

Moderne Experimentalphysik III – Teilchen und Hadronen

Vorlesung 16 22.6.2023

Recap: Quarkonia & *QCD* – **Freiheitsgrad Farbe**

Charmonium $c\overline{c}$, Bottomonium $b\overline{b}$ & Top Quark *t*

- gebundener $c\overline{c}$ Quarkonium–Zustand: Masse M = 3, 1 GeV

Spektroskopie: Quark–Quark–Potenzial $V(r) = -\frac{4}{3} \cdot \alpha_s(r) \cdot \hbar c \cdot \frac{1}{r} + \kappa \cdot r$

- gebundener $b\overline{b}$ Quarkonium-Zustand bei Masse M = 9, 5 GeV
- Top-Quark *t* mit M = 172, 8 GeV: schwacher Zerfall $t \rightarrow b$ in $\sim 10^{-25} s$

SU $(3)_{C}$: Gluonen als Vermittler der QCD – Farbkraft (Spin-1 Boson)

- 3 Farbladungen r, g, b und 3 Antifarben $\overline{r}, \overline{g}, \overline{b}$
- 8 Gluonzustände: $r\overline{b}$, $r\overline{g}$, $b\overline{g}$, $b\overline{r}$, $g\overline{r}$, $g\overline{b}$ + 2 farbneutrale Gluonen
- farbneutrale Mesonen $q\overline{q}$ & Baryonen qqq , Suche nach Exotika...

Messung der Stärke von α_S in der *QCD*

Elektron–Proton Kollisionen bei hohem Impulstransfer Q^2

Messungen von α_S an HERA (Hadron-Elektron-Ring Anlage) am DESY
 Betrieb: 1992 ... 2007
 mit Experimenten H1 und ZEUS*

Laufende Kopplungs'konstante' α_s in der *QCD*

Starke Kopplung α_s wird schwächer bei kleineren qq – Abständen

- α_s (starke Kopplung) abhängig vom vom Impulsübertrag Q² zwischen den beteiligten Teilchen

- Grund:

Vakuumzustand der QCD ist komplex, da dabei die Emission von Gluonen involviert ist

Laufende Kopplungs'konstante' α_s in der *QCD*

Starke Kopplung α_s : asymptotische Freiheit vs. 'confinement'

Kopplung α nimmt ab bei größerem r

- Photon als Eichboson der **QED**:

Kopplungsstärke α_S der starken Wechselwirkung

QCD – Effekte: Prozesse der Vakuumpolarisation

Karlsruhe Institute of Technology

e

QCD – Effekte: Prozesse der Vakuumpolarisation

Kopplungsstärke *α*_S der starken Wechselwirkung

- Photon als Eichboson der *QED*:
 Effekt der Vakuumpolarisation (Lamb–Shift,...)
 Kopplung α nimmt ab bei größerem r
- Gluonen als Eichbosonen der QCD: tragen selber eine QCD – Ladung (Farbe/Antifarbe)!
- zwei gegenläufige Effekte in der QCD:

Abschirmung (Screening) Anti-Abschirmung (Antisceening) der 'nackten' Farbladung (r, g, b) eines Quarks q

QCD – Effekte: Prozesse der Vakuumpolarisation

Abschirmung der Farbladung eines 'nackten' Quarks q

- Erzeugung von virtuellen Quark-Antiquark $q\overline{q}$ Paaren (analog zur QED) die $q\overline{q}$ - Paare tragen aber keine Netto-Farbladung
- Anti-Abschirmung der Farbladung des 'nackten' Quarks q
 - emittiertes Gluon g erzeugt 2 **virtuelle Gluonen**, diese nehmen Farbladungen mit \Rightarrow diese verteilt sich auf ein größeres Volumen (dominant bei <u>kleinen</u> Abständen, sofern # Flavour-Arten $n_f \leq 16$)

Q: cronodor

Karlsruhe Institute of Technology

Laufende Kopplungs'konstante' α_s in der *QCD*

Starke Kopplung α_S wird schwächer für ...

