)
- "Neutrino Alley": hoher gepulster Neutrinofluss ~ $10^{11} v / cm^2 / sec$ aus Pionenzerfall; bei Energien E_{ν} bis ca. 50 MeV

Spallation Neutron Source

Oak Ridge

sciencemag.org

<u>org</u>,

(phýs.

Fig. 2. COHERENT detectors populating the "neutrino alley" at the SNS

Kohärente Neutrino-Kern-Streuung

- Neutrino-Detektor so groß wie eine Milchkanne wie geht das?!
- Freedman et al. (1974): Vorhersage "kohärenter elastischer Streuung" Bei niedrigem Impulsübertrag kann Z⁰-Boson mit dem gesamten Kern wechselwirken

14,6 kg CsI-Szintillator → hohe Massenzahl A Photomultiplier (5")

Kohärente Neutrino-Kern-Streuung

Fig. 3. Observation of Coherent Elastic Neutrino-Nucleus Scattering.

("exotische" Austauschteilchen)

Gemessen: 134 ± 22 Ereignisse

Vorhersage Standardmodell: 173 ± 48 Ereignisse

 \rightarrow Detektion der kohärenten elastischen Neutrino-Kern-Streuung (coherent elastic neutrino nucleus scattering, *"CEvNS"*) mit Signifikanz 6.7σ

Implikationen für Neutrino-Detektoren ("Miniaturisierung", Mobilität, ...) Grenzen auf neuartige Wechselwirkungen zwischen Neutrinos und Quarks

Suche nach sterilen Neutrinos, magnetischem Moment, Kernstruktur, ...

Aufgabe 31

- Welche der folgenden Aussagen über Neutrinoquellen sind korrekt?
 - A. Urknall-Neutrinos sind die zahlenmäßig häufigsten massebehafteten Teilchen im Universum: sie sind heute den Atomen etwa 10⁶-fach überlegen.
 - B. Neutrino-Emission macht den bei weitem größten Teil der Energieabstrahlung von Core-Collapse-Supernovae aus.
 - C. In den Fusionsprozessen im Sonneninneren entstehen hauptsächlich Elektron-Antineutrinos.
 - D. Die Einschläge kosmischer Strahlung in der Erdatmosphäre produzieren etwa gleich viele Elektron(anti)neutrinos und Myon(anti)neutrinos.
 - E. Die Tritium-Quelle des KATRIN-Experiments erzeugt ca. 10¹¹ Antineutrinos pro Sekunde.

Bitte beantworten Sie die Frage anonym auf ILIAS [link].

Kurze Zwischenbilanz

- Schlüsselexperimente:
 - **Homestake-Experiment** (1968): Sonnenneutrinos \rightarrow Rate zu gering?
 - **LEP** (1989): drei unterschiedliche Neutrinoflavors mit Massen $m_{\nu} < m_Z/2$
- **Super-Kamiokande** (1998): Zenitwinkelabhängigkeit v_{μ} aus Luftschauern
- **SNO** (2001): Homestake und Sonnenmodell bestätigt
- Schlussfolgerung (Details folgen): "Verschwinden" der ursprünglichen Neutrinoflavors durch **Umwandlung in andere Flavors** zwischen Quelle und Detektor \rightarrow nur möglich, wenn $m_{\nu} \neq 0$

Annahme im Standardmodell: masselose linkshändige Neutrinos

Moderne Experimentalphysik III – Teilchen und Hadronen

Karlsruher Institut für Technologie Sommersemester 2020 – 18. Vorlesung, Teil 3

ULRICH HUSEMANN, KATHRIN VALERIUS

CMS Bildquelle:

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Aufgabe 31

- Welche der folgenden Aussagen über Neutrinoquellen sind korrekt?
 - A. Urknall-Neutrinos sind die zahlenmäßig häufigsten massebehafteten Teilchen im Universum: sie sind heute den Atomen etwa 10⁶-fach überlegen.
 - B. Neutrino-Emission macht den bei weitem größten Teil der Energieabstrahlung von Core-Collapse-Supernovae aus.
 - C. In den Fusionsprozessen im Sonneninneren entstehen hauptsächlich Elektron-Antineutrinos.
 - D. Die Einschläge kosmischer Strahlung in der Erdatmosphäre produzieren etwa gleich viele Elektron(anti)neutrinos und Myon(anti)neutrinos.
 - E. Die Tritium-Quelle des KATRIN-Experiments erzeugt ca. 10¹¹ Antineutrinos pro Sekunde.

