

Einführung in die Geophysik I

Eigenschaften und Wechselwirkung elektromagnetischer Felder

Thomas Bohlen, Geophysikalisches Institut, Fakultät für Physik

				9					

Einführung

Seismische Wellenausbreitung

8 Refraktionsseismik

4 Reflexionsseismik

5 Elektromagnetische Verfahren

Geoelektrik

Gravimetrie

Magnetik

2 | 35

Weiteres Thema Die Klausur findet voraussichtlich am 15.02.2023 statt.

(02.11)(02.11, 09.11)

(16.11)

(23.11)(30.11, 07.12)

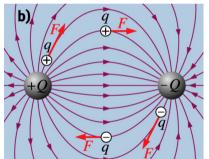
(14.12)(11.01, 18.01) (25.01, 01.02)

(08.02)

Agenda

- Das elektrische Feld
- Das magnetische Feld
- Maxwell-Gleichungen
- Telegraphengleichung
- Geophysikalische Verfahren

Agenda


- Das elektrische Feld
- Das magnetische Feld
- Maxwell-Gleichungen
- Telegraphengleichung
- Geophysikalische Verfahren

Das elektrische Feld

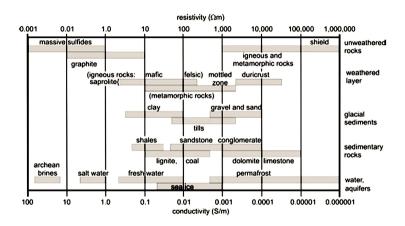
- Das elektrische Feld ist ein Vektorfeld $\vec{E}(\vec{r}, t)$.
- Es beschreibt die auf eine Probeladung g wirkende Kraft $\vec{F} = \vec{E}g$.

Das elektrische Feld eines Dipols und die Kraft auf eine Probeladung

Relevant für die geophysikalische Erkundung

- Ein vorhandenes E-Feld erzeugt Ladungstransport = Strom.
- Vorhandene atomare Dipole in einem Dielektrikum verändern den Fluss, d.h. die Durchlässigkeit (Permittivität) für das F-Feld

Ladungstransport - Ohmsches Gesetz


In einem leitfähigen Material entsteht Ladungstransport wenn ein äußeres elektrisches Feld \vec{F} existiert. Das Ohmsche Gesetz für ein Medium lautet:

$$\vec{j} = \sigma \vec{E} = \varrho^{-1} \vec{E}$$

- \bullet σ : spezifische elektrische Leitfähigkeit (Einheit $(\Omega m)^{-1}$).
- $\rho = \sigma^{-1}$: spezifische elektrischer Widerstand
- $\vec{i} = \vec{I}/A$: Stromdichte (A=Querschnitt)
- $\vec{l} = dQ/dt$: Strom=Ladungsmenge/Zeit.

Elektrische Leitfähigkeit für Geomaterialien

Die elekrische Flussdichte \vec{D}

Ein Material kann den Fluss (Dichte der Feldlinien) des elektrischen Feldes \vec{E} verändern:

$$\vec{D} = \epsilon \vec{E}$$

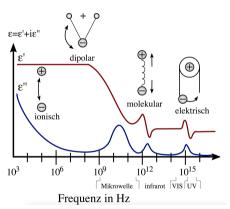
Die elektrische Flussdichte \vec{D} beschreibt die Dichte der Feldlinien pro Fläche. Im Vakuum gilt

$$\vec{D} = \epsilon_0 \vec{E}$$
, $\epsilon_0 = 8.85418...10^{-12} N/m$ elektr. Feldkonstante

In einem isotropen Dielektrikum kann es zu einer Verstärkung um den Faktor ϵ_r kommen:

$$\vec{D} = \epsilon_r \epsilon_0 \vec{E}$$

 ϵ_r ist ein Materialparameter und wird als relative Permittivität (relative Dielektrizitätszahl) bezeichnet.



Relative Permittivität einiger Stoffe

bei 18 °C und einer Frequenz von 50 Hz, sofern nicht anders angegeben

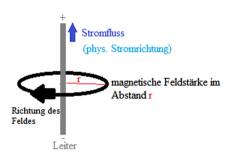
Medium	ε_{r}	Medium	ε_{r}
Vakuum	1,0	Luft	1,00059
Acrylnitril-Butadien-Styrol (ABS) (30 °C)	4,3	Aluminiumoxid (Tonerde)	9
Ammoniak (0 °C)	1,007	Bariumtitanat	10 ³ –10 ⁴
Benzol	2,28	Trockene Erde	3,9
Feuchte Erde	29	Germanium	16,6
Glas	6-8	Glycerin	42,5
Gummi	2,5-3	Holz (darrtrocken)	2-3,5
Kallumchlorid	4,94	Methanol	32,6
Petroleum	2	Polyethylen (PE) (90 °C)	2,4
Polypropylen (PP) (90 °C)	2,1	Porzellan	2-6
Propanol	18,3	Paraffin	2,2
Papier	1-4	Polytetrafluorethylen (PTFE oder auch Teflon)	2
FR2, FR4	4,3-5,4	Polystyrol-Schaum (Styropor ® BASF)	1,03
Tantalpentoxid	27	Wasser (20 °C, 0-3 GHz)	80
Wasser (sichtbarer Bereich)	1,77	Wasser (0 °C, 0-1 GHz)	88
Fis (0 his _50 °C: Niederfrequenz)	~ 90_150	Fig (über 100 kHz)	3.2

