

Moderne Experimentalphysik III – Teilchen und Hadronen

Vorlesung 2 20.4.2023

www.kit.edu

Recap: Tools, natürliche Einheiten

Tools: Beschleuniger, Detektoren, Wechselwirkungen

Teilchenphysik: Verwendung von natürlichen Einheiten

natürliche Einheiten $h = c = k_B = 1$	
Länge in inverser Energie	0, 1975 $fm = 1 GeV^{-1}$
Zeit in inverser Energie	6,582 $\cdot 10^{-25}s = 1 GeV^{-1}$
Temperatur in Energie	11,604 $\cdot 10^{12}K = 1 GeV$

KAPITEL 2 – VOM ATOM ZUM ELEMENTAR-TEILCHEN

Überblick: Streuexperimente zur Strukturanalyse

Die Aufklärung der Struktur der Materie

- zentrales Leitmotiv:
 benutze Streuexperimente
- Rutherford & Marsden:
 α Teilchen (4,8 MeV) aus Quelle zum
 Nachweis des punktförmigen Kerns
- Robert Hofstadter:

Elektronen (bis ~ 600 *MeV*) zum Nachweis der Ladungsverteilung des Kerns & Proton-Formfaktors

- Friedman, Kendall, Taylor (1962): Friedman, 1962 Entdeckung Quarks

 zahlreiche HE*-Streuexperimente an Beschleunigern mit Elektronen, Myonen und Neutrinos (u.a. DESY):
 Nachweis des komplexen Aufbaus von Protonen: Gluonen, Seequarks,

Die Aufklärung der Struktur der Materie

Nachweis von punktförmigen Quarks

20 GeV Elektronen vom SLAC zum

(Partonen), Spin-Eigenschaften

Überblick: Streuexperimente zur Strukturanalyse

Elektronen HERA (DESY), 1992 Aufbau des Protons Elektronen, Myonen, **Neutrinos** Q: spektrum

Streuexperimente: Fortschritte

Streuexperimente: Messungen bei immer höherer Energie

- moderne Beschleuniger mit immer höherer Energie & besserer Auflösung

Streuexperimente: Fortschritte

- Streuexperimente: Messungen bei immer höherer Energie
 - moderne Beschleuniger mit immer höherer Energie & besserer Auflösung

KAPITEL 2.1 – RUTHERFORD-STREUUNG & WIRKUNGSQUERSCHNITT

* vgl. Mod. Ex. Phys. I

Aufbau eines Streuexperiments

Teilchenstrahl treffe senkrecht auf dünnes Target

- Parameter des einfallenden Strahls
 - Querschnittsfläche A [cm^2]
 - Geschwindigkeit $v_i \ [cm/s]$
 - Anzahldichte $n_s \ [cm^{-3}]$

- Flussdichte J
$$[cm^{-2}/s^{-1}]$$

 $I = n_s \cdot v_i$

- Fluss Φ [s^{-1}] $\Phi = J \cdot A = n_S \cdot v_i \cdot A$

Aufbau eines Streuexperiments

- Teilchenstrahl treffe senkrecht auf dünnes Target
 - Parameter des dünnen Targets
 - Dichte ρ $[g/cm^3]$
 - Länge *L* [*cm*]
 - Atommasse M_A [u] *
 - Anzahldichte der $[cm^{-3}]$ Targetkerne

 $n_t = \rho \cdot N_A / M_A$

- Targetkerne im [#] Strahl $N_t = n_t \cdot L \cdot A$

11 20.4.2023 Mod. Ex. Phys. III VL 2 * $u = \text{atomare Masseneinheit} = m(^{12}C)/12$

Avogadro-Zahl $N_A =$

Totaler Wirkungsquerschnitt & Gesamtrate

Gesamtrate W_r an Streu-Ereignissen dN_s pro Zeiteinheit dt

Totaler Wirkungsquerschnitt & Gesamtrate

Gesamtrate W_r an Streu-Ereignissen dN_s pro Zeiteinheit dt

Totaler Wirkungsquerschnitt & effektive Fläche

Definition totaler Wirkungsquerschnitt σ_{tot}

- σ_{tot} beschreibt die Wahrscheinlichkeit eines Streuprozesses

$$\sigma_{tot} = \frac{\text{Zahl der Reaktionen pro Targetkern und Zeit}}{\text{Zahl einfallender Teilchen pro Fläche und Zeit}}$$

