

Moderne Experimentalphysik III – Teilchen und Hadronen

Vorlesung 13 13.6.2023

Recap: Verletzung von P

- Maximale Verletzung der Parität *P*: Wu & Lederman
 - Wu Experiment: Messung der Observable eines **Pseudoskalars**: $\vec{J}_{Kern} \cdot \vec{p}_e$ Antikorrelation der Impulsrichtung \vec{p}_e des Elektrons aus dem β Zerfall von polarisierten ^{60}Co Kernen (Vorzugsrichtung: $\vec{p}_e \uparrow \downarrow \vec{J}_{Kern}$)
 - erfordert Durchführung bei mK Temperaturen (Kontrolle: $E2 \gamma's$)
 - maximale Verletzung der Paritätserhaltung bei schwacher Wechselwirkung
 - Helizität h masseloser Neutrinos: $\overline{v} = RH$, v = LH, gibt es sterile Neutrinos?
 - **Lederman**: Rate von $\pi^+ \rightarrow \mu^+ + \nu$ stark bevorzugt gegen $\pi^+ \rightarrow e^+ + \nu$

Recap: System der neutralen Kaonen & CP

- lacktriangledown CP Verletzung im $q\overline{q}$ System der neutralen Kaonen $|d\overline{s}
 angle$ $|\overline{d}s
 angle$
 - Erzeugung $K^0 \& \overline{K}^0$ durch starke Wechselwirkung (Erhaltung von S)
 - Ladungskonjugation CP

$$CP |K^0\rangle = |\overline{K}^0\rangle$$

$$CP | \overline{K}^0 \rangle = | K^0 \rangle$$

 $K^0 \& \overline{K}^0$ sind **keine** CP — Eigenzustände

- Propagation: CP - Eigenzustände $K_1 \& K_2$ mit Eigenwerten +1 -1

$$CP |K_1\rangle = +1 |K_1\rangle$$

$$CP |K_2\rangle = -1 |K_2\rangle$$

Neutrale Kaonen: Effekte bei Propagation

- Propagation: starke Wechselwirkung erhält CP Symmetrie & Strangeness
 - starke Wechselwirkung erhält Quantenzahl 'Strangeness' & wir beobachten bisher keine Verletzung der CP - Symmetrie, obwohl die QCD* dies erlaubt (weiterer Hinweis auf neue Symmetrie & das Axion?)

wir betrachten nun den Effekt der schwachen Wechselwirkung bei der Propagation im Vakuum (keine Reaktionen der K^0 mit Materie via QCD!!)

- Propagation: schwache Wechselwirkung induziert Kaon-Oszillationen
 - ein Prozess der schwachen Wechselwirkung in 2. Ordnung:
 Austausch von 2 virtuellen W Bosonen

durch **schwache** Ww. **oszilliert**

Ww. erzeugt

- Propagation: schwache Wechselwirkung induziert Kaon-Oszillationen
 - ein Prozess der schwachen Wechselwirkung in 2. Ordnung:
 Austausch von 2 virtuellen W Bosonen

durch **starke** Ww. erzeugt durch **schwache** Ww. **oszilliert**

Mod. Ex. Phys. III VL 13

- Neutrale Kaonen: das 'Box-Diagramm'* führt zur Kaon-Mischung $K^0 \Leftrightarrow \overline{K}^0$
 - ein Prozess der schwachen Wechselwirkung in **2. Ordnung**: Strangeness-Oszillationen mit $\Delta S = 2$

durch **starke** Ww. erzeugt durch schwache
Ww. oszilliert

Strangeness-Oszillationen bei der Ausbreitung neutraler Kaonen

- Recap: starke Ww. ist Strangeness — erhaltend, d.h. damit ist $\Gamma_{QCD}(K^0 o \overline{K}^0) = 0$

13.6.2023

■ Wenn CP — Erhaltung verletzt, dann gilt $\Gamma(K^0 \to \overline{K}^0) \neq \Gamma(\overline{K}^0 \to K^0)$

CP — Symmetrie: ist schwache Ww. von Teilchen (K^0) & Antiteilchen (\overline{K}^0) identisch ??

