

Einführung in die Geophysik I

Georadar

Thomas Bohlen, Ellen Gottschämmer, Geophysikalisches Institut, Fakultät für Physik

a.to doi	roniocang	0000	

Seismische Wellenausbreitung

8 Refraktionsseismik

4 Reflexionsseismik

Elektromagnetische Verfahren

Geoelektrik

Gravimetrie

Einführung

Magnetik

weitere Themen

(20.10)

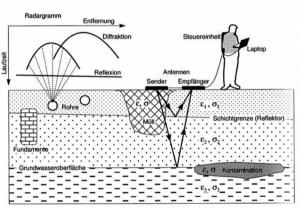
(20.10, 27.10)

(03.11)(10.11)

(17.11, 24.11)

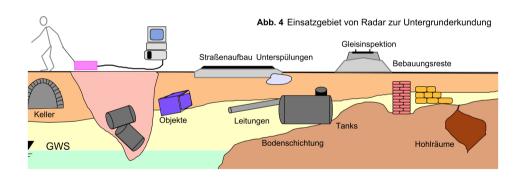
(01.12)(08.12, 15.12)

(12.01, 19.01) (26.01, 02.02)



- Einführung
- Lösung der Telegraphengleichung: Ausbreitungsgeschwindigkeit und Dämpfung
- Wellenausbreitung
- Geschwindigkeitsanalyse
- Vertikale Auflösung
- Beispiele
- Zusammenfassung

Messprinzip beim Georadar



- 1-2 Antennen
- Frequenzbereich 1 MHz 1 GHz
- Nurze Laufzeit pprox 10 $^{-9}$ s
- Geringe Eindringung
- Hohe Auflösung
- Diffraktionen und Reflexionen

Einsatzgebiete des Georadar

- Einführung
- Lösung der Telegraphengleichung: Ausbreitungsgeschwindigkeit und Dämpfung
- Wellenausbreitung
- Geschwindigkeitsanalyse
- Vertikale Auflösung
- Beispiele
- Zusammenfassung

Die allgemeine Lösung der 1D Telegraphengleichung

$$\frac{\partial^2 E_y}{\partial x^2} = \mu \varepsilon \frac{\partial^2 E_y}{\partial t^2} + \mu \sigma \frac{E_y}{\partial t} = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2} + \mu \sigma \frac{E_y}{\partial t}$$

lautet

$$E_{y}(x) = E_{0} \exp(i(\omega t - kx)) \exp(-\alpha x)$$

$$k = \frac{\omega}{c} = \sqrt{\frac{\omega^2 \mu \epsilon}{2} \left(1 + \sqrt{1 + \frac{\sigma^2}{\epsilon^2 \omega^2}}\right)}$$
 Wellenzahl

(1)

 $\alpha = \sqrt{\frac{\omega^2 \mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\epsilon^2 \omega^2}} - 1\right)}$ Absorptionskoeffizient

Elektrische Permittivität

$$\epsilon = \epsilon_r \epsilon_0$$

Magnetische Permeabilität

$$\mu = \mu_r \mu_0 \approx \mu_0$$

Elektrische Leitfähigkeit

 σ

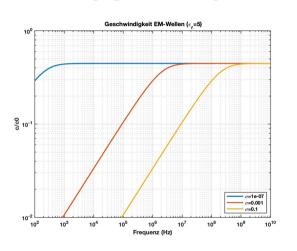
Material	ϵ_r	$\sigma[\Omega m]^{-1}$
Luft	1	0
Süßwasser	80	$< 10^{-2}$
Meerwasser	80	4
Eis	3-4	10^{-5}
Trockener Sand	3-5	$10^{-7} - 10^{-3}$
Nasser Sand	20-30	10^{-2}
Lehm	4-8	10^{-2}
Ton	5-40	$10^{-3} - 1$
Granit	4-6	$10^{-5} - 10^{-3}$
Bernstein	2.5	$< 10^{-16}$

Für die meisten Geomaterialien: $\mu_r = 1$, $\epsilon_r = 1 - 25$, $\sigma = 10^{-5} - 10^{-2}$