Bitte beantworten Sie die Frage anonym auf ILIAS [link].

Neutrinooszillationen im Vakuum

- Masseneigenzustände \neq Flavoreigenzustände \rightarrow Mischung:
- Produktion und Detektion: Flavoreigenzustände (Wechselwirkung mit W/Z)
- **Propagation: Massen**eigenzustände (= physikalische Teilchen)

Produktionsprozess:

z. B. Pionzerfall \rightarrow Myon-Neutrinos

Moderne Experimentalphysik III (4010061) – 18. Vorlesung

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Nachweisreaktion:

e

- z. B. Elektronenstreuung
- \rightarrow Projection auf v_e -Zustand

e

Propagation:

unterschiedliche Massen unterschiedliche **Raum-Zeit-Propagation** der Wellenpakete

Neutrinooszillationen: Formalismus

- Masseneigenzustände: $|\nu_i\rangle$, i = 1, 2, 3
- Flavoreigenzustände: $|\nu_{\alpha}\rangle$, $\alpha = e, \mu, \tau$
- $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$ Mischung beschrieben durch unitäre komplexe Matrix: → Pontecorvo–Maki–Nakagawa–Sakata-(PMNS-)Matrix
- **Zeitentwicklung** der Masseneigenzustände v_i (in deren Ruhesystem):

$$\mathcal{A}(\nu_{\alpha} \leftrightarrow \nu_{\beta})(t) = \left\langle \nu_{\beta} | \nu_{\alpha} \right\rangle(t) = \sum_{i} U_{\beta}$$

- $U_{\beta_i}^* \exp[-im_i \tau_i] U_{\alpha_i}$ m_i Masse, τ_i Eigenzeit
- Übergangswahrscheinlichkeit: $P(\nu_{\alpha} \leftrightarrow \nu_{\beta}) = |\mathcal{A}(\nu_{\alpha} \leftrightarrow \nu_{\beta})|^2 = |\langle \nu_{\beta} | \nu_{\alpha} \rangle|^2$

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Zwei-Flavor-Oszillationen

- Einfachster Fall: zwei Neutrinoflavors $\rightarrow U =$
- Übergangswahrscheinlichkeit: $\begin{aligned} \left| \left\langle \nu_{\beta} | \nu_{\alpha} \right\rangle \right|^{2} &= 1 - \left| \left\langle \nu_{\alpha} | \nu_{\alpha} \right\rangle \right|^{2} \qquad \Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2} \\ &= \sin^{2}(2\theta) \sin^{2} \left(\Delta m_{ij}^{2} \frac{L}{4E} \right) \end{aligned}$ $\begin{aligned} \mathbf{x}_{i} &= \mathbf{1} - |\langle \nu_{\alpha} | \nu_{\alpha} \rangle|^{2} \qquad \Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2} & \text{inverses} \\ &= \sin^{2}(2\theta) \sin^{2}\left(\Delta m_{ij}^{2} \frac{L}{4E}\right) & 0 \\ &= \sin^{2}(2\theta) \sin^{2}\left(1,27 \frac{\Delta m_{ij}^{2}}{eV^{2}} \frac{L/km}{E/GeV}\right) & 0.4 \end{aligned}$
 - Vorgabe: $L/E \rightarrow$ Neutrinoenergie, **Abstand Quelle-Detektor**
 - Messung: Mischungswinkel θ , Differenz der Massen**quadrate** Δm_{ij}^2 \rightarrow kein Zugriff auf **absolute** Neutrinomasse!

