

#### **Moderne Experimentalphysik III – Teilchen und Hadronen**

#### Karlsruher Institut für Technologie Sommersemester 2019 – 19. Vorlesung (Teil 1)

#### ULRICH HUSEMANN, KATHRIN VALERIUS







# Auflösung Aufgabe 32

- - A. Die Idee der Oszillationen wurde zunächst für Neutrino-Antineutrino-Zustände betrachtet, dann auf Flavor-Zustände übertragen.
  - B. Alleine aus der Evidenz für Neutrino-Flavor-Oszillationen kann auf die Existenz von nichtverschwindenden Neutrinomassen geschlossen werden.
  - C. Bei Oszillations-Experimenten verwendet man die Erde als "Filter", um Neutrinos von Antineutrinos zu trennen.
  - D. In der Auswertung werden häufig Experimente mit Sonnen- und Reaktorneutrinos kombiniert, sowie ebenso Experimente mit Beschleuniger- und Atmosphärenneutrinos.
  - E. Mit ausreichend hoher Energieauflösung können zukünftige Oszillations-Experimente auch die Neutrinomassenskala messen.



#### Welche der folgenden Aussagen über Neutrinooszillationen sind korrekt?







## Kurze Wiederholung

- **Neutrinooszillationen:** theoretische Beschreibung
  - Propagation der Masseneigenzustände (physikalische Teilchen)  $\rightarrow$  **Mischung** der Flavoreigenzustände (Wechselwirkung mit W-Boson)
  - Drei-Flavor-Oszillationen: PMNS-Matrix (drei Mischungswinkel, eine CPverletzende Phase?), zwei Differenzen der Massenquadrate  $\Delta m_{ij}^2$
- Experimentell: Beobachtung von Neutrinooszillationen
  - Atmosphärische und Beschleunigerneutrinos:  $v_{\mu}$  in  $v_3 \rightarrow \text{großes } \Delta m_{ii}^2$
  - **Sonnen**neutrinos und **Reaktor**neutrinos:  $v_e$  in  $v_2 \rightarrow$  kleines  $\Delta m_{ij}^2$
  - Reaktor- und Beschleunigerneutrinos:  $v_e$  in  $v_3$  mit sehr kleinem Mischungswinkel
- Fermionen? Absolute Neutrinomasse? CP-Verletzung?



# Offene Fragen der Neutrinophysik: Neutrinos = Dirac- oder Majorana-





# Offene Fragen und Querverbindungen



#### **Kapitel 9**



# Uberblick

- Viele Querverbindungen zwischen Teilchenphysik – Astroteilchenphysik– Kosmologie:
  - Inhaltlich: Wie bestimmen kleinste Teilchen und ihre Wechselwirkungen die Entwicklung des Universums? Wie funktionieren kosmische Beschleuniger? Woraus besteht kosmische Strahlung?
  - Methodisch: Detektortechnologie, statistische Analyse der Daten
  - Standardmodell der Teilchenphysik: offene Fragen
    - **Experiment**: Neutrinomassen, diverse kleinere Abweichungen von Erwartungen des Standardmodells ( $\rightarrow$  signifikant?)
    - **Theorie:** mehrere Defizite  $\rightarrow$  nur gültig bei "niedrigen" Energien?









## Quarks & Kosmos

- Kosmologie:
  - Elemententstehung: nukleare Astrophysik (Kapitel 4.3) Evidenz für expandierendes Universum, dunkle Materie, dunkle Energie **Standardmodell** der Kosmologie = konsistentes Modell von Entwicklung

  - des Universums?
- Astroteilchenphysik: Schnittstelle zwischen Teilchenphysik, Astrophysik und Kosmologie
  - Kosmische Strahlung  $\rightarrow$  Beschleunigung im Universum?
  - Suche nach Antimaterie, dunkler Materie, Gravitationswellen, ...
  - Multimessenger-Ansatz: Verknüpfung vieler Beobachtungen (optisch, Radioteleskope, Luftschauer, Neutrinos, Gravitationswellen ...)







