

Moderne Experimentalphysik III – Teilchen und Hadronen

Vorlesung 13 13.6.2023

Recap: Verletzung von P

Maximale Verletzung der Parität P: Wu & Lederman

- Wu – Experiment: Messung der Observable eines **Pseudoskalars**: $\vec{J}_{Kern} \cdot \vec{p}_e$

Antikorrelation der Impulsrichtung \vec{p}_e des Elektrons aus dem β – Zerfall von polarisierten ${}^{60}Co$ – Kernen (Vorzugsrichtung: $\vec{p}_e \uparrow \downarrow \vec{J}_{Kern}$)

- erfordert Durchführung bei mK Temperaturen (Kontrolle: $E2 \gamma's$)
- maximale Verletzung der Paritätserhaltung bei schwacher Wechselwirkung
- Helizität **h** masseloser Neutrinos: $\overline{v} = RH$, v = LH, gibt es sterile Neutrinos?
- Lederman: Rate von $\pi^+ \rightarrow \mu^+ + \nu$ stark bevorzugt gegen $\pi^+ \rightarrow e^+ + \nu$

Recap: System der neutralen Kaonen & CP

- **CP** Verletzung im $q\overline{q}$ System der neutralen Kaonen $|d\overline{s}\rangle$ $|\overline{d}s\rangle$
 - Erzeugung $K^0 \& \overline{K}^0$ durch starke Wechselwirkung (Erhaltung von S)
 - Ladungskonjugation CP

 $\left| CP \right| \left| K^{0} \right\rangle = \left| \overline{K}^{0} \right\rangle$

$$egin{array}{c|c|c|} CP & |\overline{K}^0
angle = |K^0
angle \end{array}$$

 $K^0 \otimes \overline{K}^0$ sind keine CP – Eigenzustände

- Propagation: CP - Eigenzustände $K_1 \& K_2$ mit Eigenwerten +1 -1

 $CP |K_1\rangle = +1 |K_1\rangle$

$$CP | K_2 \rangle = -1 | K_2 \rangle$$

Neutrale Kaonen: Effekte bei Propagation

Propagation: starke Wechselwirkung erhält CP – Symmetrie & Strangeness

starke Wechselwirkung erhält Quantenzahl 'Strangeness' & wir beobachten bisher keine Verletzung der CP – Symmetrie, obwohl die QCD* dies erlaubt (weiterer Hinweis auf neue Symmetrie & das Axion?)

wir betrachten nun den Effekt der **schwachen Wechselwirkung** bei der Propagation **im Vakuum** (keine Reaktionen der *K*⁰ mit Materie via *QCD*!!)

Propagation: schwache Wechselwirkung induziert Kaon-Oszillationen

 - ein Prozess der schwachen Wechselwirkung in 2. Ordnung: Austausch von 2 virtuellen W – Bosonen

Propagation: schwache Wechselwirkung induziert Kaon-Oszillationen

 - ein Prozess der schwachen Wechselwirkung in 2. Ordnung: Austausch von 2 virtuellen W – Bosonen

I Neutrale Kaonen: das 'Box-Diagramm'* führt zur Kaon-Mischung $K^0 \iff \overline{K}^0$

- ein Prozess der schwachen Wechselwirkung in 2. Ordnung: Strangeness-Oszillationen mit $\Delta S = 2$

Strangeness-Oszillationen bei der Ausbreitung neutraler Kaonen

- **Recap**: starke Ww. ist *Strangeness* – erhaltend, d.h. damit ist $\Gamma_{OCD}(K^0 \rightarrow \overline{K}^0) = 0$

■ Wenn CP – Erhaltung verletzt, dann gilt $\Gamma(K^0 \to \overline{K}^0) \neq \Gamma(\overline{K}^0 \to K^0)$

$$K^0 \longrightarrow \overline{K}^0 \longrightarrow K^0 \longrightarrow \overline{K}^0 \longrightarrow \overline{K}^0 \longrightarrow \overline{K}^0$$

CP – Symmetrie: ist schwache Ww. von Teilchen (K^0) & Antiteilchen (\overline{K}^0) identisch ??