Moderne Experimentalphysik III (4010061) – 18. Vorlesung

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Neutrino- quelle	Differenz Massenquadrate	Mischungswir
Sonnenneutrinos Reaktorneutrinos	$\Delta m_{21}^2 = 7,39^{+0,21}_{-0,20} \cdot 10^{-5} \mathrm{eV}^2$ (kleine Aufspaltung, Vorzeichen: MSW-Effekt)	$\sin^2 \theta_{12} = 0,310^{+0}$ (große Mischur
Atmosphärische Neutrinos Beschleuniger- neutrinos	$\Delta m_{3\ell}^2 = 2,525^{+0,033}_{-0,032} \cdot 10^{-3} \mathrm{eV}^2$	$\sin^2 \theta_{23} = 0,580^+$ (fast maximal Mischung)
Reaktorneutrinos (Beschleuniger- neutrinos)	(große Aufspaltung, Vorzeichen unbekannt)	$\sin^2 \theta_{13} = 0,0224^2$ (eher kleine Misch
NuFit 4.0. JHEF	2 01 (2019) 106. normale Massenl	nierarchie

 $\underline{\circ}$

Experimente: Beispiele

- Long-Baseline-Experimente mit **Beschleunigerneutrinos**:
- Nahdetektor (Normierung Fluss, Kontrolle Systematik) und Ferndetektor
- Heute: **NO** $_{VA}$ (Fermilab \rightarrow Minnesota, 810 km), **T2K** (J-PARC \rightarrow Kamioka, 295 km)
- Zukunft: **DUNE**, **Hyper-Kamiokande** → CP-Verletzung

Moderne Experimentalphysik III (4010061) – 18. Vorlesung

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Experimente: Beispiele

Moderne Experimentalphysik III (4010061) – 18. Vorlesung

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Experimente mit **Reaktorneutrinos**: Nachweis: inverser Betazerfall

$\overline{\nu}_{e} + p \rightarrow n + e^{+}$

in Flüssigszintillator

KamLAND (Japan): Neutrinos aus japanischen Kernkraftwerken \rightarrow lange Baseline (180 km)

Daya Bay (China): Nahdetektoren

(ca. 500 m) und Ferndetektoren (ca. 2 km)

 \rightarrow kurze Baseline für Mischungswinkel θ_{13}

Neutrinomasse und -mischung

- Neutrinooszillationen abhängig $\operatorname{von} \Delta m_{ij^2} \to m_{\nu} \neq 0$
- Offene Fragen: Massenhierarchie: $m_1 < m_2 \ll m_3$ ("normal") oder $m_3 \ll m_1 < m_2$ ("invertiert")?
- Absolute Massenskala?
- Physikalischer Grund für Neutrinomassen?

Sommersemester 2020

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Dirac oder Majorana?

- P.A.M. Dirac Karlsruher Institut für Technologie Dirac-Neutrinos: Masse über Yukawa-Kopplung Erweiterung des Standardmodells: "sterile" v_R und $\overline{v_L}$ V V NobelPrize.org (elektroschwache Singuletts, keine Wechselwirkung mit $\mathcal{V}_{\mathcal{L}}$ \mathcal{VR} \mathcal{V}_{L} W- und Z-Boson) \rightarrow **Dirac-Masse** m^{D} m^{D} m^{D} Majorana-Neutrino: E. Majorana Neutrale Teilchen sind ihre eigenen Antiteilchen, aber: v_L nicht neutral unter elektroschwachen Ladungen $(I_3 = +1/2, Y = -1)$ Erweiterung um elektroschwaches Singulett **Bildquelle:** Familie $v_R \equiv \overline{v_L}$ (dasselbe Teilchen!) $v_I = v_R^C$