- hohe Frequenz der Kaon-Oszillation: $f = 5, 3 \cdot 10^9 \, s^{-1} \Rightarrow \text{ideales Labor für } CP$

■ Wenn CP — Erhaltung verletzt, dann gilt $\Gamma(K^0 \to \overline{K}^0) \neq \Gamma(\overline{K}^0 \to K^0)$

13.6.2023

CP — Symmetrie: ist schwache Ww. von Teilchen (K^0) & Antiteilchen (\overline{K}^0) identisch ??

wir nutzen die Oszillation $K^0 \leftrightarrow \overline{K}^0$ bei der Propagation aus, d.h. wir benötigen \overline{K}^0 keinen Vergleich eines Materiestrahls rel. zum Antimaterie-Strahl wie z.B. bei $\nu's$

- hohe Frequenz der Kaon-Oszillation: $f = 5, 3 \cdot 10^9 \, s^{-1} \Rightarrow \text{ideales Labor für } CP$

Indikator für CP: K^0 & \overline{K}^0 mischen zu den CP – Eigenzuständen K_1 & K_2

$$K^{0} \longrightarrow \overline{K}^{0} \longrightarrow K^{0} \longrightarrow \overline{K}^{0} \longrightarrow \overline{K}$$

CP - Eigenzustände K₁ & K₂

Neutrale Kaonen: Zerfallsprozesse in Pionen

- Zerfall neutraler Kaonen: Strangeness-Verletzung
 - Kaonen werden durch Prozesse der schwachen Wechselwirkung zerfallen: Beispiel 2π Zerfall

Neutrale Kaonen: Zerfallsprozesse in Pionen

- **Zerfall neutraler Kaonen: was ist** CP Symmetrie von 2 π bzw. 3 π Zerfällen?
 - System K_1 und K_2 mit seinen definierten CP **Eigenwerten** kann bei einer **perfekten** CP **Symmetrie** nur in unterschiedliche Pion-Systeme zerfallen: 2π oder 3π Zerfälle

$$CP |K_1\rangle = +1 |K_1\rangle$$

$$CP |K_2\rangle = -1 |K_2\rangle$$

CP – Symmetrie?

Neutrale Kaonen: Zerfallsprozesse in 2 Pionen

■ CP – Zustände von 2 Pionen (π^+, π^-) oder (π^0, π^0) : CP = +1

Parität P & C-Parität & CP eines Systems aus 2 Pionen mit $\ell = 0$

$$P\left|\pi^{+}\pi^{-}\right\rangle = (-1)^{\ell}\cdot(-1)\cdot(-1)\left|\pi^{+}\pi^{-}\right\rangle = +1\left|\pi^{+}\pi^{-}\right\rangle$$

$$C |\pi^+\pi^-\rangle = +1 |\pi^+\pi^-\rangle$$

$$CP \mid \pi^+\pi^- \rangle = +1 \mid \pi^+\pi^- \rangle$$

$$CP |\pi^0\pi^0\rangle = +1 |\pi^0\pi^0\rangle$$

$$CP = 2 \pi$$

13.6.2023

Neutrale Kaonen: Zerfallsprozesse in 3 Pionen

 \blacksquare CP – Zustände von 3 Pionen (π^+, π^-, π^0) oder (π^0, π^0, π^0) : CP = -1

