

KIT-Fakultät für Physik Institut für Experimentelle Teilchenphysik Institut für Kernphysik Prof. Dr. Ulrich Husemann (ETP) Prof. Dr. Kathrin Valerius (IKP) Dr. Nils Faltermann (ETP)

Übungen zu Moderne Experimentalphysik III (Teilchen und Hadronen)

Sommersemester 2020

Übungsblatt Nr. 4

Bearbeitung bis 01.06.2020

Am 21.05.2020 findet kein Tutorium statt (Christi Himmelfahrt), das Tutorium für Übungsblatt 3 verschiebt sich daher um eine Woche nach hinten. Entsprechend verlängert sich die Abgabefrist von Übungsblatt 4 um eine Woche nach hinten auf den 01.06.2020.

Ein Angebot der Fachschaft und Fakultät für Physik:

Aufgabe 1: Diskrete Symmetrien

(je 0, 5=3 Punkte)

Geben Sie an, wie sich die folgenden physikalischen Größen unter der Paritätsoperation \hat{P} (Punktspiegelung am Ursprung) und der Zeitumkehroperation \hat{T} verhalten:

- Impuls vektor \vec{p}
- Spin- oder Drehimpulsvektor $\vec{\sigma} = \vec{r} \times \vec{p}$
- Statisches elektrisches Feld $\vec{E} = \vec{\nabla}\phi$
- Statisches Magnetfeld $\vec{B} = \vec{j} \times \vec{r}$
- Potenzielle Energie eines elektrischen Dipols aufgrund von Teilchenspin $\vec{s} \cdot \vec{E}$
- Potenzielle Energie eines magnetischen Dipols aufgrund von Teilchenspin $\vec{s} \cdot \vec{B}$

Aufgabe 2: Elektrisches Dipolmoment des Neutrons (0 Punkte)

Nur für aktiven Beitrag: Eine Möglichkeit zur Suche nach T-Verletzung ist die Beobachtung eines nichtverschwindenen elektrischen Dipolmoments d_n des Neutrons. Das aktuell stärkste Limit beträgt $|d_n| < 1.8 \times 10^{-26} e \cdot \text{cm}$ und wurde vom nEDM-Experiment am Paul Scherrer Institut aufgestellt. Lesen Sie die aktuelle Publikation des Experiments [1] (öffentliche Vorabversion: arxiv.org/abs/2001.11966) und stellen Sie den Aufbau und die Messmethode in einer kurzen Präsentation vor.

Aufgabe 3: K^0 - und B^0 -Oszillation

(2+2+2+1+2=9 Punkte)

Zum Zeitpunkt t = 0 werden am Ort x = 0 $N_0 = 10000$ K⁰-Mesonen erzeugt, die sich mit einem Impuls von $p = p_x = 1$ GeV/c durch das Vakuum bewegen. Durch Prozesse zweiter Ordnung der schwachen Wechselwirkung wird aus dem reinen K⁰-Strahl für Zeiten t > 0 eine Mischung aus K⁰- und \bar{K}^0 -Mesonen. Im Folgenden soll die CP-Verletzung vernachlässigt werden, d.h. $|K_S^0\rangle \equiv |K_1^0\rangle$ und $|K_L^0\rangle \equiv |K_2^0\rangle$.

a) Zeigen Sie, dass die Anzahl von K_{S}^{0} -, K_{L}^{0} -, K^{0} - und \bar{K}^{0} -Mesonen als Funktion der Zeit t im Kaon-Ruhesystem gegeben ist durch ($\hbar = c = 1$):

$$\begin{split} N_{\rm K_{\rm S}^{0}}(t) &= \frac{N_{0}}{2} e^{-\Gamma_{\rm S} t} \\ N_{\rm K_{\rm L}^{0}}(t) &= \frac{N_{0}}{2} e^{-\Gamma_{\rm L} t} \\ N_{\rm K^{0}}(t) &= \frac{N_{0}}{4} \left[e^{-\Gamma_{\rm S} t} + e^{-\Gamma_{\rm L} t} + 2\cos(\Delta m t) e^{-\Gamma t} \right] \\ N_{\rm \bar{K}^{0}}(t) &= \frac{N_{0}}{4} \left[e^{-\Gamma_{\rm S} t} + e^{-\Gamma_{\rm L} t} - 2\cos(\Delta m t) e^{-\Gamma t} \right] \end{split}$$

mit

$$\Delta m = |m_{\rm S} - m_{\rm L}| \quad , \quad \Gamma_{\rm S/L} = \frac{1}{\tau_{\rm S/L}} \quad , \quad \Gamma = \frac{\Gamma_{\rm S} + \Gamma_{\rm L}}{2}$$

Dabei ist $m_{S/L}$ die Masse und $\tau_{S/L}$ die Lebensdauer von K_S^0 - bzw. K_L^0 -Mesonen. Verwenden Sie für die Herleitung folgenden Ansatz für die Wellenfunktion von K_S^0 - bzw. K_L^0 -Mesonen

$$\left| \mathbf{K}_{\mathrm{S/L}}^{0} \right\rangle(t) = A_{\mathrm{S/L}} \cdot e^{-im_{\mathrm{S/L}}t} \cdot e^{-\Gamma_{\mathrm{S/L}}t/2}$$

mit $A_{S/L}$ als konstantem Normierungs- und Phasenfaktor.

