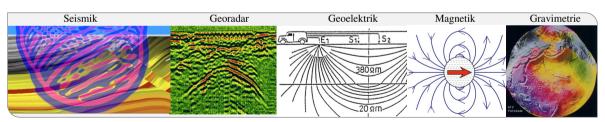


Einführung in die Geophysik I

Seismische Wellenausbreitung

Thomas Bohlen, Ellen Gottschämmer, Geophysikalisches Institut, Fakultät für Physik



 Torrodurig iiii doiiiddia	= = = =

- Einführung
- Seismische Wellenausbreitung
- 8 Refraktionsseismik
- 4 Reflexionsseismik
- Elektromagnetische Verfahren
- Geoelektrik
- Gravimetrie
- Magnetik weitere Themen

(20.10)(20.10, 27.10)

(03.11)

(10.11)

(17.11, 24.11)

(01.12)

(08.12, 15.12)(12.01, 19.01)

(26.01, 02.02)

Agenda

- Brechungsgesetz Konsequenzen
- Schicht über Halbraum
 - Laufzeitgleichungen
 - Simulationen der Wellenausbreitung
- Datenbeispiel
- Zusammenfassung

Agenda

- Brechungsgesetz Konsequenzen
- Schicht über Halbraum
 - Laufzeitgleichungen
 - Simulationen der Wellenausbreitung
- Datenbeispiel
- Zusammenfassung

Das Fermatsche Prinzip

Das Fermatsche Prinzip ist ein weiteres hilfreiches Prinzip für die Berechnung von Strahlen. Es besagt, dass der Strahl mit der kürzesten Laufzeit realisiert wird.

$$T = \int_{A}^{B} \frac{ds}{V(x, y, z)} \stackrel{!}{=} Min$$

Pfad 1 wird realisiert, falls seine Laufzeit kürzer ist.

Quelle:Wikipedia

Pierre de Fermat (1607-1665) war ein französischer Mathematiker und Jurist.

401451990

Herleitung des Brechungsgesetzes aus dem Fermat-

schen Prinzip

$$t(x) = t_1 + t_2 = \frac{l_1}{c_1} + \frac{l_2}{c_2}$$

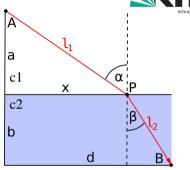
$$= \frac{\sqrt{a^2 + x^2}}{c_1} + \frac{\sqrt{(d - x)^2 + b^2}}{c_2}$$

$$\frac{dt}{dx} = \frac{2x}{2c_1\sqrt{x^2 + a^2}} - \frac{2(d - x)}{2c_2\sqrt{(d - x)^2 + b^2}}$$

$$\frac{dt}{dx} \stackrel{!}{=} 0 \text{ Fermat !}$$

$$0 = \frac{x}{c_1\sqrt{x^2 + a^2}} - \frac{d - x}{c_2\sqrt{(d - x)^2 + b^2}}$$

$$= \frac{1}{c_1} \frac{x}{l_1} - \frac{1}{c_2} \frac{d - x}{l_2} = \frac{1}{c_1} \sin(\alpha) - \frac{1}{c_2} \sin(\beta)$$



 $\frac{\sin(lpha)}{c_1} = \frac{\sin(eta)}{c_2}$

Brechungsgesetz nach Snellius

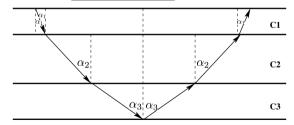
Strahlparameter - Brechungsgesetz

$$\frac{\sin(\alpha)}{c_1} = \frac{\sin(\beta)}{c_2}$$

Definition des Strahlparameters

- $p_i := \frac{\sin(\alpha_i)}{2}$
- α_i = Richtung des Strahls gegenüber der vertikalen Richtung
- c_i = Geschwindigkeit in der Schicht *i*

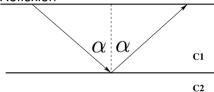
Aus dem Brechungsgesetz folgt $p = p_i = const$



Der Strahlparameter $p = \sin(\alpha_i)/c_i$ ist eine Erhaltungsgröße entlang des seismischen Strahls.