Parität P & C-Parität & CP eines Systems aus 3 Pionen mit $\ell = 0$

$$P \left| \pi^0 \pi^+ \pi^- \right\rangle = (-1)^{\ell} \cdot (-1) \cdot (-1) \cdot (-1) \cdot \left| \pi^0 \pi^+ \pi^- \right\rangle = -1 \left| \pi^0 \pi^+ \pi^- \right\rangle$$

$$C |\pi^0\pi^+\pi^-\rangle = +1 |\pi^0\pi^+\pi^-\rangle$$

$$CP \mid \pi^0 \pi^+ \pi^-
angle = -1 \mid \pi^0 \pi^+ \pi^-
angle$$

$$CP |\pi^0\pi^0\pi^0\rangle = -1 |\pi^0\pi^0\pi^0\rangle$$

$$CP = \frac{1}{3\pi}$$

Neutrale Kaonen: Zerfallsprozesse in Pionen

- System der oszillierenden Kaonen: wir betrachten nun Zerfallsprozesse
 - die Kaon-Zerfälle in 2 bzw. 3 Pionen unterscheiden sich nun durch ihre Lebensdauer τ : wir benennen daher diese Zerfalls-Zustände mit K_S bzw. K_L
 - Kaonzerfall (M=497,6~MeV) in 2 Pionen: 2 π^0 ($M_{ges}=2\times135~MeV$): \Rightarrow großer Phasenraum* für die Pion-Impulse: \Rightarrow kurzes τ (8.9 · 10⁻¹¹s) K_S kurzlebiger Kaon-Zustand K_S
 - Kaonzerfall ($M = 497, 6 \ MeV$) in 3 Pionen: 3 π^0 ($M_{ges} = 3 \times 135 \ MeV$): \Rightarrow kleiner Phasenraum* für die Pion-Impulse: \Rightarrow langes τ (5. 2 · 10⁻⁸s) K_L langlebiger Kaon-Zustand K_L

Mod. Ex. Phys. III VL 13

Neutrale Kaonen: Zerfallsprozesse in Pionen

System der oszillierenden Kaonen: Zeitdauer der Zerfallsprozesse

- über die Flug-zeit t (-strecke) der Kaonen lassen sich K_S von K_L trennen

13.6.2023 Mod. Ex. Phys. III VL 13 Exp. Teilchenphysik - ETP

Trennung der Zerfälle von K_S von K_L

- Trennung von kurzlebigen und langlebigen Kaonen über Flugzeit
- bisher: perfekte *CP* –Symmetrie beim Zerfall von neutralen Kaonen
- Test CP -Symmetrie: untersuche Zerfall des K_L in Pionen (bestimme # der π)

Mod. Ex. Phys. III VL 13

Kaon-Zerfälle: Suche nach CP – Verletzung

Szintillator

- Cronin & Fitch untersuchen CP Symmetrie im System neutraler Kaonen am AGS*-Beschleuniger am BNL (Brookhaven National Laboratory) 1964
 - Beobachtung: dominanter Zerfallsmodus $K_L \rightarrow 3 \pi$ mit $CP = -1 \square$
 - Suche nach kleinem Anteil von möglichem *CP* verletzenden Zerfällen

 $K_L \rightarrow 2 \pi \text{ mit } CP = +1 (6^*)$

James Cronin

Val Fitch

^{*}Alternating Gradient Synchrotron

Ջ: nobelprize, American IoP

CP – Verletzung bei neutralen Kaonen, nachgefragt

■ Wieso haben wir den K_L Strahl in eine He — Kammer mit geringer Dichte geleitet?

A) weil Kaonen *K_L* in Materie über Stöße **abgelenkt** werden und so die komplexe Rekonstruktion erschweren

B) weil die Pionen aus den Zerfällen der Kaonen *K_L* in Materie **eingefangen** werden

C) weil Kaonen K_L in Materie **regenerieren**, d.h. über die starke Wechselwirkungen wieder K^0 und \overline{K}^0 erzeugt werden

James Cronin

Val Fitch

Mod. Ex. Phys. III VL 13

Kaon-Zerfälle: Suche nach CP – Verletzung

- Cronin & Fitch beobachten erstmals eine kleine Verletzung der CP – Symmetrie im System neutraler Kaonen
 - Beobachtung: dominanter Zerfallsmodus $K_L \rightarrow 3 \pi$ mit CP = -1
 - Beobachtung eines kleinen Anteils mit $R=(2,3\pm0,4)\times 10^{-3}$ an CP- verletzenden Zerfällen $K_L\to 2\pi$ mit CP=+1 Szintillator