# **Grenzen des Standardmodells**



#### Kapitel 9.1



#### **Probleme des Standardmodells**

- Theoretische Defizite des Standardmodell:
  - Viele freie Parameter: >20 Massen und Kopplungen
  - Higgs-Mechanismus: ad hoc eingeführt, keine Erklärung für elektroschwache Symmetriebrechung und Yukawa-Kopplung
  - Eichkopplungen: keine Erklärung für Eichgruppe SU(3)×SU(2)×U(1)
  - Keine (einfache) Vereinheitlichung aller Kräfte bei hohen Energien
  - Hierarchieproblem: Gravitation viel schwächer als alle anderen Kräfte
- Hinweise auf Physik jenseits des Standardmodells:
  - Labor: Neutrinomassen, Abweichungen in Präzisionsobservablen
  - Kosmologie: dunkle Materie und dunkle Energie ( $\rightarrow$  später), starke Asymmetrie zwischen Materie und Antimaterie





## g-2: Theorie und Experiment

- Dirac-Gleichung: magnetisches Moment von Myonen mit g-Faktor  $g_{\mu} = 2$ 
  - Quantenkorrekturen
    - → **anomales** magnetisches Moment:

$$a_\mu \equiv rac{g_\mu - 2}{2}$$

- $a_{\mu}$  extrem genau messbar und berechenbar: relative Unsicherheit < 10<sup>-6</sup>
- 3,3 Standardabweichungen Unterschied zwischen Theorie und Experiment  $\rightarrow$  neue Physik?
- <u>Muon g–2</u> (Fermilab): Resultat noch 2020?





# Jenseits des Standardmodells

- Theorien jenseits des Standardmodells (engl.: beyond the standard model, BSM):
  - Lösung der Probleme des Standardmodells
  - Querverbindung zu Kosmologie und Astroteilchenphysik
- Viele Ideen f
  ür BSM-Physik:
  - Neue Symmetrie?
  - Neue starke Kraft?
  - Zusätzliche Raumdimensionen?





## SUSY – Supersymmetrie

- SUSY: postulierte neue Raum-Zeit-Symmetrie zwischen Bosonen und Fermionen
  - Jedes Boson hat ein Fermion als Superpartner und umgekehrt
  - Superpartner: dieselbe Masse, dieselben Quantenzahlen (außer Spin)
  - Populäre SUSY-Modelle: leichtestes SUSY-Teilchen stabil → Kandidat für dunkle Materie (WIMP = weakly interacting massive particle)
  - Lösungen für viele weitere Probleme des SM...
  - Noch keine Superpartner entdeckt  $\rightarrow$  SUSY **gebrochen** (oder nicht realisiert in Natur)





#### **Standard-Teilchen**



**SUSY-Teilchen** 







#### **Moderne Experimentalphysik III – Teilchen und Hadronen**

#### Karlsruher Institut für Technologie Sommersemester 2019 – 19. Vorlesung (Teil 2)

#### ULRICH HUSEMANN, KATHRIN VALERIUS







## Kurze Wiederholung

- **Grenzen** des Standardmodells der Teilchenphysik:
  - **Theoretische** Defizite: freie Parameter, Vereinheitlichung der Kräfte, ...
  - Keine Erklärung für manche Beobachtungen, z. B. g–2 des Myons, dunkle Materie ( $\rightarrow$  später)

#### Mögliche Erweiterung des Standardmodells: Supersymmetrie

- Teilchen des Standardmodells
- Falls in Natur realisiert: Lösung für viele Probleme des Standardmodells, aber: bisher keine SUSY-Teilchen entdeckt
- Viele weitere Modelle f
  ür Physik jenseits des Standardmodells, bisher keine signifikanten Abweichungen in Daten (LHC, B-Fabriken, ...)