- b) Stellen Sie die Anzahl von $K_{\rm S}^0$ -, $K_{\rm L}^0$ -, K^0 und \bar{K}^0 -Mesonen grafisch dar für das Zeitintervall von 0 bis $2 \cdot 10^{-9}$ s. Welcher Flugstrecke der Kaonen entspricht dieser Zeitraum? Verwenden Sie $\Delta m = 5,3 \cdot 10^9$ s⁻¹.
- c) Wie K⁰-Mesonen können auch B⁰- und B⁰_s-Mesonen über die schwache Wechselwirkung in ihre Antiteilchen oszillieren. Ein B⁰-Meson ist ein gebundener Zustand aus einem Down-Quark und einem Bottom-Antiquark (db̄), ein B⁰_s-Meson besteht aus einem Strange-Quark und einem Bottom-Antiquark (sb̄). Zeichnen Sie die Feynmandiagramme für B⁰- und B⁰_s-Oszillation.
- d) Für B⁰- und B⁰_s-Mesonen ist näherungsweise $\tau := \tau_{\rm S} = \tau_{\rm L} = 1,5 \cdot 10^{-12}$ s. Geben Sie die Anzahl von B⁰- und $\bar{\rm B}^0$ - bzw. B⁰_s- und $\bar{\rm B}^0_{\rm s}$ -Mesonen sowie die Asymmetrie

$$A(t) = \frac{N_{\mathbf{B}^{0}}(t) - N_{\bar{\mathbf{B}}^{0}}(t)}{N_{\mathbf{B}^{0}}(t) + N_{\bar{\mathbf{B}}^{0}}(t)}$$

als Funktion der Zeit t an. Nehmen Sie dabei an, dass zum Zeitpunkt t = 0 eine Anzahl von N_0 B⁰- bzw. B⁰_s-Mesonen erzeugt wurden.

e) Im B⁰-System ist $\Delta m = 0.5 \cdot 10^{12} \text{ s}^{-1}$. Im B⁰_s-System wurde ein Δm -Wert (hier Δm_s genannt) von 17.8 $\cdot 10^{12} \text{ s}^{-1}$ gemessen. Skizzieren Sie die Anzahl von B⁰-, \bar{B}^0 -, B⁰_s- und \bar{B}^0_s -Mesonen für $N_0 = 10000$ sowie die Asymmetrie in beiden Systemen für den Zeitraum $0 \le t \le 10^{-11}$ s. Welcher Flugstrecke der B-Mesonen entspricht die Periodendauer einer B⁰- bzw. B⁰_s-Oszillation bei einem Impuls von 5 GeV/c?

Aufgabe 4: Materie-/Antimaterieasymmetrie (2+5+1=8 Punkte)

Im Gegensatz zur vorherigen Aufgabe betrachten wir nun indirekte CP-Verletzung im Kaon-System. Die physikalischen Zustände K_S^0 und K_L^0 sind also nicht identisch mit den CP-Eigenzuständen K_1^0 und K_2^0 , sondern als deren Superpositionen

$$\begin{aligned} |\mathbf{K}_{\mathrm{S}}^{0}\rangle &= \frac{1}{\sqrt{1+|\epsilon|^{2}}} \left(|\mathbf{K}_{1}^{0}\rangle + \epsilon |\mathbf{K}_{2}^{0}\rangle \right) \\ |\mathbf{K}_{\mathrm{L}}^{0}\rangle &= \frac{1}{\sqrt{1+|\epsilon|^{2}}} \left(|\mathbf{K}_{2}^{0}\rangle + \epsilon |\mathbf{K}_{1}^{0}\rangle \right) \end{aligned}$$

gegeben, mit dem komplexen Mischungsparameter ϵ , wobei $|\epsilon| = 2.228 \cdot 10^{-3}$.

Die CP-Verletzung führt zu einer beobachtbaren Asymmetrie zwischen Materieund Antimaterie. Neben dem Zerfall in Pionen¹ zerfällt das K_L^0 mit einem großen Verzweigungsverhältnis von etwa 41% in Endzustände mit Elektronen ("semileptonische" Zerfälle), wobei die beiden Prozesse

$$\begin{array}{rcl} \mathrm{K}^{0} & \rightarrow & \pi^{-} + e^{+} + \nu_{e} & (+) \\ \overline{\mathrm{K}}^{0} & \rightarrow & \pi^{+} + e^{-} + \overline{\nu}_{e} & (-) \end{array}$$

beitragen. Man kann nun die Raten $R^+ = R(\mathbf{K}^0 \to \pi^- e^+ \nu_e)$ und $R^- = R(\mathbf{\bar{K}}^0 \to \pi^+ e^- \bar{\nu}_e)$ der beiden Zerfälle messen und daraus die Ladungsasymmetrie

$$\delta_{\rm C} = \frac{R^+ - R^-}{R^+ + R^-}$$

berechnen. Das Ergebnis einer solchen Messung ist in Abb. 1 in Abhängigkeit der Zeit t dargestellt. Der ursprüngliche K⁰-Strahl besteht aufgrund der geringeren

Abbildung 1: Ladungsasymmetrie $\delta_{\rm C}$ in semileptonischen Zerfällen neutraler K-Mesonen als Funktion der Zeit t. Entnommen aus [2].