James Cronin

Val Fitch

Ջ: nobelprize, American IoP

Trennung der Zerfälle von K_S von K_L

- Langlebiger Kaon-Zustand K_L zeigt kleine Verletzung der CP Symmetrie
 - CP Symmetrie ist beim Zerfall von neutralen Kaonen verletzt!!
 - ein kleiner Teil der K_L zerfällt in 2 Pionen: $K_L \rightarrow 2 \pi$ mit CP = +1

CP – Verletzung im System der neutralen Kaonen 💉 🚺

■ *CP* — Verletzung bei den Kaonen ist ein sehr kleiner Effekt: kann nicht die beobachtete Baryonen-Asymmetrie im Universum erklären

"for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons."

James Cronin

Val Fitch

Q: nobelprize, American IoP, symmetry magazine

Recap: Effekte bei Propagation neutraler Teilchen

 $K^0 \Leftrightarrow \overline{K}^0$

- \overline{K}^0, K^0
- Erzeugung von K^0 , \overline{K}^0
- Strangeness wird erhalten $\Delta S = 0$
- ermöglicht Wechselwirkung mit Materie: Regenerationseffekte

- Propagation mit $K^0 \Leftrightarrow \overline{K}^0$ Strangeness-Oszillationen
- Strangeness wird verletzt \(\Delta S = 2 \)
 (Boxdiagramm)

Q: symmetry magazine

Recap: Effekte bei Propagation neutraler Teilchen

$$\overline{K}^0, K^0$$

$$K_1, K_2$$

- Erzeugung von K^0 , \overline{K}^0
- Strangeness wird erhalten $\Delta S = 0$
- ermöglicht Wechselwirkung mit Materie: Regenerationseffekte

- Mischung von K^0 und \overline{K}^0 zu CP Eigenzuständen K_1 & K_2
- *K*₁ & *K*₂: keine Wechselwirkungs-Eigenzustände (starke, schwache)

Mod. Ex. Phys. III VL 13 Exp. Teilchenphysik - ETP

Recap: Effekte bei Propagation neutraler Teilchen

 K_L, K_S

- Erzeugung von K^0 , \overline{K}^0
- Strangeness wird erhalten $\Delta S = 0$
- ermöglicht Wechselwirkung mit Materie: Regenerationseffekte

- seltener Zerfall von K_L in 2 π

CP — Erhaltung wird verletzt!

Ursache der *CP* − Verletzung

■ Indirekte *CP* –Verletzung über die Mischung von Kaonen

- *CP* – Erhaltung:

Zustände mischen nicht

$$K_S = K_1$$
 $K_L = K_2$

- 'indirekte' *CP* - Verletzung (dominant):

Zustände mischen

$$K_S \neq K_1 \quad K_L \neq K_2$$

da Oszillationsraten nicht gleich

$$\Gamma(K^0 \to \overline{K}^0) \neq \Gamma(\overline{K}^0 \to K^0)$$

Ursache der *CP* – Verletzung

Indirekte CP -Verletzung: $K_s \& K_L$ aus Mischung von Zuständen K_1 und K_2

$$|K_{s}\rangle = \frac{1}{\sqrt{1+|\varepsilon|^{2}}} \cdot (|K_{1}\rangle + \varepsilon \cdot |K_{2}\rangle) \quad |K_{L}\rangle = \frac{1}{\sqrt{1+|\varepsilon|^{2}}} \cdot (\varepsilon \cdot |K_{1}\rangle + |K_{2}\rangle)$$

- 'indirekte' *CP* — Erhaltung (dominant):