Symmetrie zwischen **Bosonen und Fermionen**  $\rightarrow$  SUSY-Partner für alle

# Astroteilchenphysik und Kosmologie



#### Kapitel 9.2



# Astroteilchenphysik

#### Forschungsgeschichte:

- Entdeckung der kosmischen Strahlung (Hess, 1912): ionisierende Strahlung nimmt mit Höhe über Erdboden zu
- **Teilchenphysik** mit kosmischer Strahlung (z. B. Positron 1932, Myon 1936, Strangeness 1947)
- **Astronomie** und **Astrophysik**: Radioteleskope, Satelliten, ... (ab 1950er Jahre)
- Astroteilchenphysik als eigener Forschungszweig (ab 1980er Jahre)



#### **Ballonflug V. Hess**









#### Astroteilchenphysik



astro.desy.de

Moderne Experimentalphysik III (4010061) – 19. Vorlesung



#### Kosmische "Botenteilchen": Nachweis z. B. über:

- Detektion geladener kosmischer Strahlung, direkt oder über Luftschauer
  - Teleskope für TeV-Gammastrahlung
  - **Neutrino**teleskope





## Pierre-Auger-Observatorium

- Ziel: Detektion kosmischer Schauer mit Primärenergien > 10<sup>20</sup> eV
- Funktionsprinzip: Hybriddetektor
  - 1600 Wasser-Cherenkov-Detektoren  $(1,5 \text{ km Abstand}) \rightarrow 3000 \text{ km}^2$
  - 4 Stationen mit Detektoren für Fluoreszenzlicht aus Luftschauer
- Standort: Malargüe (Argentinien)











# Energiespektrum kosmischer Strahlung

#### Fluss kosmischer Strahlung skaliert mit E<sup>2.6</sup>





Rate: 1 Teilchen pro km<sup>2</sup> pro Jahr  $10^{20}$ PDG 2019 Grund für Potenzgesetz  $F(E) \sim E^{-\gamma}$  "Knie" = Änderung

des spektralen Index  $\gamma$ ?

- Änderung der Elementzusammensetzung?
- Unterdrückung kosmischer Strahlung bei höchsten **Energien?**

**Punktquellen?** (Kandidaten: Pulsare, aktive Galaxienkerne, schwarze Löcher)







### **Kosmische Neutrinos: IceCube**





- Ziel: Suche nach Quellen **kosmischer** Neutrinos bis zu PeV-Energien
- **Funktionsprinzip**: **Cherenkov**-Detektor (Medium: 1 km<sup>3</sup> Eis)
- Standort: Südpol











### Gravitationswellen

- Gleichungen der Allgemeinen Relativitätstheorie gelöst durch Wellen für zeitliche Änderung des Massen-Quadrupolmoments (Einstein 1916)
- **Erster indirekter Nachweis:** Doppelsternsystem mit Pulsar PSR B1913+16 (Hulse, Taylor, 1974) → Energieverlust des Pulsars

(Pulsar = schnell rotierender Neutronenstern)





Raoul NK, Quadrupol Wave.gif, CC BY-SA 3.0



## **Advanced LIGO**

- Direkter Nachweis: Michelson-**Interferometer** → Differenz der **Deformation der Interferometer**arme:  $\Delta L/L < 10^{-21}$
- Aktueller Gravitationswellendetektoren:
  - **LIGO:** 4 km Armlänge (Hanford, Livingston, USA)
  - Virgo: 3 km (Cascina, Italien)
  - **KAGRA**: 3 km (Kamioka, Japan)
  - Kombination: Richtungsinformation





PRL 116 (2016) 061102







#### **GW150914**

- 11. Februar 2016: erster direkter Nachweis von Gravitationswellen (GW150914)
- Interpretation: Verschmelzung zweier schwarzer Löcher (36 und 29 Sonnenmassen)
- Bisher insgesamt >10 "sichere" GW-Beobachtungen

R. Weiss



B. C. Barish



K. S. Thorne



lobe org (HZ) requency

LL

21)

Strain (10





# Entwicklung des Universums









# Grundlagen der Kosmologie

- Allgemeine Relativitätstheorie (ART, Einstein, 1915) = geometrische Feldtheorie: alle Formen von Energie führen zu Verformung der Raumzeit → Gravitationskraft
- **Kosmologisches Prinzip**: auf größten Längenskalen ist Universum homogen und **isotrop** ( $\rightarrow$  Friedmann-Gleichungen)
- Mögliche Geometrie der Raumzeit: Sphärisch: Big Bang und Big Crunch Hyperbolisch: asymptotische Expansion
  - Flach: beschleunigte Expansion