- σ_{tot} hat die Dimension einer Fläche (cm^2)

- σ_{tot} stellt dar eine effektive Fläche für Streuprozesse

Exp. Teilchenphysik - ETP

Karlsruhe Institute of Technology

Einheit des Wirkungs-

querschnitts σ_{tot} :

1 barn = 1 $b = 10^{-24} cm^2$

Wirkungsquerschnitt: geometrische Bedeutung

Effektive Streufläche

- Kernphysik: **b** bis $10^{-3} b$ (mb)
- Teilchenphysik: $10^{-3} b \dots 10^{-18} b$ (atto-*b*)
- Astroteilchenphysik: $10^{-20} b \dots 10^{-24} b$ (yocto-b)

Wirkungsquerschnitt: geometrische Bedeutung

Beispiel: Streuung eines α – Teilchens an ¹⁹⁷*Au*

 $R(^{197}Au) = 7 \, fm = 7 \cdot 10^{-15}m$

 $A = \pi \cdot R^2 = 154 \, fm^2 = 1,54 \cdot 10^{-28} \, m^2$

geometrischer Streuquerschnitt $\sigma_{tot,geom} = 1,54 \ b \ (1b = 100 \ fm^2)$

Wirkungsquerschnitt: Thermodynamik*

Stoßprozesse von Gasteilchen (harte Kugel mit Radius r):
Wirkungsquerschnitt σ ist verknüpft mit ihrer geometrischen Größe

Kontaktwechselwirkung:

Stoß, sobald die Kugeln sich berühren

*vgl. klass. Ex. Phys. III

Differentieller Wirkungsquerschnitt $d\sigma/d\Omega$

oft: nur ein Teil des gesamten Raumwinkels $d\Omega$ wird abgedeckt

- Raumwinkel-Element $d\Omega = A/r^2$
- ein Detektor unter $d\Omega$ misst dann den differentiellen Wirkungsquerschnitt $d\sigma/d\Omega$

einfallende

Target

Teilchen

- Einheit des differentiellen Wirkungsquerschnitts: $[cm^2/sr]$ bzw. [b/sr] gesamter Raumwinkel um Target: $d\Omega = 4\pi \cdot sr$

18 20.4.2023 Mod. Ex. Phys. III VL 2 *Detektor mit Fläche A im Abstand r vom Target Exp. Teilchenphysik - ETP

Detektor*

Differentieller Wirkungsquerschnitt $d\sigma/d\Omega$

 \wedge

Rate *R* gestreuter Teilchen in den Raumwinkel $d\Omega$ (Fläche *A* in Abstand *r*)

$$R = \Phi \cdot n_t \cdot L \cdot \frac{A}{r^2} \cdot \frac{d\sigma}{d\Omega}$$

$$\Phi: \text{Teilchenfluss } [s^{-1}]$$

$$n_t: \text{Anzahldichte} \\ \text{Targetkerne} & [cm^{-3}] \\ L: \text{Länge} & [cm] \end{bmatrix}$$

$$einfallende \\ \text{Teilchen} \\ \text{Target}$$

$$Target$$

$$Detektor-Eigenschaften$$

$d\sigma/d\Omega$: differentieller Wirkungsquerschnitt [cm^2/sr]

Differentieller Wirkungsquerschnitt $d\sigma/d\Omega$

Streuexperimente: oft *fixed target* Aufbau

$$R = \Phi \cdot n_t \cdot L \cdot \frac{A}{r^2} \cdot \frac{d\sigma}{d\Omega}$$

- typischerweise deckt der Detektor nur einen kleinen Raumwinkelbereich $d\Omega$ ab

Relation $d\sigma/d\Omega$ & Wirkungsquerschnitt σ_{tot}

Integration von $d\sigma/d\Omega$ (differentieller Wq.) zu σ_{tot} (totaler Wq.)