Lebensdauer der K_S^0 -Mesonen nach einer "Einschwingphase" vollständig aus K_L^0 -Mesonen. Die Ladungsasymmetrie ist aber auch für große t nicht null sondern nimmt einen positiven Wert an.

a) Zeichnen Sie die Feynmandiagramme der semileptonischen Zerfälle (+) und (-) der K⁰- und \bar{K}^0 -Mesonen.

¹Das Verzweigungsverhältnis für den Zerfall $K_L^0 \to \pi \pi \pi$ beträgt etwa 32%. Das Verzweigungsverhältnis für $K_S^0 \to \pi \pi$ beträgt dagegen fast 100%.

b) Zeigen Sie, dass für große Zeiten
 $t\gtrsim 20\cdot 10^{-10}\,{\rm s}$ für die Ladungsasymmetrie gilt

$$\delta_{\rm C} = 2 \cdot {\rm Re}(\epsilon)$$

Machen Sie dazu den Ansatz

$$\begin{aligned} R^+ &\propto |\langle \pi^- e^+ \nu_e | T | \mathbf{K}_{\mathbf{L}}^0 \rangle|^2 \\ R^- &\propto |\langle \pi^+ e^- \bar{\nu}_e | T | \mathbf{K}_{\mathbf{L}}^0 \rangle|^2 \,, \end{aligned}$$

wobei T den Operator des semileptonischen Zerfalls bezeichne. Wie ist dieser Ansatz motiviert? Nutzen Sie dann, dass

(i)
$$\langle \pi^- e^+ \nu_e | T | \mathbf{K}^0 \rangle = \langle \pi^+ e^- \bar{\nu}_e | T | \bar{\mathbf{K}}^0 \rangle$$

(ii) $\langle \pi^- e^+ \nu_e | T | \bar{\mathbf{K}}^0 \rangle = \langle \pi^+ e^- \bar{\nu}_e | T | \mathbf{K}^0 \rangle = 0$.

Wie lassen sich diese Beziehungen begründen? Vernachlässigen Sie bei der Rechnung ferner Terme $\mathcal{O}(|\epsilon|^2)$.

c) Aus Abb. 1 entnimmt man, dass für große Zeiten gilt $\delta_{\rm C} = 3.3 \cdot 10^{-3}$. Welcher Wert für die Phase des Mischungsparameters ϵ folgt daraus?

Aufgabe 5: "Doppelte" Entdeckung des Υ -Mesons (0 Punkte)

Nur für aktiven Beitrag: Im Jahr 1976 publizierte das E228-Experiment am Fermilab unter der Führung von Leon M. Lederman die Beobachtung einer neuen Resonanz im invarianten Massenspektrum von Elektron-Positron-Paaren mit einer Masse von 6 GeV, welche als Υ -Resonanz bezeichnet wurde (Orginalartikel von 1976 [3]). Ein Jahr später erschien eine weitere Publikation derselben Arbeitsgruppe mit der Beobachtung einer Υ -Resonanz bei einer Masse von 9,5 GeV (Orginalartikel von 1977 [4]). Recherchieren Sie, was mit der urspünglichen Entdeckung von 1976 passierte ("Oops-Leon") und wie es dazu kommen konnte. Stellen Sie Ihre Schlussfolgerungen, sowie die experimentellen Unterschiede beider Publikationen in einem kurzen Vortrag vor.

Literatur

- nEDM Collaboration, "Measurement of the permanent electric dipole moment of the neutron", *Phys. Rev. Lett.* **124** (2020), no. 8, 081803, arXiv:2001.11966. doi:10.1103/PhysRevLett.124.081803.
- [2] S. Gjesdal et al., "A Measurement of the K_L-K_S Mass Difference from the Charge Asymmetry in Semileptonic Kaon Decays", *Phys. Lett.* B52 (1974) 113–118. doi:10.1016/0370-2693(74)90734-5.

- [3] D. Hom et al., "Observation of High Mass Dilepton Pairs in Hadron Collisions at 400-GeV", *Phys. Rev. Lett.* 36 (1976) 1236. doi:10.1103/PhysRevLett.36.1236.
- [4] S. Herb et al., "Observation of a Dimuon Resonance at 9.5-GeV in 400-GeV Proton-Nucleus Collisions", *Phys. Rev. Lett.* **39** (1977) 252-255. doi:10.1103/PhysRevLett.39.252.