Zustände mischen

$$K_S \neq K_1 \quad K_L \neq K_2$$

K_L enthält eine kleine Beimischung von K₁ als Ursache des Effekts

zwei Arten von *CP* – Verletzung: ... und direkt

- direkte *CP* − Verletzung am Zerfalls-Vertex
 - die CP Verletzung erfolgt in diesem Falle **direkt am Zerfallsvertex** $\mathit{K}_2 \to 2~\pi$
 - die **direkte** CP Verletzung ist nochmals wesentlich schwächer ($\sim 10^{-6}$) als die **indirekte** CP Verletzung ($\sim 10^{-3}$) durch die Kaon–Oszillationen $K^0 \leftrightarrow \overline{K}^0$

'elektroschwacher Pinguin' von *John Ellis* (*CERN*)*

Recap: Kaonzustände und CP

Erzeugung: starke Wechselwirkung

Erhaltung der Strangeness S definierte Massenzustände

 K^0

 \overline{K}^0

Propagation

Mischung: schwache Wechselwirkung

Strangeness-Oszillationen $\Delta S = 2$ via Boxdiagramme

$$K^0 \Leftrightarrow \overline{K}^0$$

Zerfall: schwache Wechselwirkung

2 Pioner
$$CP = +1$$

3 Pioner
$$CP = -1$$

CP – Symmetrie:Eigenzustände von CP

$$K_1$$
 $CP = +1$ $CP -$
 K_2 $CP = -1$ Invarianz

Oszillation von B^0 – Mesonen

Beobachtung im System der neutralen B^0 – Mesonen*

- die gleichen Effekte wie im K^0 – System beobachtet man auch im B^0 – System

an sog. B – Fabriken (z.B. SLAC)

- die *CP* – verletzenden Effekte im B^0 – System sind wesentlich größer

SLAC: BaBar-Experiment

Q: quantumdiaries, BABAR

31

Oszillation von B^0 – Mesonen*

Beobachtung im System der neutralen B^0 – Mesonen

- die gleichen Effekte wie im K^0 – System beobachtet man auch im B^0 – System

an sog. B – Fabriken (z.B. KEK - B)

CPT – Theorem

- Invarianz von *CPT*: physikalische Gesetze bleiben unverändert bei einer kombinierten *CPT* − Transformation
 - aufgestellt 1954/55 von Wolfgang Pauli, Gerhart Lüders (& John Bell)
 - CPT Theorem Grundlage der Quantenfeldtheorien
 - Voraussetzungen für *CPT* **Invarianz**:

- Gültigkeit der Lorentz-Invarianz

- Kausalität & Lokalität

CPT - Invarianz

- Existenz eines quantenmechanischen Vakuums
 - \Rightarrow aktuelle Tests von CPT Invarianz via System K^0 , \overline{K}^0

Symmetrien in der Teilchenphysik

Mod. Ex. Phys. III VL 13

■ David Gross: 'Physics is more or less the study of symmetries'

34

KAPITEL 5.4: SUPERSYMMETRIE

Mod. Ex. Phys. III VL 13 Exp. Teilchenphysik - ETP

13.6.2023

Supersymmetrie (SUSY)

■ Theorie jenseits des Standardmodells (SM): Umwandlung / Symmetrie von

Bosonen ⇔ Fermionen

 $s = \frac{1}{2}$ s = 0, 1Bosonen **Fermionen**

Pauli'sches Ausschluss-Prinzip

Spin-Statistik Theorem

symmetrisch antisymmetrisch bei Austausch von 2 Teilchen

 $Q | Fermion \rangle = | Boson \rangle$

Q: SUSY — Operator

 $Q |Boson\rangle = |Fermion\rangle$

Q: SUSY — Operator

Supersymmetrie: Teilchenspektrum

- SUSY: Aufstellung der ersten supersymmetrischen Quantenfeldtheorie durch J. Wess (KIT) & B. Zumino (1973)
 - Teilchen im *SM* erhalten (schwere) supersymmetrische 'Superpartner'
 - Supersymmetrie wird (auf einer unbekannten Energieskala) gebrochen

Mod. Ex. Phys. III VL 13 Exp. Teilchenphysik - ETP

Supersymmetrie: riesiger Parameterraum

- SUSY: alle Wechselwirkungen 'treffen' sich bei einer Energieskala* (Grand Unified Theories, GUTs)
 - aber: minimales SUSY Modell mit 105 neuen (unbekannten) physikalischen Parametern!