- für Streuungen mit einer azimutalen Symmetrie gilt:

$$\sigma_{tot} = 2\pi \cdot \int_{-1}^{1} \frac{d\sigma(\cos\theta)}{d\Omega} \ d\cos\theta$$

- Messungen von σ_{tot} erfolgen oft in Kugelgeometrie: Detektor umhüllt Target in einer 4 π Geometrie

Rutherford-Streuprozess

- Rutherford-Streuexperiment*
 - Annahmen für Streuquerschnitt:
 - Projekt und Target
 - a) sind **punktförmig**
 - b) besitzen keinen Spin (S = 0)
 - nur Einmalstreuung

sertec

- Kernrückstoß vernachlässigbar (d.h. ortsfester Kern mit Masse *M*) $E_{rück} = q^2/(2 \cdot M) \approx 0$

* vgl. Mod. Ex. Phys. I

 p_f

Rutherford-Streuprozess: Potenzial V(r)

V(r)

Streupotenzial V(r) für elektromagnetische Wechselwirkung

- elastische Streuung in konservativem Feld ⇒ Drehimpuls bleibt erhalten
- Annahme: rein elektromagnetische Wechselwirkung mit **Coulomb-Abstoßung** von Kern und α –Teilchen

Rutherford-Streuprozess: Kinematik

Kinematische Größen: θ , b

- elastische Streuung unter Winkel θ
- Einführung **Stoßparameter** *b* (legt den Streuwinkel *θ* fest)

= asymptotischer Abstand des α –Teilchens vom Kern: $b = [0, \infty]$

Rutherford-Streuformel

Streuexperimente und differentieller Wirkungsquerschnitt

Rutherford-Streuformel

Streuung über Photonaustausch: elegant via Feynman-Diagramm!

kommt später*

Elektromagnet. Wechselwirkung

Photonpropagator

Kopplungskonstante α

$$\frac{d\sigma}{d\Omega} = (2 \cdot m_e \cdot Z \cdot \alpha)^2 \cdot \frac{1}{q^4}$$

Rutherford-Streuung & Kerne

Streuexperimente und räumliche Auflösung

- die Winkelverteilung $d\sigma/d\Omega$ der Rutherford-Streuung gibt <u>keinen</u> **Aufschluss** über die Größe der Kerne
- Streuung erfolgt nur am Coulomb-Potenzial des punktförmigen Kerns
- Energie der α Teilchen von 4 6 MeV
 ist zu klein, um endliche Kerngröße
 aufzulösen

KAPITEL 2.2 – MOTT-STREUUNG & FORMFAKTOREN

Streuprozesse jenseits von Rutherford

Berücksichtigung weiterer Prozesse bei Streureaktionen

- bisher: elastische Streuung punktförmiger geladener **Teilchen ohne Spin** im nicht-relativistischen Grenzfall (kinet. Energien von $\alpha' s \sim MeV$) **Coulombfeld eines punktförmigen Targets** (Kern ohne Ausdehnung)
- Mott: Streuung von Projektilen mit Spin $S = \frac{1}{2}$ ($e, \mu, \nu, p, ...$) Streuung in **relativistischer Kinematik** (e: kleine Masse, hohe Energie)

- Formfaktor:

Streuung an **ausgedehnten Objekten** (Kerne mit Ladungsverteilung) erforderlich \Rightarrow de Broglie Wellenlänge $\lambda = h/p$ vergleichbar mit Kernradius **R**

Streuprozesse jenseits von Rutherford

Wellencharakter der Streuteilchen

Wellencharakter definiert die erreichbare Auflösung bei der Analyse kleinster Strukturen

kleine Wellenlänge großer Impuls $\lambda = h/p$

Visualisierung einer Elektronwelle

- Formfaktor:

Streuung an **ausgedehnten Objekten** (Kerne mit Ladungsverteilung) erforderlich \Rightarrow de Broglie Wellenlänge $\lambda = h/p$ vergleichbar mit Kernradius *R*

Mott-Streuung und Formfaktoren

Berücksichtigung weiterer Effekte für $d\sigma/d\Omega$

 $d\sigma/d\Omega$ gibt Aufschluss über:

- innere Struktur des Targets
- **Struktur der Wechselwirkung** Radialabhängigkeit Spin-Abhängigkeit, ...

Nevill F. Mott

Einfluss des Spins des Projektils (Elektronen)

Spineffekte bei Streuprozessen: Übergang zur Elektronenstreuung

- bei **longitudinal polarisierten** Elektronen müsste bei einer Rückstreuung ($\theta = 180^{\circ}$) der Spin *S* umklappen:

⇒ starke Unterdrückung der Streuamplitude für Rückwärtsstreuung!