$$\frac{\sin(lpha)}{c_1} = \frac{\sin(eta)}{c_2}$$

Brechung



- Einfallswinkel = Ausfallswinkel
- → Reflexionsseismik

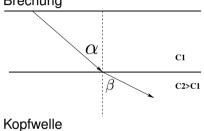
 α C1

- **Talls** $c_2 < c_1$ ist $\beta < \alpha$
- Strahl wird zum Lot hin gebrochen

C2<C1

$$2\left[\frac{\sin(lpha)}{c_1}=\frac{\sin(eta)}{c_2}
ight]$$

Brechung



 α

- **Talls** $c_1 < c_2$ ist $\beta > \alpha$
- Strahl wird vom Lot weg gebrochen

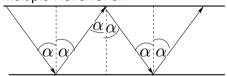
- In dem speziellen Fall $\beta = 90^{\circ}$ und $c_1 < c_2$ ist der sog. kritische Einfallswinkel $\alpha^* = \arcsin(c_1/c_2)$
- Im Fall $\alpha = \alpha^*$ läuft die gebrochene Welle als Kopfwelle parallel zur Grenzfläche.
- → Refraktionsseismik

C1

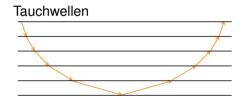
C2>C1

$$\frac{\sin(lpha)}{c_1} = \frac{\sin(eta)}{c_2}$$

Multiple Reflexionen

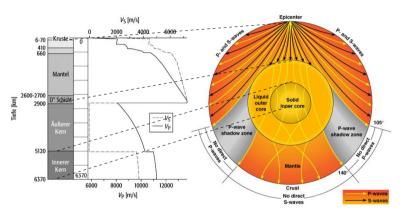


- Multiple Reflexionen in jeder Schicht.
 Amplituden i.d.R. gering
- Totalreflexion an der Erdoberfläche



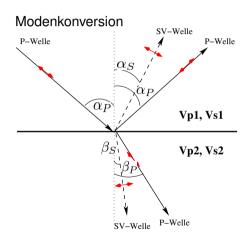
■ Bei einer kontinuierlichen Geschwindigkeitszunahme mit der Tiefe entstehenTauchwellen → Seismologie

Strahlenwege in der Erde



Nur transmittierte Wellenwege gezeigt. Schattenzonen (105° – 140°) für P-Wellen infolge von Brechung am äußeren Kern. Keine S-Wellen durch äußeren Kern.

$$\frac{\sin(\alpha)}{c_1} = \frac{\sin(\beta)}{c_2}$$



- Konversion von P- und SV-Wellen bei jeder Reflexion in einem elastischen Medium
- Diese wird ebefalls beschrieben durch das Brechungsgesetz:

$$\frac{\sin(\alpha_P)}{Vp_1} = \frac{\sin(\alpha_S)}{Vs_1} = \frac{\sin(\beta_P)}{Vp_2} = \frac{\sin(\beta_S)}{Vs_2}$$

Die Modenkonversion tritt ebenso bei einer einfallenden SV-Welle auf

Agenda

- Brechungsgesetz Konsequenzen
- Schicht über Halbraum
 - Laufzeitgleichungen
 - Simulationen der Wellenausbreitung
- Datenbeispiel
- Zusammenfassung

Schicht über Halbraum

- Grundlegendes Verständnis für die Wellenausbreitung (Reflexion und Brechung)
- Hier: Herleitung der Laufzeitgleichungen und Simulationen.
- Annahme eines akustischen Mediums (Vs = 0) \rightarrow nur P-Wellen.

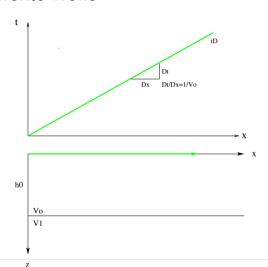
Modellannahme: Schicht über Halbraum und akustische Wellenausbreitung.