*s. VL10 S. 55/56 Exp. Teilchenphysik - ETP

Supersymmetrie & Dunkle Materie

hypothetische Theorie jenseits des Standardmodells (SM): eine mögliche Erklärung für die kalte Dunkle Materie im Universum*

- **SUSY** liefert eine 'natürliche' Erklärung für die Produktion der

sog. 'kalten' Dunklen Materie

Gauginos

Dunkle Materie, nachgefragt von J. Wess

■ Weshalb sollte *SUSY* —basierte Dunkle Materie aus Gauginos aufgebaut sein?

B) weil *Squarks* und *Sleptonen* als *Bosonen* keine Materiebausteine sein können...

C) weil Gluinos stark wechselwirken...

TeV -Skala

D) weil Winos geladen sind...

Supersymmetrie: experimentelle Tests

- SUSY: Teilchen der kalten Dunkle Materie im Universum werden auf der TeV Massenskala vermutet
 - intensive experimentelle Suchen nach supersymmetrischen 'Superpartnern'*

Suche nach SUSY am LHC

Supersymmetrie: experimentelle Tests

- SUSY: Teilchen der kalten Dunkle Materie im Universum werden auf der TeV – Massenskala vermutet
 - intensive experimentelle Suchen nach supersymmetrischen 'Superpartnern'*

*s. Master-VL: 'Astroteilchenphysik-I'

Entdeckungsjahre der Teilchenphysik

Historie der Teilchen-Entdeckungen

...had I foreseen this, I would have gone into botany ...

Entdeckungsjahre der Teilchenphysik

1890 **■** Historie der Teilchen-**Entdeckungen**

1910

1920

1900

Entdeckungsjahre der Teilchenphysik

Historie der Teilchen-Entdeckungen

KAPITEL 6.1: QUARK-MODELL DER HADRONEN

Mod. Ex. Phys. III VL 13 Exp. Teilchenphysik - ETP

Isospin – Symmetrie

■ Heisenberg: starke Kernkraft unterscheidet nicht zwischen Protonen & Neutronen

⇒ beide sind Ladungs- / Isospin- Zustände des Nukleons

- Ladungsunabhängigkeit der starken Kernkraft

$$V_{stark}(p-p) = V_{stark}(p-n) = V_{stark}(n-n)$$

- fast identische **Massen** der Ladungszustände des Nukleons:

$$m$$
 (Proton) = 938, 272 MeV

 $m ext{ (Neutron)} = 939,565 MeV$

 $\Delta m \sim 0$, 1 % durch elektromagnetische Wechselwirkung

Proton

Neutron

Isospin – Symmetrie beim Nukleon

- Starker Isospin: Dublett-Struktur
 - innere Symmetrie der starken Wechselwirkung: identische starke Kopplung von Protonen und Neutronen
 - Proton $(I_3 = +\frac{1}{2})$ & Neutron $(I_3 = -\frac{1}{2})$ bilden Isospin Dublett $(I = \frac{1}{2})$

$$I = \frac{1}{2}$$
 I_3

$$\begin{pmatrix} p \\ n \end{pmatrix} + \frac{1}{2} & \text{oder} \\ -\frac{1}{2} & \text{oder} \\ |\frac{1}{2}, -\frac{1}{2} \rangle$$