Ausbreitungsgeschwindigkeit

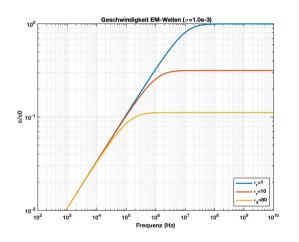
Ausbreitungsgeschwindigkeit nach Gl. 1

$$c = \frac{\omega}{k} = \sqrt{\frac{2}{\mu \varepsilon}} \left[\left(1 + \left(\frac{\sigma}{\omega \varepsilon} \right)^2 \right)^{1/2} + 1 \right]^{-1/2} = \left\{ \begin{array}{ll} \sqrt{\frac{\omega \mu \sigma}{2}}, & \omega \varepsilon \ll \sigma & \text{EM} \\ \frac{c_0}{\sqrt{\varepsilon_r}}, & \sigma \ll \omega \varepsilon & \text{GPR} \end{array} \right.$$


Der Fall $\omega\epsilon\ll\sigma$ tritt bei geringen Frequenzen und hoher Leitfähigkeit auf. Der Fall $\sigma\ll\omega\epsilon$ tritt bei hohen Frequenzen und geringer Leitfähigkeit auf.

Im Frequenzbereich des Georadar $10^6 - 10^9 Hz$ liegen wir bei hoher Leitfähigkeit im Grenzbereich.

Ausbreitungsgeschwindigkeit : σ


$$\frac{c}{c_0} = \frac{1}{c_0} \sqrt{\frac{2}{\mu \epsilon}} \left[\left(1 + \left(\frac{\sigma}{\omega \epsilon} \right)^2 \right)^{1/2} + 1 \right]^{-1/2}$$

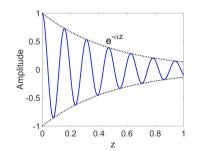
Plateau:
$$\omega \to \infty$$
 : $c = \frac{c_0}{\sqrt{\epsilon_r}}$

Unterhalb
$$\omega o 0: c = \sqrt{rac{\omega\mu\sigma}{2}} \propto \sqrt{\omega}$$

Ausbreitungsgeschwindigkeit: ϵ_r

$$\frac{c}{c_0} = \frac{1}{c_0} \sqrt{\frac{2}{\mu \epsilon}} \left[\left(1 + \left(\frac{\sigma}{\omega \epsilon} \right)^2 \right)^{1/2} + 1 \right]^{-1/2}$$

Plateau:
$$\omega \to \infty$$
 : $c = \frac{c_0}{\sqrt{\epsilon_r}}$


Unterhalb
$$\omega o 0: c = \sqrt{rac{\omega\mu\sigma}{2}} \propto \sqrt{\omega}$$

Dämpfung

Absorptionskoeffizient nach Gl. 2

$$\alpha = \sqrt{\frac{\omega^2 \mu \varepsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} - 1\right)} = \left\{ \begin{array}{l} \sqrt{\frac{\omega \mu \sigma}{2}}, & \omega \varepsilon \ll \sigma \quad \text{EM} \\ \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}}, & \sigma \ll \omega \varepsilon \quad \text{GPR} \end{array} \right.$$

In der Skintiefe hat die Amplitude um den Faktor $\frac{1}{a} \approx 0.37$ abgenommen


$$z_s = \delta = \frac{1}{\alpha}$$

Eindringung $\approx 3\delta$

Eindringung EM-Wellen

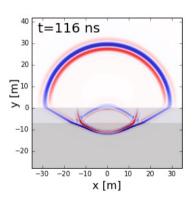
$$\alpha = \sqrt{\frac{\omega^2 \mu \varepsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} - 1 \right)}$$

Plateau:

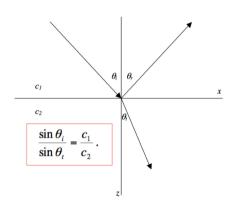
$$\omega o \infty$$
 : $3\delta = \frac{3}{\alpha} = \frac{2}{\sigma} \sqrt{\frac{\epsilon}{\mu}}$

Unterhalb

$$\omega \to 0: 3\delta = \frac{3}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}} \propto \frac{1}{\sqrt{\omega}}$$

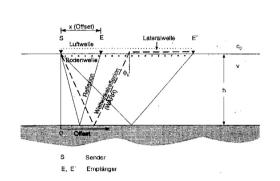

- Einführung
- Lösung der Telegraphengleichung: Ausbreitungsgeschwindigkeit und Dämpfung
- Wellenausbreitung
- Geschwindigkeitsanalyse
- Vertikale Auflösung
- Beispiele
- Zusammenfassung