### **Expandierendes Universum**

- Beobachtung weit entfernter Supernovae: (Perlmutter; Riess, Schmidt, 1998)
  - Messgrößen: Helligkeit ( $\rightarrow$  Alter) vs. Rotverschiebung  $(\rightarrow Größe)$
  - Daten kompatibel mit beschleunigt expandierendem Universum







### Kurze Zwischenbilanz

- Astroteilchenphysik: Verbindung von Astrophysik und Teilchenphysik
  - Physikalische Fragestellung: Quellen und Beschleunigungsmechanismen kosmischer Strahlung
  - Experimente mit kosmischen Photonen, Neutrinos, Atomkernen  $\rightarrow$  Beispiele: AUGER, IceCube
  - Seit 2015: erste Signale in Experimenten mit Gravitationswellen → Beispiele: LIGO, Virgo, KAGRA
- **Kosmologie** und Entwicklung des Universums Expandierendes Universum  $\rightarrow$  dunkle Energie, flache Raumzeit









#### **Moderne Experimentalphysik III – Teilchen und Hadronen**

#### Karlsruher Institut für Technologie Sommersemester 2019 – 19. Vorlesung (Teil 3)

#### ULRICH HUSEMANN, KATHRIN VALERIUS







## Kurze Wiederholung

- Astroteilchenphysik: Verbindung von Astrophysik und Teilchenphysik Experimente mit kosmischen Photonen, Neutrinos, Atomkernen  $\rightarrow$  Beispiele: Pierre Auger Observatory, IceCube

  - Seit 2015: erste Signale in Experimenten mit Gravitationswellen  $\rightarrow$  Beispiele: LIGO, Virgo, KAGRA
- Physikalische Fragestellung: Quellen und Beschleunigungsmechanismen kosmischer Strahlung Kandidaten: Pulsare, aktive Galaxienkerne
- - Suche nach Punktquellen
- **Kosmologie** und Entwicklung des Universums Expandierendes Universum  $\rightarrow$  flache Raumzeit





## Evidenz für dunkle Materie

- Fehlende Masse im Universum:
  - Bahngeschwindigkeit von Galaxien im Coma-Cluster (Zwicky 1932) → Name: dunkle Materie (DM)
  - Rotationskurven von Galaxien (Rubin 1970) → **DM-Halo**
- DM als **Gravitationslinse** ("Lensing")
- Körnigkeit größter Strukturen im Universum → nicht-relativistische DM (cold dark matter, CDM)







V. Rubin







tefania.deluca einfrei



## Evidenz für dunkle Materie

**Bullet-Cluster: Optisches Bild + Massenbestimmung** (blau, aus Gravitationslinseneffekt) + Röntgenemission (pink)



#### Karlsruher Institut für Technologie

#### Kollisionen von Galaxienhaufen:

- Gesamtmasse aus Lensing → benötigt dunkle Materie
- **Baryonische** Materie:
  - Gaswolken stoßen
  - aneinander
  - → Röntgenemission
- **Dunkle** Materie durchdringt sich (fast) ohne Stöße → höchstens schwache Wechselwirkung





# Kosmischer Mikrowellenhintergrund

(engl.: cosmic microwave background, CMB)

- Schwarzkörperstrahlung aus Universum (ca. 2,73 K) (Penzias, Wilson, 1965):
  - Entstehung: Entkopplung der **Photonen** aus thermischem Gleichgewicht, ca. 380.000 Jahre nach Urknall
  - Temperaturschwankung O(100 μK): "Fingerabdruck" der Dichteschwankungen im frühen Universum (z. B. Planck-Satellit) → kosmologische Modelle





100

250

Multipole

500

1000

1500

30 50

المرابي المرابي

10

1000

Sommersemester 2020

2000









# **ACDM-Kosmologie**

- Standardmodell der Kosmologie: **ACDM** 
  - Zutaten: ART, kosmische Inflation, kalte dunkle Materie (CDM), dunkle Energie (symbolisiert durch kosmologische Konstante  $\Lambda$ )
  - Mit allen derzeitigen kosmologischen Daten verträglich (Spannungen im Detail)
- Standardmodell der Teilchenphysik: keine Kandidaten für dunkle