3 Untergrundparameter: h_0 =Schichtmächtigkeit, v_0 =Geschwindigkeit der Schicht, v_1 =Geschwindigkeit des Halbraums

Agenda

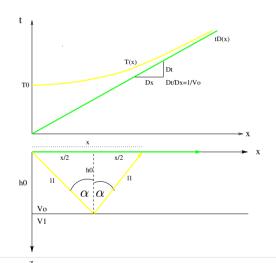
- Brechungsgesetz Konsequenzen
- Schicht über Halbraum
 - Laufzeitgleichungen
 - Simulationen der Wellenausbreitung
- Datenbeispiel
- Zusammenfassung

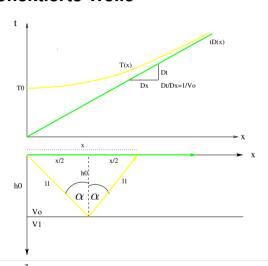
Direkte Welle



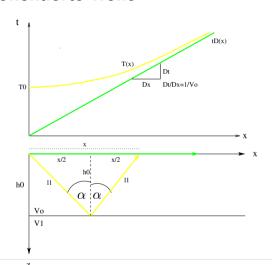
Direkte Welle

$$t_D = \frac{x}{v_o}$$



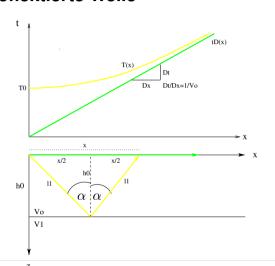


Reflektierte Welle
$$T^2 = \left(\frac{2I_1}{v_0}\right)^2$$
, $I_1 = \left(\frac{x}{2}\right)^2 + h_0^2$



Reflektierte Welle
$$T^2 = \left(\frac{2l_1}{v_0}\right)^2$$
, $l_1 = \left(\frac{x}{2}\right)^2 + h_0^2$

$$T^2=rac{4\left(\left(rac{x}{2}
ight)^2+h_0^2
ight)}{v_o^2}$$



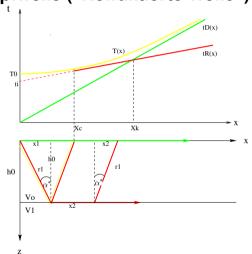
Reflektierte Welle
$$T^2 = \left(\frac{2I_1}{v_0}\right)^2$$
, $I_1 = \left(\frac{x}{2}\right)^2 + h_0^2$

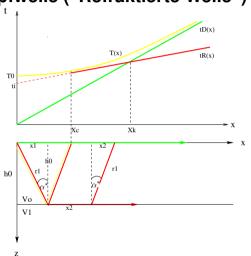
$$T^2 = \frac{4\left(\left(\frac{x}{2}\right)^2 + h_0^2\right)}{v_0^2}$$

$$T^2(x) = \frac{x^2}{v_0^2} + T_0^2$$

$$T_0 = \frac{2h_0}{v_0}$$

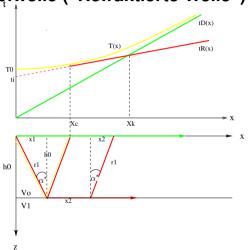
Hyperbel. T_0 = Laufzeit des Lotstahls.





Kopfwelle

$$t_R = rac{2r_1}{v_0} + rac{x_2}{v_1}$$
 in $(lpha^*) = rac{v_0}{v_1}$ $r_1 = rac{h_0}{\cos(lpha^*)}$ $r_2 = r_2 - 2r_1$ $r_3 = rac{2h_0}{\cos(lpha^*)} + rac{r_1}{v_1} - rac{2h_0}{v_1} + rac{r_2}{v_2} + ra$