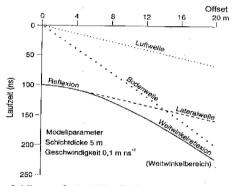
Movie


- Starke Luftwelle
- Dämpfung mit der Tiefe
- Verringerung der Geschwindigkeit mit der Tiefe
- Verringerung der Wellenlänge mit der Tiefe
- Erhöhung der Auflösung mit der Tiefe

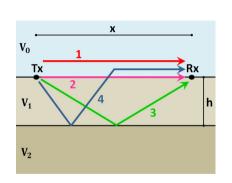
https://gpg.geosci.xyz/_images/LayeredEarth.gif

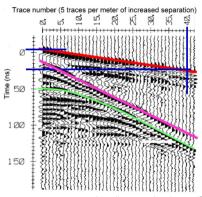
Es gilt das Brechungsgesetz nach Snellius




- Reflexionen: Einfallswinkel=Ausfallswinkel
- Nopfwellen $\theta^* = \arcsin(\frac{c_1}{c_2}), \quad c_1 < c_2$
- Oft aber $\epsilon_{r,1} > \epsilon_{r,2}$
- Daher $c_1=rac{c_0}{\epsilon_{r,1}}< c_2=rac{c_0}{\epsilon_{r,2}}
 ightarrow$ keine Kopfwellen

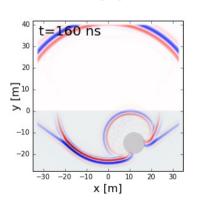
Wellenwege und Laufzeitkurven


Laufzeitdiagramm für den söhligen Zweischichtfall


Besonderheit: Lateralwelle bei jeder Reflexion

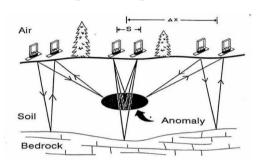
Wellenwege und Laufzeitkurven

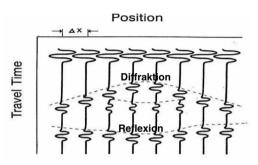
https://gpg.geosci.xyz/content/GPR/index.html


1: Luftwelle, 2: Direkte Welle, 3: Reflexion, 4: Reflexion+Lateralwelle

Streuung an einem Leiter

Movie


- Starke Streuung an einem Leiter
- **Erzeugt durch Kontrast in** ϵ_r und σ


https://gpq.geosci.xyz/ images/Conductor.gif

Streuung erzeugt Diffraktionen

Kleinräumige Anomalien in ϵ_r und/oder σ erzeugen Streuung/Diffraktionen

Reflexionsamplituden

htt-

ps://commons.wikimedia.org/wiki/File:Partial_transmittance.gif

Reflexionskoeffizient

$$R = \frac{\text{Einfallende Amplitude}}{\text{Reflektierte Amplitude}} = \frac{c_2 - c_1}{c_1 + c_2}$$

Transmissionskoeffizient

$$T = \frac{\text{Transmittierte Amplitude}}{\text{Reflektierte Amplitude}} = \frac{2c_2}{c_1 + c_2}$$

Ein Kontrast in c wird vor allem durch einen Kontrast in ϵ_r erzeugt:

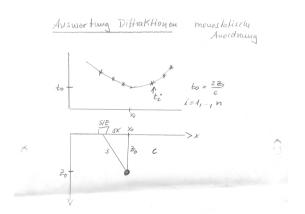
$$c=rac{c_0}{\sqrt{\epsilon_r}}$$

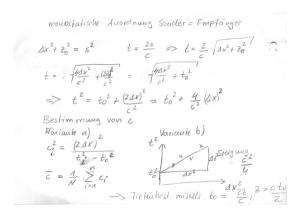
Er kann aber auch durch einen starken Kontrast in σ erzeugt werden (Metall).