# Materie und dunkle Energie $\rightarrow$ SUSY-WIMP? Andere Kandidaten?



## Suche nach Dunkler Materie

#### Drei Suchstrategien: make it – shake it – break it **Paarproduktion** in Kollisionen von Standardmodell-Teilchen → Nachweis: Rückstoß und fehlender Transversalimpuls

**Beispiel: Monojet-Signatur** 



#### Streuung an SM-Teilchen → Nachweis durch Rückstoß **Annihilation** der DM-Teilchen im Universum → Nachweis der resultierenden SM-Teilchen





### Suche nach Dunkler Materie

- **Direkter** Nachweis:
  - **Streuung** an Kernen: Wärme, Szintillation, Ionisation
  - Derzeit führend: Zweiphasen-Zeitprojektionskammer mit flüssigem Xenon (XENON, LUX)
  - **Indirekter** Nachweis:
    - Annihilationsprodukte aus **DM-Paarvernichtung** → Überschuss von Antiteilchen
    - Diverse Teilchendetektoren, z. B. AMS-02 auf der ISS

















### Kurze Zusammenfassung

- Astrophysikalische Evidenz für kalte dunkle Materie:
  - Rotationskurven von Galaxien
  - Größte Strukturen im Universum
  - Gravitationslinseneffekt
  - Kollisionen von Galaxienhaufen
- Standardmodell der Kosmologie: ΛCDM
  - $\blacksquare$  Allgemeine Relativitätstheorie + Inflation  $\rightarrow$  flaches Universum
  - Kalte dunkle Materie und dunkle Energie
- Suche nach dunkler Materie: bisher kein signifikantes Signal Direkt durch Kernrückstoß in Streuung und in Collider-Experimenten Indirekt durch Nachweis der Annihilationsprodukte







# Zusammenfassung und Ausblick



#### Kapitel 10



# Kern- und Teilchenphysik

- **Experimentelle** Methoden:
  - Teilchendetektoren
  - Teilchenbeschleuniger
- **Struktur** der Materie:
  - **Streuexperimente:** vom Rutherford-Experiment zum LHC
  - Fundamentale Bausteine der Natur: Atome  $\rightarrow$  Kerne  $\rightarrow$  Nukleonen  $\rightarrow$  Quarks und Leptonen
- Grundlagen der Kernphysik:
  - Radioaktivität: Alpha-, Beta- und Gammazerfall
  - Anwendungen: Entstehung der Elemente im Universum, Energieerzeugung, ...







# Kern- und Teilchenphysik

- Symmetrien und Erhaltungssätze:
  - Eichsymmetrien → Wechselwirkungen
  - **Diskrete Symmetrien** C, P, T und ihre Verletzung in der Natur
  - Quantenzahlen der Elementarteilchen
- **Fundamentale Wechselwirkungen**:
  - **QCD**: Theorie der starken Wechselwirkung
  - Elektroschwache Wechselwirkung: vereinheitlichte Theorie der elektromagnetischen und schwachen Wechselwirkung
- Moderne **Teilchenphysik**:

  - Neutrinophysik mit und ohne Beschleuniger
- Querverbindungen zu Astroteilchenphysik und Kosmologie



Teilchenphysik bei höchsten Energien am Collider: LHC, LEP, B-Fabriken, …



## **Experimentelle Teilchenphysik am KIT**





ETP-web IKP-web







CERN



utrinomasse – KATRIN

КT















# Astroteilchenphysik am KIT

Kosmische Strahlung – Auger-Observatorium, Tunka-Rex



#### Dunkle Materie – Edelweiss





Dunkle Photonen – FUNK

40



Moderne Experimentalphysik III (4010061) – 19. Vorlesung



**ETP** 

**IKP** 



Kosmische Neutrinos – IceCube-Gen2



#### Dunkle Materie – XENON/DARWIN









# Ende.