- ... höhere Energien \sqrt{s} / höhere Impulsüberträge Q^2 / größere Massenskalen μ
- ... kleinere Abstände r

Laufen der starken Kopplung *α*_S : Beiträge durch Quarks & Gluonen

$$\alpha_{s}\left(\boldsymbol{Q}^{2}\right) = \frac{\alpha_{s}(\mu)}{1 + \frac{33 - 2 \cdot n_{f}}{12 \pi} \cdot \alpha_{s}(\mu) \cdot \ln(\boldsymbol{Q}^{2}/\mu^{2})}$$

Quarks: Zahl n_f der Flavour–Arten Gluonen: Zahl n_c der Farb–Ladungen × 11

Exp. Teilchenphysik - ETP

Laufende Kopplungs'konstante' α_S : Messungen

QCD

- Starke Kopplung α_S bei verschiedenen experimentellen Impulstransfers Q
 - Energie–Bezugspunkt für α_S ist Masse M_Z des Z^0 – Bosons (90 GeV)

 $\alpha_s(M_Z) = 0,1179 \pm 0,0010$

- Wert von α_s hängt implizit ab von der Zahl der **Farbfreiheitsgrade** η_c , aus aus Anpassung an experim. Daten:

 $\eta_{\it C}=3,03~\pm0,12$

Flussschläuche der QED & QCD

11 22.6.2023 Mod. Ex. Phys. III VL 16

Flussschläuche der QED & QCD

Starke Farbkraft: Selbstwechselwirkung Gluonen

- bei extrem kurzen Abständen sollten sich die Quarks entsprechend der QCD (Wilzeck, Gross, Politzer) wie nahezu freie Teilchen verhalten
- ermöglicht die Anwendung des Quark-Parton Modells zur Interpretation der tiefinelastischen eN – Streuung

"for the discovery of **asymptotic freedom** in the theory of the strong interaction"

Gross

Karlsruhe Institute of Technology

Starke Farbkraft: Hadronisierung

QCD: Konzept der Hadronisierung

- bei harten Stoßprozess wird das qq –Paar räumlich voneinander getrennt & die Energie im farbelektrischen Flussschlauch wird so groß, dass ein weiteres Quark–Antiquark Paar erzeugt wird: man erhält 2 Mesonen
- bei $d \cong 1 \ fm$ erreicht man einen Wert von $E_{pot} \approx 1 \ GeV$, dies reicht aus für $q\overline{q}$ Paar
- Prozess der **Hadronisierung** kann sich mehrmals wiederholen:

⇒ Ausbildung eines hadronischen Jets

 \overline{q}

Starke Farbkraft: Jetstrukturen

ischen Jets

QCD: Ausbildung von hadronischen Jets Pionen, schwere Mesonen, Nukleonen, Hyperonen,...

Starke Farbkraft: Nachweis von 3 – Jet Ereignissen schulet und Geberleuten Geb

DESY: erster Nachweis von Gluonen am **PETRA** Collider

PETRA:

Positron-Elektron Tandem Ring Anlage

TASS0

Starke Farbkraft: Nachweis von 3 – Jet Ereignissen

■ 1979: erster Nachweis von Gluonen über hadronische 3 – Jet Signaturen

- Abstrahlung eines 'harten' Gluons & Ausbildung von 3 Jets:

1 Jet von q, 1 Jet von \overline{q} , 1 Jet von g

DATA ARE NATURALLY EXPLAINED BY HARD GLUDA BREMSSTRAHLUNG etc -> 999

Starke Farbkraft: Jetstrukturen

hadronische Jets im CMS Experiment am LHC

- Analysen* von kinematischen Größen:
- *p_T* : transversaler Impuls
 E_T : transversale Energie

Jet-Multiplizität

Mod. Ex. Phys. III VL 16

*s. Master-VL 'Teilchenphysik'

Starke Farbkraft: Jetstrukturen

hadronische Jets im CMS Experiment am LHC

2 top–Quarks, die in hadronische Jets zerfallen

EINSCHUB – ANZAHL DER FARBLADUNGEN

Anzahl Quark – Farbladungen / – Flavourzustände \mathcal{L}_{f}^{2}

Bestimmung von Wirkungsquerschnitts-Verhältnis R ...