Mott-Streuung: Effekte

Streuung relativistischer Elektronen mit Spin

- Streuung hochenergetischer, relativistischer Spin $S = \frac{1}{2}$ Teilchen (Elektronen) an einem **punktförmigem Target**:
 - relativistische Effekte
 - übertragene Rückstoß-Energie an Kern
 - Spin-Bahn Kopplung bei Streuprozessen mit polarisierten e⁻
 - Wechselwirkung über magnetisches Dipol-Moment
 µ des Projektils (´magnetischer Streuterm´)

Mott-Streuung: Wirkungsquerschnitt

Streuung relativistischer Elektronen: Energie E (ein) $\rightarrow E'$ (aus) mit Spin

- Unterdrückung der Rückwärts-Streuung für $S = \frac{1}{2}$ Projektile (*e*, μ , *p*, ...) d.h. $d\sigma/d\Omega$ deutlich kleiner für große Streuwinkel $\theta \to \pi$

Mott-Streuung: Wirkungsquerschnitt

Beispiel: Streuung von 6 MeV Elektronen an einem Gold-Kern

de-Broglie-Wellenlänge λ

Experimentelle Abweichungen bei hohem Impulstransfer |q

- Mott-Streuformel: nur korrekt für kleinen Impulstransfer $|\vec{q}| \ (\theta \rightarrow 0)$
- höhere Elektron-Energien/Impulse p:
 de-Broglie Wellenlänge λ wichtig

$$\lambda = \frac{2\pi \cdot \hbar}{p} = \frac{2\pi \cdot \hbar}{\gamma \cdot m \cdot v} \quad \begin{array}{l} \gamma = \text{Lorentzfaktor} \\ \gamma \cdot m \cdot v = \text{rel. Impuls} \end{array}$$

 λ (Projektil) ~ *R* (Kern)

$$197 MeV/c = 1 fm^{-1}$$

vgl. VL1

Einführung des Formfaktors F

R. Hofstadter findet Abweichungen bei $420 MeV - Elektronen auf {}^{12}C$

- 1961: R. Hofstadter - Elektronstreuung

Beschreibung durch den Formfaktor F

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp.} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot |F(\vec{q})|^2$$

 \overrightarrow{q} Impulstransfer

Streuquerschnitt – nachgefragt von L. Hofstadter 🔬 🕻 🔳

Wieso wird $d\sigma/d\Omega$ immer kleiner für hohe Energien ? Da dann...

- A) ...nur ein kleinerer Teil des Kerns sichtbar ist !
- B) ... die Zeit für das relativistische Elektron anders läuft !
- C) ... der Kern gestaucht erscheint !

Grundlage: Beugung am Kern

Beugungseffekte am ausgedehnten Kern

- hochenergetisches Elektron 'tastet' Kerngröße ($\mathbf{R} \sim \mathbf{fm}$) ab
- Reduktion von $d\sigma/d\Omega$: das e^- sieht nur 'einen Teil' der Kernladung Z
- Auftreten von Interferenzen: Elektron-Welle wird am endlichen Kernrand gebeugt: destruktive Interferenz (s. Doppelspalt)
 - ⇒ Bestimmung des Kernradius *R*

Formfaktor und Ladungsverteilung: Relation

Formfaktor F = Fourier-Transformierte der Ladungsverteilung $\rho(r)$

- Born'sche Näherung:

Beugung einer ebenen Welle an einer Scheibe mit diffusem Rand

- Formfaktor F

$$F(\vec{q}) = \int \rho(r) \cdot e^{(i/\hbar)\vec{q}\cdot\vec{r}} d^{3}\vec{r}$$

Ladungsverteilung des Kerns

mit
$$\int \rho(r) d^3 \vec{r} = 1$$

Formfaktor und Ladungsverteilung: Daten

Formfaktor F = Fourier-Transformierte der Ladungsverteilung $\rho(r)$

Formfaktor F und Ladungsverteilung ρ

Beispiele punktförmig $\rho(r) = \delta(r)/4\pi$ adungsverteilung $\rho(r)$ exponentiell $\rho(r) \sim \exp(-r/a)$ gaußförmig $\rho(r) \sim a^{-3} \cdot \exp(-r^2/2a^2)$ homogene Kugel $\rho(r) = const. (r < a)$ $\rho(r) = 0 \ (r \ge a)$ Saxon-**Kugel mit** Woods diffusem Rand $\rho(r) = r_0 / \left[1 + \exp\left(\frac{r-a}{d}\right) \right]$ Radius $r \rightarrow$ Impuls $|q| \rightarrow$