- hohe Frequenz der Kaon-Oszillation: $f = 5, 3 \cdot 10^9 s^{-1} \Rightarrow$ ideales Labor für *CP*

Karlsruhe Institute of Technology

■ Wenn CP - Erhaltung verletzt, dann gilt $\Gamma(K^0 \to \overline{K}^0) \neq \Gamma(\overline{K}^0 \to K^0)$

$K^0 \longrightarrow \overline{K}^0 \longrightarrow K^0 \longrightarrow \overline{K}^0 \longrightarrow \overline{K}^0$

CP – Symmetrie: ist schwache Ww. von Teilchen (K^0) & Antiteilchen (\overline{K}^0) identisch ??

wir nutzen die Oszillation $K^0 \leftrightarrow \overline{K}^0$ bei der Propagation aus, d.h. wir benötigen keinen Vergleich eines Materiestrahls rel. zum Antimaterie-Strahl wie z.B. bei $\nu's$

- hohe Frequenz der Kaon-Oszillation: $f = 5, 3 \cdot 10^9 s^{-1} \Rightarrow$ ideales Labor für *CP*

Indikator für *CP*: $K^0 \& \overline{K}^0$ mischen zu den *CP* – Eigenzuständen $K_1 \& K_2$

$$K^{0} \longrightarrow \overline{K}^{0} \longrightarrow K^{0} \longrightarrow \overline{K}^{0} \longrightarrow \overline{K}^{0} \longrightarrow \overline{K}^{0} \longrightarrow \overline{K}^{0}$$

$$|K_{1}\rangle = \frac{1}{\sqrt{2}} \cdot \left(|K^{0}\rangle + |\overline{K}^{0}\rangle \right)$$

$$|K_{2}\rangle = \frac{1}{\sqrt{2}} \cdot \left(|K^{0}\rangle - |\overline{K}^{0}\rangle \right)$$

$$CP |K_{1}\rangle = +1 |K_{1}\rangle$$

$$CP |K_{2}\rangle = -1 |K_{2}\rangle$$

CP – Eigenzustände $K_1 \& K_2$

Neutrale Kaonen: Zerfallsprozesse in Pionen

- Zerfall neutraler Kaonen: Strangeness-Verletzung
 - Kaonen werden durch Prozesse der schwachen Wechselwirkung zerfallen: Beispiel 2π Zerfall

Neutrale Kaonen: Zerfallsprozesse in Pionen

Zerfall neutraler Kaonen: was ist CP – Symmetrie von 2 π bzw. **3 π** Zerfällen?

System K₁ und K₂ mit seinen definierten CP – Eigenwerten kann bei einer perfekten CP – Symmetrie nur in unterschiedliche Pion-Systeme zerfallen:
2 π oder 3 π Zerfälle

$$CP | K_{1} \rangle = +1 | K_{1} \rangle$$

$$CP | K_{2} \rangle = -1 | K_{2} \rangle$$

$$CP | K_{2} \rangle = -1 | K_{2} \rangle$$

Neutrale Kaonen: Zerfallsprozesse in 2 Pionen

CP - Zustände von 2 Pionen
$$(\pi^+, \pi^-)$$
 oder (π^0, π^0) : $CP = +1$

Parität *P* & *C*-Parität & *CP* eines Systems aus 2 Pionen mit $\ell = 0$

$$P |\pi^{+}\pi^{-}\rangle = (-1)^{\ell} \cdot (-1) \cdot (-1) |\pi^{+}\pi^{-}\rangle = +1 |\pi^{+}\pi^{-}\rangle$$

$$C |\pi^+\pi^-
angle = +1 |\pi^+\pi^-
angle$$

$$CP |\pi^+\pi^-
angle = +1 |\pi^+\pi^-
angle$$

$$CP \ket{\pi^0 \pi^0} = +1 \ket{\pi^0 \pi^0}$$

$$CP = 2\pi$$

Neutrale Kaonen: Zerfallsprozesse in 3 Pionen

CP - Zustände von 3 Pionen
$$(\pi^+, \pi^-, \pi^0)$$
 oder (π^0, π^0, π^0) : **CP** = -1