$$R = \frac{\sigma(e^+e^- \to Hadronen)}{\sigma(e^+e^- \to \mu^+\mu^-)} = \frac{\eta_c}{3} \cdot \Sigma Q_f^2$$

... an e^+e^- – Collidern mit hohem \sqrt{s}

- e^+e^- – Annihilation (virtuelle Photonen γ) in :

Quark–Antiquark Paaren: $u\overline{u}, d\overline{d}, s\overline{s}...$ Lepton–Antilepton Paaren: $e^+e^-, \mu^+\mu^-, \tau^+\tau^-$

Anzahl Quark – Farbladungen / – Flavourzustände

Messungen der Observable R

- ab der kinematischen ~ 3, 7 *GeV*: ~ 10, 6 GeV Schwelle wird ein Schwelle Schwelle neuer Flavourzustand **c** – Quark **b** – Quark (*c*, *b*) erzeugt R $R = 3 \cdot \Sigma Q_f^2$ 11/310/3*udscb* b d 2 *udsc* U S С +2/3 - 1/3 - 1/3 + 2/3 - 1/3 Q_f uds Q_f^2 1/9 1/9 4/9 1/9 $2 m_c$ $2 m_b$ CMS – Energie ΣQ_f^2 \sqrt{S}

Gesamtüberblick über die Hadron–Produktion Hadronen **10³** - niedrige Energien: *u*, *d*, *s* С **10²** Verhältnis R drei Flavours *u*, *d*, *s* 10 - mittlere 1 **Energien**: 10/3 11/3 2 weitere Flavours *c*, *b* 10 100 + FARBE Schwerpunktsenergie \sqrt{s} (*GeV*)

ENDE EINSCHUB

Anzahl Quark – Farbladungen / – Flavourzustände

Messungen der Observable R

- man beobachtet **5** Quark–Flavour–Zustände (top t zu kurzlebig für $t\bar{t}$)
- ohne Einbeziehung der 3 Farbfreiheitsgrade keine Übereinstimmung!

Recap: Resonanzen

- direkt an der kinematischen Schwelle beobachtet man Resonanzen* wie das J/Ψ (Charmonium) oder Υ (Bottomonium)

*vgl. Kap. 6.2 "Quarkonium"

Weitere Evidenz für Farbladung

Zerfallsrate von neutraler Pionen π^0 in 2 Gammas

- Zerfallsprozess $\pi^0 \rightarrow \gamma + \gamma$: beeinflusst durch Anzahl der QCD – Farbladungen

- Zerfallsprozess $\pi^0 \rightarrow \gamma + \gamma$: mit 3 Quark- (3 Antiquark-) Farben:

Amplitude A \times 3Rate ($\sim A^2$) \times 9

KAPITEL 6.4: STRUKTUR DER NUKLEONEN UND PARTONEN

Struktur von Nukleonen: Einführung

Jenseits des 'naiven' Parton-Modells mit 3 Valenzquarks

- Nukleonen sind komplexe Systeme bestehend aus Valenzquarks, Gluonen und Seequarks:
 ⇒ erweitertes Partonenmodell
- Frage 1: wie baut sich der Spin des Nukleons auf?
 ⇒ sehr komplexe Fragestellung*
- Frage 2: wie teilt sich der Impuls der Partonen auf?
 ⇒ wichtig für Collider–Experimente, z.B. am LHC genaue Kenntnis der Parton–Struktur eines Nukleons erforderlich

RECAP: elastische Streuprozesse

Beschreibung der Streuung mit 2 Formfaktoren $G_E(Q^2) \& G_M(Q^2)$

- 'elektrische' Wechselwirkung: Kopplung an die Verteilung der elektrischen Ladung im Nukleon
 ⇒ elektrischer Formfaktor
- 'magnetische' Wechselwirkung: Kopplung an die Verteilung des magnetischen Moments im Nukleon
 - magnetischer Formfaktor

RECAP: elastische Streuprozesse

Rosenbluth–Formel: Beschreibung elektrische / magnetische Streuung

- differentieller Streuquerschnitt am Nukleon als Funktion von G_E und G_M

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left\{ \begin{array}{c} \frac{G_E^2 + (Q^2/4 M^2) \cdot G_M^2}{1 + (Q^2/4 M^2)} + \frac{Q^2}{2 M^2} \cdot G_M^2 \cdot tan^2(\theta/2) \\ \theta - \text{unabhängig} \end{array} \right\}_{M=1}^{M=1} Masse, c = 1$$

