Exercises Physics VI (Nuclei and Particles) Summer Semester 2009

Exercise sheet Nr. 4

Exercise 1: De-Broglie-wavelength

What is the kinetic energy at which neutrinos $(m_{\nu} = 0)$, electrons, muons or protons have a De-Broglie-wavelength of $\lambda = 2\pi\lambda = 1$ fm? What is the energy of a photon with wavelength 1 fm?

Exercise 2: Form factor

a) Show that the form factor of a spherically symmetric $(\rho(\vec{r}) = \rho(r = |\vec{r}|))$ charge distribution is given by

$$F(\vec{q}) = F(q) = 4\pi \int_0^\infty \rho(r) \frac{\sin(qr/\hbar)}{qr/\hbar} r^2 dr$$

Here ρ is normalized to 1: $\int \rho(\vec{r}) d^3r = 1$.

b) A nucleus can in first approximation be viewed as a homogeneously charged sphere with radius R. Demonstrate that under this assumption its form factor is

$$F(q) = \frac{3}{x^3} \cdot (\sin x - x \cos x) \quad \text{with} \quad x = \frac{qR}{\hbar}$$

- c) Calculate F(q=0).
- d) Identify (graphically or numerically) first three zero points of F(x) (F(x) = 0).
- e) The figure below shows the dependence of the measured cross section on the scattering angle for scattering of electrons with energy of E = 750 MeV on 40 Ca and 48 Ca. Which angles correspond to the zero points in the form factor from previous parts of this exercise? Using this information, calculate the radius R of both isotopes.

Work out until 28.05.2008

(Points: 5)

(Points: 1)

Exercise 3: Feynman diagrams

(Points: 2)

- a) Show all Feynman diagrams with single a photon exchange for $e^+e^- \rightarrow e^+e^$ interactions. What is different if one considers $e^+e^- \rightarrow \mu^+\mu^-$ reactions instead of $e^+e^- \rightarrow e^+e^-$?
- b) Show Feynman diagrams for β^- -decay, β^+ -decay and electron capture. Note that the exchanged W-boson couples to vertexes with nucleons or leptons. It does not couple to single vertex with both nucleon and lepton.