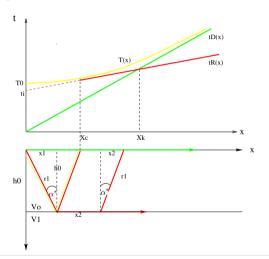


$$t_{R} = \frac{2h_{0}}{\sqrt{1 - \frac{v_{0}^{2}}{v_{1}^{2}}}} \left(\frac{1}{v_{0}} - \frac{v_{0}}{v_{1}^{2}} \right) + \frac{x}{v_{1}}$$

$$= \frac{2h_{0}}{v_{0}} \sqrt{1 - \frac{v_{0}^{2}}{v_{1}^{2}}} + \frac{x}{v_{1}}$$

$$= 2h_{0} \sqrt{\frac{1}{v_{0}^{2}} - \frac{1}{v_{1}^{2}}} + \frac{x}{v_{1}}$$

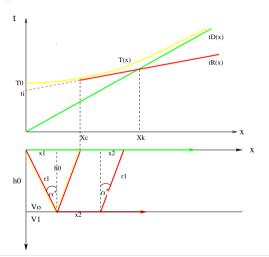
$$t_R = t_i + rac{x}{v_1}$$
 $t_i = 2h_0\sqrt{v_0^{-2}-v_1^{-2}}$ "Intercept-Zeit" Laufzeitkurve der Kopfwelle ist eine Gerade.



Kritische Entfernung

Die Kopfwelle ist zum ersten Mal in der kritischen Entfernung x_c beobachtbar. Hier berühren sich Reflexion und Kopfwelle: $t_B(x_c) = T(x_c)$ und $\frac{\partial t_B}{\partial x}(x_c) = \frac{\partial T}{\partial x}(x_c)$. Die kritische Entfernung lässt sich berechnen aus

$$x_c = 2x_1 = 2h_0 \tan(\alpha^*)$$



Überholentfernung

In der Überholentfernung x_k überholt die Kopfwelle die direkte Welle. Es gilt:

$$t_D(x_k) = t_R(x_k)$$

$$\frac{x_k}{v_0} = \frac{x_k}{v_1} + 2h_0\sqrt{v_0^{-2} + v_1^{-2}}$$

$$x_k = 2h_0\frac{\sqrt{v_0^{-2} + v_1^{-2}}}{v_0^{-1} - v_1^{-1}}$$

$$= \dots$$

$$x_k = 2h_0\sqrt{\frac{v_1 + v_0}{v_1 - v_0}}$$

Agenda

- Brechungsgesetz Konsequenzen
- Schicht über Halbraum
 - Laufzeitgleichungen
 - Simulationen der Wellenausbreitung
- Datenbeispiel
- Zusammenfassung

Akustische Simulation

Akustischen Wellengleichung beschreibt Wellenausbreitung in Flüssigkeiten/Gasen:

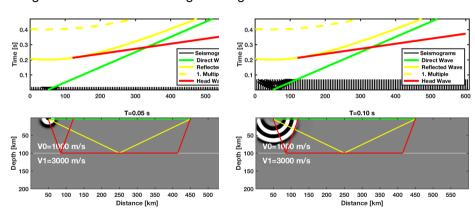
$$\frac{\partial^2 p}{\partial t^2} = \lambda \sum_{i=1}^3 \frac{\partial}{x_i} \left(\frac{1}{\rho} \frac{\partial p}{\partial x_i} \right), \quad V_p = \sqrt{\frac{\lambda}{\rho}}, V_s = 0$$

p: Druck, ρ : Dichte, λ : Lamé Parameter

Schicht über Halbraum. $h_0 = 100m$, $V_{p0} = 1000m/s$, $V_{p1} = 3000m/s$.

Akustische Simulation

Lösung der akustischen Wellengleichung



27.10.2021

Elastische Simulation

Elastische Wellengleichung beschreibt Wellenausbreitung in der festen Erde:

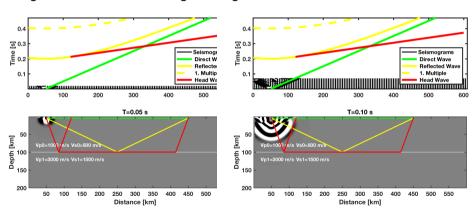
$$\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial}{\partial x_i} \left(\lambda \left(\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} \right) + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right], V_{\rho} = \sqrt{\frac{\lambda + 2\mu}{\rho}}, V_{s} = \sqrt{\frac{\mu}{\rho}}$$

 u_i : Verschiebung, ρ : Dichte, λ , μ : Lamé Parameter

Schicht über Halbraum. $h_0 = 100m$, $V_{p0} = 1000m/s$, $V_{p1} = 3000m/s$, $V_{s0} = 500m/s$, $V_{s1} = 1500m/s$, .