- 2 Streuterme: winkelunabhängig
$$A(Q^2)$$

winkelabhängig $B(Q^2) \cdot tan^2(\theta/2)$

RECAP: tiefinelastische Streuprozesse

e⁻

W > M

1/

 O^2

Nukleon

θ

- **Kinematik der tiefinelastischen Streuung* an Partonen:** $W \gg M$
 - Björken sche Skalenvariable x: ein dimensionsloses
 Maß der Inelastizität (im Partonmodell des Nukleons)

$$x = \frac{Q^2}{2 M \cdot \nu} \qquad x = 0 \dots 1$$

x = 4er - Impulsanteil des Partons

M = Masse Nukleon

$$W$$
 = invariante Masse, mit $W^2 = M^2 + 2 M \cdot v - Q^2$

Energieübertrag v = E - E' 4er – Impulstransfer

M

RECAP: tiefinelastische Streuprozesse

Kinematik der tiefinelastischen Streuung* an Partonen: $W \gg M$

- Björken 'sche Skalenvariable x: ein dimensionsloses Maß der Inelastizität (im Partonmodell des Nukleons)

$$x = \frac{Q^2}{2 M \cdot \nu} \qquad x = 0 \dots 1$$

- x = 4er -Impulsanteil des Partons
- *M* = Masse Nukleon
- W = invariante Masse, mit $W^2 = M^2 + 2 M \cdot \nu Q^2$

Energieübertrag v = E - E' 4er – Impulstransfer

e⁻

Μ

N4

tiefinelastische Streuprozesse: W_2 und W_1

Analoge Beschreibung mit den beiden Strukturfunktionen W₂ und W₁

- erlaubt Untersuchung der Partonstruktur: Ladung, Spin von Quarks,...

tiefinelastische Streuprozesse: F_2 und F_1

Mitbewegtes System: Einführung der Strukturfunktionen F₂ und F₁

- Dimensionslose Strukturfunktionen F2 und F1

⇒ sensitiv auf Spin-abhängige Effekte

´elektrische´ Wechselwirkung

$$F_2(x, Q^2) = \nu \cdot W_2(Q^2, \nu)$$

 $F_1(x, Q^2) = Mc^2 \cdot W_1(Q^2, \nu)$

⇒ sensitiv auf Wahrscheinlichkeit, ein Parton mit bestimmten Impulsanteil x zu finden

inkohärente Streuprozesse in speziellem (Breit-)System

Proton–Strukturfunktion *F*₂

Messungen bei HERA

- Abdeckung eines großen
 4er Impulsbereichs Q²
- Skaleninvarianz: F₂ ist
 unabhängig von Größe Q²

Streuung an punktförmigen, <u>nicht</u> untereinander wechselwirkenden Partonen: **'asymptotische' Freiheit** der QCD ('quasifreie Quarks')

Exp. Teilchenphysik - ETP

Callan–Gross: Relation der Strukturfunktionen

Verhältnis der Strukturfunktion $F_1(x)/F_2(x)$

- Ziel: bestimme den **Spin** *S* der geladenen Konstituenten des Nukleons

Spin S = 0

$$F_1(x,Q^2)=0$$

Spin $S = \frac{1}{2}$

$$2x \cdot F_1(x, Q^2) = F_2(x, Q^2)$$

Callan–Gross Relation

exp. Daten: Quarks mit Spin $S = \frac{1}{2}$

Streuprozesse im erweiterten Parton-Modell

Erweiterung durch: Gluonen (neutral, koppeln nicht an Photonen), plus See aus virtuellen Quark–Antiquark Paaren ('Seequarks')

tiefinelastische Streuprozesse: *F*₂

Abtasten der Impulsverteilung x von Partonen über Strukturfunktion F₂

geladene
Partonen $F_2(x) = x \cdot \sum_f z_f^2 \cdot [q_f(x) + \overline{q}_f(x)]$ Valenzquarks: u, u, dFlavour fSeequarks: $u\overline{u} \ d\overline{d} \ s\overline{s} \dots$