Parität *P* & *C*-Parität & *CP* eines Systems aus **3** Pionen mit $\ell = 0$

$$P \left| \pi^{0} \pi^{+} \pi^{-} \right\rangle = (-1)^{\ell} \cdot (-1) \cdot (-1) \cdot (-1) \cdot \left| \pi^{0} \pi^{+} \pi^{-} \right\rangle = -1 \left| \pi^{0} \pi^{+} \pi^{-} \right\rangle$$

$$C |\pi^0 \pi^+ \pi^-\rangle = +1 |\pi^0 \pi^+ \pi^-\rangle$$

$$CP |\pi^0 \pi^+ \pi^-
angle = -1 |\pi^0 \pi^+ \pi^-
angle$$

$$CP |\pi^0 \pi^0 \pi^0 \rangle = -1 |\pi^0 \pi^0 \pi^0 \rangle$$

$$CP = 3\pi$$

Neutrale Kaonen: Zerfallsprozesse in Pionen

System der oszillierenden Kaonen: wir betrachten nun Zerfallsprozesse

- die Kaon-Zerfälle in 2 bzw. 3 Pionen unterscheiden sich nun durch ihre **Lebensdauer** τ : wir benennen daher diese Zerfalls-Zustände mit K_{S} bzw. K_{L}
- Kaonzerfall (M = 497, 6 MeV) in 2 Pionen: 2 π^0 ($M_{ges} = 2 \times 135 MeV$): \Rightarrow großer **Phasenraum*** für die Pion-Impulse: \Rightarrow kurzes τ (8.9 \cdot 10⁻¹¹s) kurzlebiger Kaon-Zustand K_S
- Kaonzerfall (M = 497, 6 MeV) in **3 Pionen**: **3** π^0 ($M_{ges} = 3 \times 135 MeV$): K_{I}
 - \Rightarrow kleiner **Phasenraum*** für die Pion-Impulse: \Rightarrow langes τ (5.2 \cdot 10⁻⁸s)

langlebiger Kaon-Zustand K_L

Neutrale Kaonen: Zerfallsprozesse in Pionen

System der oszillierenden Kaonen: Zeitdauer der Zerfallsprozesse

- über die Flug-zeit t (-strecke) der Kaonen lassen sich K_s von K_L trennen

Trennung der Zerfälle von K_S von K_L

Trennung von kurzlebigen und langlebigen Kaonen über Flugzeit

- bisher: perfekte CP Symmetrie beim Zerfall von neutralen Kaonen
- Test *CP* Symmetrie: untersuche Zerfall des K_L in Pionen (bestimme # der π)

Kaon-Zerfälle: Suche nach CP – Verletzung

- Cronin & Fitch untersuchen CP Symmetrie im System neutraler Kaonen am AGS*-Beschleuniger am BNL (Brookhaven National Laboratory) 1964
 - Beobachtung: dominanter Zerfallsmodus $K_L \rightarrow 3 \pi$ mit $CP = -1 \square$
 - Suche nach kleinem Anteil von möglichem CP verletzenden Zerfällen $K_L \rightarrow 2 \pi$ mit CP = +1 (\bullet^*) Szintillator

nobelprize, American loP

*Alternating Gradient Synchrotron

CP – Verletzung bei neutralen Kaonen, nachgefragt

Wieso haben wir den K_L Strahl in eine He – Kammer mit geringer Dichte geleitet?

A) weil Kaonen *K_L* in Materie über Stöße
 abgelenkt werden und so die komplexe
 Rekonstruktion erschweren

B) weil die Pionen aus den Zerfällen der Kaonen K_L in Materie **eingefangen** werden

C) weil Kaonen K_L in Materie **regenerieren**, d.h. über die starke Wechselwirkungen wieder K^0 und \overline{K}^0 erzeugt werden

20 13.6.2023 Mod.

Kaon-Zerfälle: Suche nach CP – Verletzung

Cronin & Fitch beobachten erstmals eine kleine Verletzung der CP – Symmetrie im System neutraler Kaonen

- Beobachtung: dominanter Zerfallsmodus $K_L \rightarrow 3 \pi$ mit CP = -1
- Beobachtung eines kleinen Anteils mit $R = (2, 3 \pm 0, 4) \times 10^{-3}$ an $CP - verletzenden Zerfällen K_L \rightarrow 2 \pi$ mit CP = +1 Szintillator

Trennung der Zerfälle von K_S von K_L

Langlebiger Kaon-Zustand K_L zeigt kleine Verletzung der CP – Symmetrie

- CP Symmetrie ist beim Zerfall von neutralen Kaonen verletzt !!
- ein kleiner Teil der K_L zerfällt in 2 Pionen: $K_L \rightarrow 2 \pi$ mit CP = +1

CP – Verletzung im System der neutralen Kaonen **AKT**

CP – Verletzung bei den Kaonen ist ein sehr kleiner Effekt: kann nicht die beobachtete Baryonen-Asymmetrie im Universum erklären

James Cronin

Val Fitch

" for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons."