Elastische Simulation

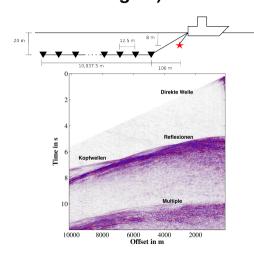
Lösung der elastischen Wellengleichung



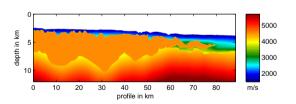
Agenda

- Brechungsgesetz Konsequenzen
- Schicht über Halbraum
 - Laufzeitgleichungen
 - Simulationen der Wellenausbreitung
- Datenbeispiel
- Zusammenfassung

Beispiel marine Streamer-Daten (Salzerkundung Offshore Angola)

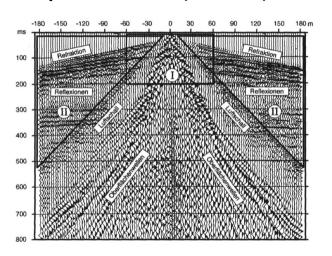


- Typische marine Daten
- Wassertiefe 2-3 km
- Reflexionen von der Salzoberkante
- Kopfwelle von der Salzoberkante



Geschwindigkeitsmodell (Click to play)

Beispiel Landdaten (Onshore)



- Typische Landdaten
- Starke Amplituden von Oberflächenwellen
- Reflexionen, Refraktionen (Kopfwellen), S-Wellen, Luftschall

Agenda

- Brechungsgesetz Konsequenzen
- Schicht über Halbraum
 - Laufzeitgleichungen
 - Simulationen der Wellenausbreitung
- Datenbeispiel
- Zusammenfassung

Das Brechungsgesetz ergibt sich aus dem Fermatschen Prinzip. Es beschreibt weitgehend die Strahlenausbreitung in 2D geschichteten Medien.

- Das Brechungsgesetz ergibt sich aus dem Fermatschen Prinzip. Es beschreibt weitgehend die Strahlenausbreitung in 2D geschichteten Medien.
- Im dem Fall einer söhligen Schicht über einem Halbraum breiten sich im akustischen Fall (z.B. Wasser) die direkte Welle, eine Kopfwelle sowie Reflexionen aus.

- Das Brechungsgesetz ergibt sich aus dem Fermatschen Prinzip. Es beschreibt weitgehend die Strahlenausbreitung in 2D geschichteten Medien.
- Im dem Fall einer söhligen Schicht über einem Halbraum breiten sich im akustischen Fall (z.B. Wasser) die direkte Welle, eine Kopfwelle sowie Reflexionen aus.
- Die Laufzeitgleichungen für die direkte Welle und die Kopfwelle sind linear, die Laufzeitgleichung für die Reflexion hyperbolisch.
- Im elastischen Fall (Erde) kommen die Oberflächenwelle und S-Wellen dazu. Die Wellen können wechselseitig konvertieren.

- Das Brechungsgesetz ergibt sich aus dem Fermatschen Prinzip. Es beschreibt weitgehend die Strahlenausbreitung in 2D geschichteten Medien.
- Im dem Fall einer söhligen Schicht über einem Halbraum breiten sich im akustischen Fall (z.B. Wasser) die direkte Welle, eine Kopfwelle sowie Reflexionen aus.
- Die Laufzeitgleichungen für die direkte Welle und die Kopfwelle sind linear, die Laufzeitgleichung für die Reflexion hyperbolisch.
- Im elastischen Fall (Erde) kommen die Oberflächenwelle und S-Wellen dazu. Die Wellen können wechselseitig konvertieren.

Vielen Dank für Ihre Aufmerksamkeit

🔀 Thomas.Bohlen@kit.edu

http://www.gpi.kit.edu/

Veröffentlicht unter @ 00 Lizenz.