- Geschwindigkeitabnahme mit der Tiefe
 - → Kopfwelle an der Erdoberfläche = "Lateralwelle"
 - → Keine Kopfwellen an geologischen Grenzflächen
- 2 Diffraktionen durch kleinräumige Variationen in ϵ_r manchmal σ
- $oldsymbol{\circ}$ Geringere Wellenlängen mit der Tiefe ightarrow höhere Auflösung
- **1** Hohe Dämpfung durch $\sigma \to \mathsf{geringe}$ Eindringung in leitfähigen Medien

- Einführung
- Lösung der Telegraphengleichung: Ausbreitungsgeschwindigkeit und Dämpfung
- Wellenausbreitung
- Geschwindigkeitsanalyse
- Vertikale Auflösung
- Beispiele
- Zusammenfassung

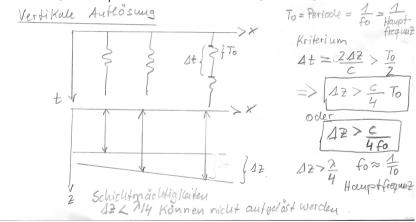
Geschwindigkeitsanalyse



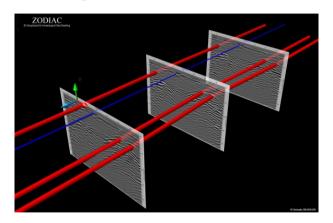

- Wie in der Seismik wird ein Modell der Ausbreitungsgeschwindigkeiten für die Abbildung (Migration) benötigt
- Die Analyse reflektierter Wellen in einer Multi-Offset-Messung erfolgt analog wie in der Seismik mit dem CMP-Verfahren
- In der mono-statischen Messkonfiguration (ZO-Konfiguration) können Diffraktionen ausgewertet werden.
- Diffraktionen werden beim Georadar häufig beobachtet.

Geschwindigkeitsanalyse von Diffraktionen

4 - 1 4 = 1 M Q C

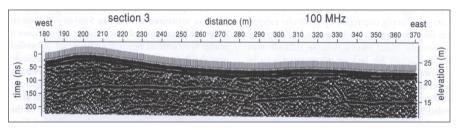

- Einführung
- Lösung der Telegraphengleichung: Ausbreitungsgeschwindigkeit und Dämpfung
- Wellenausbreitung
- Geschwindigkeitsanalyse
- Vertikale Auflösung
- Beispiele
- Zusammenfassung

Die Wellenlänge $\lambda = \frac{c}{f}$ bestimmt das Auflösungsvermögen:



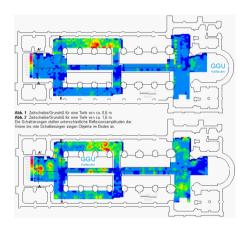
- Einführung
- Lösung der Telegraphengleichung: Ausbreitungsgeschwindigkeit und Dämpfung
- Wellenausbreitung
- Geschwindigkeitsanalyse
- Vertikale Auflösung
- Beispiele
- Zusammenfassung

Kartierung von Leitungen

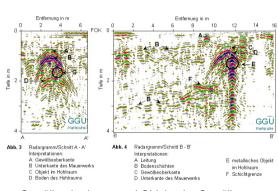


(Quelle: Eastern Atlas)

Kartierung des Grundwasserspiegels

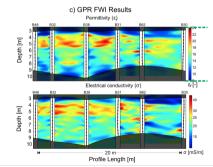


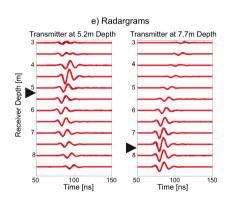
Wasser im Boden führt zu einer deutlichen Reduktion der Ausbreitungsgeschwindigkeit. Daher erscheint der Grundwasserspiegel als deutlicher Kontrast.



"Schatzsuche" in einer Kirche

Kartierung des Untergundes in einer Kirche


Gewölbeoberkante und Objekte im Gewölbe


(Quelle: GGU Karlsruhe)

Bohrlochtomographie mit Wellenforminversion

(Quelle: Forschungszentrum-Jülich) a ~

- Einführung
- Lösung der Telegraphengleichung: Ausbreitungsgeschwindigkeit und Dämpfung
- Wellenausbreitung
- Geschwindigkeitsanalyse
- Vertikale Auflösung
- Beispiele
- Zusammenfassung

Vielen Dank für Ihre Aufmerksamkeit

Thomas.Bohlen@kit.edu

http://www.gpi.kit.edu/

Veröffentlicht unter © 00 Lizenz.