Q: nobelprize, American IoP, symmetry magazine

- ermöglicht Wechselwirkung mit Materie: Regenerationseffekte - Strangeness wird verletzt $\Delta S = 2$ (Boxdiagramm)

- Strangeness wird erhalten $\Delta S = 0$
- ermöglicht Wechselwirkung mit Materie: Regenerationseffekte

- zu CP Eigenzuständen $K_1 \& K_2$
- K₁ & K₂: keine Wechselwirkungs-Eigenzustände (starke, schwache)

neutrale

Kaonen

 K_L , K_S

- Erzeugung von K^0 , \overline{K}^0

 \overline{K}^0 . K^0

 $|\bar{d}s\rangle |d\bar{s}\rangle$

- Strangeness wird erhalten $\Delta S = 0$
- ermöglicht Wechselwirkung mit Materie: Regenerationseffekte

- seltener Zerfall von K_L in 2 π

CP – Erhaltung wird verletzt!

Ursache der *CP* – **Verletzung**

Indirekte CP – Verletzung über die Mischung von Kaonen

Ursache der *CP* – **Verletzung**

2

Indirekte CP – Verletzung: K_s & K_L aus Mischung von Zuständen K₁ und K₂

$$K_{s} \rangle = \frac{1}{\sqrt{1+|\varepsilon|^{2}}} \cdot \left(|K_{1}\rangle + \varepsilon \cdot |K_{2}\rangle \right) |K_{L}\rangle = \frac{1}{\sqrt{1+|\varepsilon|^{2}}} \cdot \left(\varepsilon \cdot |K_{1}\rangle + |K_{2}\rangle \right)$$

Q: LANL

zwei Arten von *CP* – Verletzung: ... und direkt direkte CP – Verletzung am Zerfalls-Vertex π K_1 K_2 π - die *CP* – Verletzung erfolgt in diesem Falle direkt am Zerfallsvertex $K_2 \rightarrow 2 \pi$ direkte CP – Verletzung - die **direkte** *CP* – Verletzung ist nochmals ε'~10⁻⁶ wesentlich schwächer ($\sim 10^{-6}$) als die indirekte *CP* – Verletzung ($\sim 10^{-3}$) durch b die Kaon–Oszillationen $K^0 \leftrightarrow \overline{K}^0$ W -ANL t CERNcouri g*celektroschwacher Pinguin* von John Ellis (CERN)* \overline{S}

Exp. Teilchenphysik - ETP

*s. Master- VL: 'Flavour-Physik'

Recap: Kaonzustände und CP

Oszillation von B^0 – Mesonen

Beobachtung im System der neutralen B⁰ – Mesonen*

- die gleichen Effekte wie im K^0 System beobachtet man auch im B^0 System an sog. B Fabriken (z.B. SLAC)
- die CP verletzenden Effekte im B^0 - System sind wesentlich größer

*enthält bottom-Quarks \boldsymbol{b} bzw. Antiquarks $\overline{\boldsymbol{b}}$ Exp. Tei

Oszillation von B^0 – Mesonen*

Beobachtung im System der neutralen B^0 – Mesonen

- die gleichen Effekte wie im K^0 – System beobachtet man auch im B^0 – System an sog. B – Fabriken (z.B. KEK - B)

CPT – **Theorem**

Invarianz von CPT: physikalische Gesetze bleiben unverändert bei einer kombinierten CPT – Transformation

- aufgestellt 1954/55 von Wolfgang Pauli, Gerhart Lüders (& John Bell)
- CPT Theorem Grundlage der Quantenfeldtheorien
- Voraussetzungen für *CPT* Invarianz:

- Gültigkeit der Lorentz-Invarianz
- Kausalität & Lokalität

CPT - Invarianz

- Existenz eines quantenmechanischen Vakuums

Wolfgang Pauli

 \Rightarrow aktuelle Tests von CPT – Invarianz via System K^0 , \overline{K}^0

Symmetrien in der Teilchenphysik

David Gross: 'Physics is more or less the study of symmetries'

34 13.6.2023 Mod. Ex. Phys. III VL 13 <u>symmetry magazine | dimensions of particle physics</u> Exp. Teilchenphysik - ETP

