Exercises Physics VI (Nuclei and Particles) Summer Semester 2009

Exercise sheet Nr. 3

Work out until 14.05.2009

(Points: 2)

Exercise 1: Rutherford scattering

- a) A beam of α -particles with kinetic energy of $E_{kin} = 27$ MeV and 2 nA current crosses a Gold foil which is 2 mg/cm² thick. In a distance of 20 cm from the foil at 60° angle with respect to the beam is a detector with an active area of 4 cm². How large is rate of detected particles?
- b) Leaving the detector at the same angle as above and varying the energy of the incoming beam, a deviation from the Rutherford scattering formula can be observed for energies $E_{\alpha} \geq 27$ MeV. Based on energy and orbital momentum conservation one can find for minimal distance $r_{min}(\theta)$ of α -particles from nuclei

$$r_{min}(\theta) = \frac{Z_{\alpha} \cdot Ze^2}{8\pi\epsilon_0} \cdot \frac{1}{E_{\alpha}} \cdot \left[1 + \frac{1}{\sin\theta/2}\right]$$

Apply this formula to calculate the radius parameter r_0 $(R = r_0 \cdot A^{1/3})$ and the radius of gold nuclei. Take the size of both target and projectile into account.

Exercise 2: Weizsäcker's formula

- a) From Weizsäcker's formula derive an analytic formula for a dependence of charge number Z of the stable Isobars on nucleon number A. In calculation take Z as continuous variable and neglect the pairing term.
- b) What is the kinetic energy released in nuclear fission of ²³⁸U to two symmetric nuclei?
- c) Each of the products of 238 U fission will subsequently decay through β -decay until it reaches mass in valley of stability. Which stable element (nuclei) is obtained and how much kinetic energy is released in all β -decays?

Exercise 3: Mirror nuclei

A ²⁷Si nucleus decays through β^+ -decay to its mirror nucleus ²⁷Al. In the process, the sum of the kinetic energies of positron and neutrino is 3.80 MeV.

Which terms in Weizsäcker's formula is responsible for this energy? Calculate the radius R of the nuclei and the radius parameter r_0 ($R = r_0 \cdot A^{1/3}$) from the released energy. Assume that the charge inside the nucleus is distributed homogeneously in a sphere and therefore corresponds to the energy

$$E_c = \frac{3}{5} \cdot \frac{Q^2}{4\pi\epsilon_0} \cdot \frac{1}{R}$$

Exercise 4: ¹⁴C method

In the atmosphere, the isotope ¹⁴C is produced at constant rate due to interaction of cosmic rays with the atmosphere. Through the decay of ¹⁴C with a half-live of 5730 years, a constant ratio of ¹⁴C and ¹²C isotopes exist in the atmosphere. The same ratio exists also in all living organisms through carbon exchange in metabolism. The specific activity of ¹⁴C in nature is 0.255 Bq per gram of carbon from tissue. Once on rganism dies its metabolism stops and the concentration of ¹⁴C decreases through radioactive decay. This process can be used for dating in archeology.

- a) How old is a sample of 2 g of carbon with an activity of 0.404 Bq?
- b) How many atoms of ¹⁴C were in the sample at that time? How many atoms are there now?
- c) How long does one have to measure ithe activity of the sample to obtain its age with a relative statistical precision of 1%? Reminder: The statistical uncertainty of the measured number of events N is \sqrt{N} .

(Points: 1)

(Points: 3)