- → Dirac-Masse und zusätzlich Majorana-Masse M^R

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Absolute Neutrinomasse

- Drei Methoden drei unterschiedliche Messgrößen:
- Kosmologie (modellabhängig): Summe der Neutrinomassen = Beitrag zur **Energiedichte** im Universum
- Kinematik des Betazerfalls (modellunabhängig) Masse des Elektron-Antineutrinos \rightarrow 2019: KATRIN
- **Neutrinoloser Doppelbetazerfall** (modellabhängig): effektive Majorana-Masse → nur wenn Neutrino Majoranateilchen

Methode	Messgröße	
Kosmologie	$M_{\nu} = \sum_{i} m_{i}$	
Kinematik Betazerfall	$m_\beta^2 = \sum_i U_{ei} ^2 m_i^2$	
Neutrinoloser Doppelbeta-zerfall	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i\right ^2$	

Sommersemester 2020

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Absolute Neutrinomasse

- Drei Methoden drei unterschiedliche Messgrößen:
- Kosmologie (modellabhängig): Summe der Neutrinomassen = Beitrag zur **Energiedichte** im Universum
- Kinematik des **Betazerfalls** (modellunabhängig) Masse des Elektron-Antineutrinos \rightarrow 2019: KATRIN
- **Neutrinoloser Doppelbetazerfall** (modellabhängig): effektive Majorana-Masse → nur wenn Neutrino Majoranateilchen

Sommersemester 2020

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

Aufgabe 32

- Welche der folgenden Aussagen über Neutrino-Oszillationen sind korrekt? A. Die Idee der Oszillationen wurde zunächst für Neutrino-Antineutrino-Zustände betrachtet, dann auf Flavor-Zustände übertragen.

 - B. Alleine aus der Evidenz für Neutrino-Flavor-Oszillationen kann auf die Existenz von nichtverschwindenden Neutrinomassen geschlossen werden.
 - C. Bei Oszillations-Experimenten verwendet man die Erde als "Filter", um Neutrinos von Antineutrinos zu trennen.
 - D. In der Auswertung werden häufig Experimente mit Sonnen- und Reaktorneutrinos kombiniert, sowie ebenso Experimente mit Beschleuniger- und Atmosphärenneutrinos.
 - E. Mit ausreichend hoher Energieauflösung können zukünftige Oszillations-Experiment auch die Neutrinomassenskala messen.

Bitte beantworten Sie die Frage anonym auf ILIAS [link].

Kurze Zusammenfassung

- **Neutrinooszillationen:** theoretische Beschreibung
- Propagation der Masseneigenzustände (physikalische Teilchen) \rightarrow **Mischung** der Flavoreigenzustände (Wechselwirkung mit W-Boson)
- Drei-Flavor-Oszillationen: PMNS-Matrix (drei Mischungswinkel, eine CPverletzende Phase?), zwei Differenzen der Massenquadrate Δm_{ij}^2
- Experimentell: Beobachtung von Neutrinooszillationen
 - **Atmosphärische** und **Beschleuniger**neutrinos: v_{μ} in $v_3 \rightarrow$ großes Δm_{ij}^2
 - **Sonnen**neutrinos und **Reaktor**neutrinos: v_e in $v_2 \rightarrow$ kleines Δm_{ij}^2
 - Reaktor- und Beschleunigerneutrinos: v_e in v_3 mit sehr kleinem Mischungswinkel
- Fermionen? Absolute Neutrinomasse? CP-Verletzung?

Offene Fragen der Neutrinophysik: Neutrinos = Dirac- oder Majorana-

Fazit

- Neutrinos ermöglichen uns stets neue Erkenntnisse über die Elementarteilchen und den Kosmos.
- Auch 90 Jahre nach ihrer "Erfindung" gibt es noch zahlreiche offene Fragen.
- Deren Erforschung fordert ein enges Zusammenspiel zwischen Theorie und Experiment.

Prof. U. Husemann/Prof. K. Valerius, Vorlesungsunterlagen. Nur zum KIT-internen vorlesungsbegleitenden Gebrauch, Weitergabe und anderweitige Nutzung verboten.