KAPITEL 5.4: SUPERSYMMETRIE

Supersymmetrie (SUSY)

Theorie jenseits des Standardmodells (SM): Umwandlung / Symmetrie von Bosonen 🗇 Fermionen

Supersymmetrie: Teilchenspektrum

SUSY: Aufstellung der ersten supersymmetrischen Quantenfeldtheorie durch J. Wess (KIT) & B. Zumino (1973)

- Teilchen im SM erhalten (schwere) supersymmetrische 'Superpartner'
- Supersymmetrie wird (auf einer unbekannten Energieskala) gebrochen

Supersymmetrie: riesiger Parameterraum

SUSY: alle Wechselwirkungen 'treffen' sich bei einer Energieskala* (Grand Unified Theories, GUTs)

- aber: **minimales** *SUSY* – **Modell** mit **105** neuen (unbekannten) physikalischen Parametern!

Mod. Ex. Phys. III VL 13

*s. VL10 S. 55/56

Supersymmetrie & Dunkle Materie

- hypothetische Theorie jenseits des Standardmodells (SM): eine mögliche Erklärung für die kalte Dunkle Materie im Universum*
 - **SUSY** liefert eine 'natürliche' Erklärung für die Produktion der

Dunkle Materie, nachgefragt von J. Wess

Weshalb sollte SUSY –basierte Dunkle Materie aus Gauginos aufgebaut sein?

A) Weil *Squarks* der starken Wechselwirkung unterliegen, und *Sleptonen* geladen sind...

B) weil *Squarks* und *Sleptonen* als *Bosonen* keine Materiebausteine sein können...

C) weil *Gluinos* stark wechselwirken...

D) weil *Winos* geladen sind...

Julius Wess

Supersymmetrie: experimentelle Tests

SUSY: Teilchen der kalten Dunkle Materie im Universum werden auf der TeV – Massenskala vermutet

- intensive experimentelle Suchen nach supersymmetrischen 'Superpartnern'*

41 13.6.2023 Mod. Ex. Phys. III VL 13 ***S. Master-VL: ´Einführung in die Teilchenphysik´** Exp. Teilchenphysik - ETP

Supersymmetrie: experimentelle Tests

Cham

Q: XENON Collab.

SUSY: Teilchen der kalten Dunkle Materie im Universum werden auf der TeV – Massenskala vermutet

- intensive experimentelle Suchen nach supersymmetrischen 'Superpartnern'*

Dunkle Materie - Suche (XENON)

42 13.6.2023 Mod. Ex. Phys. III VL 13 *s. Master-VL: 'Astroteilchenphysik-I'

KAPITEL 6: *QCD* – QUARKS, GLUONEN & HADRONEN

44 13.6.2023 Mod. Ex. Phys. III VL 13

Entdeckungsjahre der Teilchenphysik

Exp. Teilchenphysik - ETP

wikicommon

KAPITEL 6.1: QUARK-MODELL DER HADRONEN

Isospin – Symmetrie

- Heisenberg: starke Kernkraft unterscheidet nicht zwischen Protonen & Neutronen beide sind Ladungs- / Isospin- Zustände des Nukleons
 - Ladungsunabhängigkeit der starken Kernkraft

$$V_{stark}(p-p) = V_{stark}(p-n) = V_{stark}(n-n)$$

- fast identische **Massen** der Ladungszustände des Nukleons:

m (Proton) = 938,272 MeVm (Neutron) = 939,565 MeV

Q: wikicommons

 $\Delta m \sim 0, 1$ % durch elektromagnetische Wechselwirkung

Isospin – Symmetrie beim Nukleon

- Starker Isospin: Dublett-Struktur
 - innere Symmetrie der starken Wechselwirkung: identische starke Kopplung von Protonen und Neutronen
 - Proton $(I_3 = +\frac{1}{2})$ & Neutron $(I_3 = -\frac{1}{2})$ bilden Isospin Dublett $(I = \frac{1}{2})$

$$I = \frac{1}{2} \qquad I_{3}$$

$$\begin{pmatrix} p \\ n \end{pmatrix} \qquad + \frac{1}{2} \qquad \text{oder} \qquad \frac{|\frac{1}{2}, + \frac{1}{2}}{|\frac{1}{2}, - \frac{1}{2}}$$

mathematischer Formalismus ähnlich zum Spin
 ⇒ SU(2) Symmetrie

- $-up Quark (I_3 = +\frac{1}{2}) \& down Quark (I_3 = -\frac{1}{2})$ bilden Isospin–Dublett ($I = \frac{1}{2}$)
 - $I = \frac{1}{2}$ I_3