- mathematischer Formalismus ähnlich zum Spin ⇒ *SU*(2) Symmetrie

Isospin – Symmetrie bei Quarks

- **Erweiterung auf starken Isospin** *I* von up und down Quark
 - ähnliche Massen von **up**, **down** Quarks

$$I_3 = +\frac{1}{2}$$

4.8 MeV/<mark>/</mark>2

-up - Quark ($I_3 = +\frac{1}{2}$) & down - Quark ($I_3 = -\frac{1}{2}$) bilden Isospin-Dublett $(I = \frac{1}{2})$

$$I = \frac{1}{2}$$
 I_3

$$I_3 = -\frac{1}{2}$$

$$\begin{pmatrix} up \\ down \end{pmatrix} + \frac{1}{2} \quad \text{oder} \quad \left| \frac{1}{2}, + \frac{1}{2} \right\rangle$$
$$= \frac{1}{2}, -\frac{1}{2} \rangle$$

- alle anderen Quark-Flavours (c, s, t, b) sind Isospin—Singuletts (starker Isospin)

ISO

Isospin – Symmetrie bei Quarks

Erweiterung auf starken Isospin I von up — und down — Quark

-
$$up$$
 - Quark ($I_3 = + \frac{1}{2}$) & $down$ - Quark ($I_3 = - \frac{1}{2}$) bilden Isospin-Dublett ($I = \frac{1}{2}$) für starke Wechselwirkung

4.8 MeV/c²

$$|q\rangle = \begin{pmatrix} |u\rangle \\ |d\rangle \end{pmatrix} = \begin{pmatrix} |I = \frac{1}{2}, I_3 = +\frac{1}{2} \rangle \\ |I = \frac{1}{2}, I_3 = -\frac{1}{2} \rangle \end{pmatrix}$$

$$I_3 = -\frac{1}{2}$$

- 'gedrehte' Quarkzustände (erzeugt via unitäre Matrix U) ununterscheidbar*

$$|q'\rangle = \begin{pmatrix} |u'\rangle \\ |d'\rangle \end{pmatrix} = U \begin{pmatrix} |u\rangle \\ |d\rangle \end{pmatrix} = U |q\rangle$$

A: wikicommons

Isospin – Symmetrie bei Pionen

- Pionen ein Isospin-Triplett
 - Pion: gebundener *Quark Antiquark* Zustand

- drei Ladungszustände: (π^+,π^0,π^-) mit ähnlichen Massen $m(\pi^\pm)=139,57~MeV$ und $m(\pi^0)=134,98~MeV$
- Pionen mit u, d Quarks (Antiquarks) zeigen Isospin Symmetrie (erstes Beispiel einer Flavour Symmetrie der Quarks)

$$I = 1$$
Triplett-Zustand

2: wikicommons

Isospin – Symmetrie bei Pionen

- Pionen ein Isospin-Triplett
 - Pion: gebundener *Quark Antiquark* Zustand

- drei Ladungszustände: (π^+,π^0,π^-) mit ähnlichen Massen $m(\pi^\pm)=139,57~MeV$ und $m(\pi^0)=134,98~MeV$
- Pionen mit u, d Quarks (Antiquarks) zeigen Isospin Symmetrie (erstes Beispiel einer Flavour Symmetrie der Quarks)

$$|\pi\rangle = egin{pmatrix} -|u\overline{d}
angle \ |\overline{u}
angle & -|u\overline{d}
angle \ |I=1,I_3=+1
angle \ |I=1,I_3=0
angle \ |I=1,I_3=-1
angle \end{pmatrix} = egin{pmatrix} -|\pi^+
angle \ |\pi^0
angle \ |\pi^-
angle \end{pmatrix}$$

Exp. Teilchenphysik - ETP

Isospin – Symmetrie: Multiplette

■ Multiplett-Struktur bei Mesonen und Baryonen mit u, d Quarks

- Mesonen
$$(q\overline{q})$$
: Singuletts mit $I=0$ (ω) Tripletts mit $I=1$ (π,ρ)

- Baryonen (qqq): Dubletts mit $I=\frac{1}{2}$ (p,n)

Quadrupletts mit $I=\frac{3}{2}$ (Δ^- , Δ^0 , Δ^+ , Δ^{++})

- 2*I* + 1 Zustände