Gewichtung mit Ladung z des Quarkflavours

Wahrscheinlichkeitsverteilung für Impulsanteil *x* eines Quarks (Valenz- & Seequarks) eines Anti-Quarks (Seequarks)

Streuung im erweiterten Parton-Modell

Streuprozesse an den Valenzquarks

geladene Partonen

$$F_2(x) = x \cdot \sum_f z_f^2 \cdot \left[q_f(x) + \overline{q}_f(x) \right]$$

- Streuung an der elektrischen Ladung von Valenzquarks im p (uud) bzw. n (udd)

Streuung im erweiterten Parton-Modell

Streuprozesse an den Valenzquarks

- experimentelle Beobachtungen sind 2 × kleiner als die Erwartung im 'naiven' Partonmodell:
 die geladene Partonen tragen nur
 ca. 50% des inneren Nukleonen–Impulses
- weitere Partonen beteiligt:
 Gluonen & Seequarks

Q: DESY

Gemessene Parton-Impulsverteilung

- **Strukturfunktion** $F_2(x)$
 - Modell–Ausgangslage: **3 unabhängige Valenz-Quarks mit** x = 1/3

Gemessene Parton–Impulsverteilung

Gemessene Parton-Impulsverteilung

Strukturfunktion $F_2(x)$ bei sehr hohem Q^2

- Verhalten bei sehr hohem Impulsübertrag Q²:
 - Verletzung der Skaleninvarianz via Gluonen & Seequarks: $F_2(x)$ wird abhängig von Q^2
 - kleines x: deutlicher Effekt der
 Seequarks (via Gluonen)

Parton-Dichteverteilungen (PDF*)

- PDFs beschreiben die (berechnete) Wahrscheinlichkeit f, ein Parton mit einem bestimmten (longitudinalen) Impulsanteil x zu finden
 - Darstellung als Produkt x · f für alle Partonen in einem p: u – Quarks, d – Quarks, s – Quarks, Gluonen
 - kleines $x \cdot f$: deutlichster Effekt der Gluonen
 - Parton-Verteilungen müssen mit den Messungen abgeglichen werden
 - Parton-Verteilungen (PDFs) wichtig für pp Streuprozesse am LHC

AUSBLICK: QUARK-GLUON PLASMA – EIN 5. ZUSTAND DER MATERIE?

Quark–Gluon Plasma (QGP): Eigenschaften

Hadronen/Kernmaterie unter normalen Bedingungen: Quarks und Gluonen bilden Baryonen und Kerne wie Deuterium

- Phasenübergang bei extremen Bedingungen?

Quark–Gluon Plasma (QGP): Phasendiagramm

Hadronen/Kernmaterie unter extremen Bedingungen: Quarks und Gluonen durchlaufen einen Phasenübergang von Baryonen hin zu einem QGP

Quark–Gluon Plasma (QGP): Orte im Universum

Hadronen/Kernmaterie unter extremen Bedingungen: Quarks und Gluonen durchlaufen einen Phasenübergang von Baryonen hin zu einem QGP

Quark–Gluon Plasma (QGP): Orte im Labor

- Hadronen/Kernmaterie unter extremen Bedingungen: Suche nach dem QGP in ultra-relativistischen Schwerionen-Reaktionen
 - niedriges T & niedriges ρ :

Kondensat von farbneutralen Hadronen3 Quarks & Gluonen gebunden in Nukleonen(Protonen, Neutronen)

 hohes *T* und/oder hohes *ρ*:
 ´freie´ Quarks und Gluonen, experimentelles Studium des Phasen–Übergangs im frühen Universum

STAR Experiment am Relativistic Heavy Ion Collider (RHIC am BNL)

Quark–Gluon Plasma (QGP): Orte im Labor

Hadronen/Kernmaterie unter extremen Bedingungen: Suche nach dem QGP in ultra-relativistischen Schwerionen-Reaktionen am LHC

ALICE – A Large Ion Collider Experiment

Ausblick: Elektroschwache Wechselwirkung

Von Schlüsselexperimenten zur modernen WSG – Theorie