- alle anderen Quark-Flavours (c, s, t, b) sind Isospin–Singuletts (starker Isospin)

 $\begin{pmatrix} up \\ down \end{pmatrix} + \frac{1}{2} \quad \text{oder} \quad |\frac{1}{2}, + \frac{1}{2} \rangle \\ |\frac{1}{2}, - \frac{1}{2} \rangle$

Isospin – Symmetrie bei Quarks

Erweiterung auf starken Isospin I von up – und down – Quark

- ähnliche Massen von **up**, **down** Quarks

Q:wikimedia

Isospin – Symmetrie bei Quarks

Erweiterung auf starken Isospin I von up – und down – Quark

- up – Quark ($I_3 = +\frac{1}{2}$) & down – Quark ($I_3 = -\frac{1}{2}$) bilden Isospin–Dublett ($I = \frac{1}{2}$) für starke Wechselwirkung

$$|q\rangle = \begin{pmatrix} |u\rangle \\ |d\rangle \end{pmatrix} = \begin{pmatrix} |I = \frac{1}{2}, I_3 = +\frac{1}{2} \rangle \\ |I = \frac{1}{2}, I_3 = -\frac{1}{2} \rangle \end{pmatrix} \qquad I_3 = -\frac{1}{2} \begin{pmatrix} -\frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

- 'gedrehte' Quarkzustände (erzeugt via unitäre Matrix U) ununterscheidbar*

$$|q'
angle = \left(egin{array}{c} |u'
angle \ |d'
angle
ight) = oldsymbol{U} \left(egin{array}{c} |u
angle \ |u
angle \ |d
angle
ight) = oldsymbol{U} |q
angle$$

 2.4 MeV/c^2

up

4.8 MeV/c²

 $\frac{\frac{2}{3}}{\frac{1}{2}}$

Isospin – Symmetrie bei Pionen

- Pionen ein Isospin-Triplett
 - Pion: gebundener Quark Antiquark Zustand
 - drei Ladungszustände: (π^+, π^0, π^-) mit ähnlichen Massen $m(\pi^{\pm}) = 139,57$ MeV und $m(\pi^0) = 134,98$ MeV
 - Pionen mit *u*, *d* Quarks (Antiquarks) zeigen Isospin Symmetrie (erstes Beispiel einer Flavour – Symmetrie der Quarks)

 π^+

Isospin – Symmetrie bei Pionen

- Pionen ein Isospin-Triplett
 - Pion: gebundener Quark Antiquark Zustand
 - drei Ladungszustände: (π^+, π^0, π^-) mit ähnlichen Massen $m(\pi^{\pm}) = 139,57$ *MeV* und $m(\pi^0) = 134,98$ *MeV*
 - Pionen mit *u*, *d* Quarks (Antiquarks) zeigen Isospin Symmetrie (erstes Beispiel einer Flavour – Symmetrie der Quarks)

$$|\pi\rangle = \begin{pmatrix} -|u\overline{d}\rangle \\ \frac{1}{\sqrt{2}}(|u\overline{u}\rangle - |d\overline{d}\rangle) \\ |\overline{u}d\rangle \end{pmatrix} = \begin{pmatrix} |I = 1, I_3 = +1\rangle \\ |I = 1, I_3 = 0 \rangle \\ |I = 1, I_3 = -1\rangle \end{pmatrix} = \begin{pmatrix} -|\pi^+\rangle \\ |\pi^0\rangle \\ |\pi^-\rangle \end{pmatrix}$$

 π^+

Isospin – Symmetrie: Multiplette

- Mesonen $(q\overline{q})$: Singuletts mitI = 0 (ω) Tripletts mitI = 1 (π, ρ)

- Baryonen (qqq): Dubletts mit I = 1Quadrupletts mit I = 3

$$egin{aligned} &I=1^{\prime}_2 &(p,n)\ &I=3^{\prime}_2 &(\Delta^-\ ,\ \Delta^0\ ,\ \Delta^+\ ,\ \Delta^{++}) \end{aligned}$$

Q: wikicommons