konstant F = 1

Dipol $F = 1/(1 + a^2 \cdot q^2)^2$

gaußförmig $F = \exp(-\frac{1}{2} \cdot a^2 \cdot q^2)$

Oszillation

 $F \sim \sin(a \cdot q) - a \cdot q \cdot \cos(a \cdot q)$

verwaschene Oszillation

Q: dur.ac.uk

Woods-Saxon Parametrisierung

⁴⁰*Ca*

Woods-Saxon Ladungsverteilung

dur.ac.uk

ä

Modell: homogene Kugel mit diffusem Rand

- Kerne zeigen konstante Ladungsdichte $\rho(r)$
 - Kernkräfte zeigen Sättigungscharakter
- Kerne zeigen stets einen sehr ähnlichen Abfall der Ladungsdichte außen (Skindicke)

Ladungsverteilungen: experimentelle Befunde

dur.ac.uk

KAPITEL 2.3 – KERNMODELLE & KERNKRÄFTE

Q: GSI, globo.com

Kerne: Nuklidkarte & Begrifflichkeiten

Isotope, Isotone, Isobare & Spiegelkerne

Kernmodelle - Einführung

Kern: komplexes Vielteilchensystem aus Nukleonen

- Kernkraft als **Restwechselwirkung** zwischen den Nukleonen: Ww. zwischen Nukleonen via **Q**uanten-**C**hromo-**D**ynamik (*QCD*), Details später
- Ensemble an Nukleonen zu komplex, daher phänomenologische Modelle
- Überblick über phänomenologische Modelle*

Schalenmodell

Kernmodelle - Aufgaben

Beschreibung der beobachteten Kerneigenschaften: Anpassung via Experim.

- kollektive Eigenschaften:

Kernladung Z, Größe (Radius a) und Form (sphärisch, deformiert), Kernmasse M, kollektive Anregungen (Riesenresonanz), Stabilität

- Eigenschaften durch individuelle Nukleonen:

Bindungsenergie E_B/A , elektrische & magnetische Momente μ , Einteilchen-Anregungszustände (Resonanzen) Quantenzahlen: Spin **J** & Parität **P**, **Isospin**

- dynamische Eigenschaften:

Ablauf & Wirkungsquerschnitte & Energiebilanz von Kernreaktionen wie Fusion, Spaltung, Nukleonentransfer, ...

Kernmodelle – Überblick*

Kernmodelle beschreiben immer spezielle Eigenschaften

Fermigasmodell

Nukleonen bewegen sich unabhängig voneinander in gemeinsamen Potenzial

Kernmodelle – Grundlagen & Pioniere

Kernmodelle beschreiben immer spezielle Eigenschaften

Kernmodelle – Benchmarks

Parameter, die von Kernmodellen beschrieben werden sollen:

Kernradien & -dichten

Kernmaterie - konstante Dichte $\rho = 10^{17} kg/m^3$ $R = 1, 2 fm \cdot A^{1/3}$

Stabilitätsverhalten

stabile Kerne:

für kleines A: N = Z

für großes A: N > Z

Spaltung, $\alpha -, \beta -, \gamma - Zerfall$

Bindungsenergien & Kernkräfte

konstante Bindungsenergie $B/A \sim 8 MeV$ pro Nukleon, gesättigte Kernkräfte

Spin und Parität

Kernniveaus mit definiertem Spin & Parität $J^P = (0^+, 2^+, 4^+, 0^-, 1^-, ...)$

Kernanregung und Kerndeformation

Lage von angeregten Zustände, kollektive Anregungen & Deformation

Kerne: Bindungsenergie pro Nukleon

genereller Verlauf von *B/A*: Sättigungsverhalten

Kerne: Bindungsenergie pro Nukleon

Karlsruhe Institute of Technology

maximales B/A bei A = 56 - 58(⁵⁶*Fe*, ⁵⁶*Ni*) \Rightarrow stabilste Elemente

A < 56: Kernfusion

Fusion: Bildung von Kernen mit höherer Bindungsenergie (aber Fusionsbarriere) ⇔ **Energiegewinn**

A > 56: Kernspaltung

Spaltung: Bildung von Kernen mit höherer Bindungsenergie (aber Spaltbarriere) ⇒ **Energiegewinn**