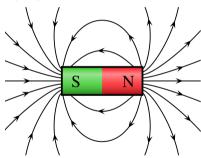
Starke Frequenzabhängigkeit von ϵ_r

Werte für ϵ_r

□ (Wikipedia) 🥄 🤏

Agenda


- Das elektrische Feld
- Das magnetische Feld
- Maxwell-Gleichungen
- Telegraphengleichung
- Geophysikalische Verfahren


Das magnetische Feld \vec{H}

- **E** Ein vom Strom durchflossener Leiter erzeugt im Abstand r ein magnetisches Feld $|\vec{H}| = \frac{1}{2\pi r}$
- Die magnetische Feldstärke hat die Einheit Ampere/Meter (A/m).

Magnetfeld H eines Leiters

Magnetfeld eines Stabmagneten

Die magnetische Flussdichte \vec{B}

Ein Material kann den Fluss (die Dichte der Feldlinien) des Erreger-Feldes \vec{H} verändern. Die Feldlinien werden unterschiedlich gebündelt bzw. verdichtet.

$$\vec{B} = \mu \vec{H}$$

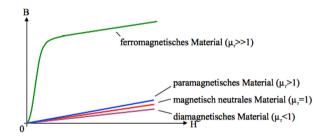
Die magnetische Flussdichte \vec{B} beschreibt die resultierende Dichte der Feldlinien pro Fläche. \vec{B} kann daher als eigentliches Wirkungsfeld aufgefasst werden. Im Vakuum gilt

$$\vec{B}=\mu_0\vec{H}, \quad \mu_0=4\pi 10^{-7} N/A^2 \quad \text{magn. Feldkonstante}$$

In Materialien kann es zu einer Verstärkung/Abschwächung von \vec{B} um den Faktor μ_r kommen.

$$\vec{B} = \mu_r \mu_0 \vec{H}$$

 μ_r ist ein Materialparameter und wird als relative Permeabillitätszahl bezeichnet.



Relative Permeabillitätszahl μ_r

- $\mathbf{0} \mu_r < 1$: Diamagnetismus Verdrängung des Magnetfeldes (z.B. Wasser)
- 2 $\mu_r \approx 1$: neutral gilt für die meisten Gesteine
- $u_r > 1$: Paramagnetismus Verstärkung durch Ausrichtung magnetischer Momente (z.B. Luft)
- $u_r >> 1$: Ferromagnetismus Starke parallele Ausrichtung zahlreicher magnetischer Momente und Bildung von "Weißscher Bezirke" (z.B. Eisen, Ferrit).

$$\vec{B} = \mu_r \mu_0 \vec{H}$$

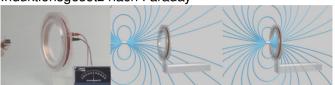
(Wikipedia)

Agenda

- Das elektrische Feld
- Das magnetische Feld
- Maxwell-Gleichungen
- Telegraphengleichung
- Geophysikalische Verfahren

Die Maxwell-Gleichungen

- Um 1860 erstellte der schottische Physiker eine mathematisch knappe Zusammenfassung des
 - Faraday'schen Gesetzes
 - 2 Ampére'schen Gesetzes
 - 3 Gauss'schen Gesetzes für \vec{E} bzw. \vec{D}
 - 4 Gauss'schen Gesetzes für \vec{H} , bzw. \vec{B}
 - → Maxwell-Gleichungen
- Sie besitzen in der klassischen Elektrodynamik eine ähnliche Bedeutung wie die Newton'schen Axiome in der klassischen Mechanik
- Sie bilden die Grundlage für die geophysikalischen Verfahren: Geolekektrik, Magnetik, EM, Georadar

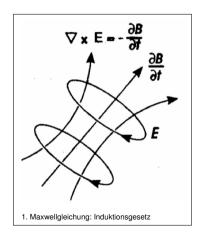

James Clerk Maxwell 1831-1879

Karlsruher Institut für Technologie

Induktionsgesetz nach Faraday

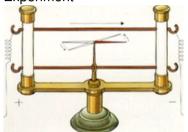
- Beobachtung: Eine Veränderung von $\vec{B}(\vec{r},t)$ induziert eine Spannung
- Erklärung: Eine Veränderung von $\vec{B}(\vec{r},t)$ erzeugt eine Veränderung von $\vec{E}(\vec{r},t)$, dies erzeugt eine Ladungsbewegung und dies induziert einen Spannungsabfall

Michael Faraday 1770-1845



Mathematische Formulierung des Induktionsgesetzes nach Maxwell

$$ec{
abla} imesec{E}=-rac{\partial ec{B}}{\partial t}$$

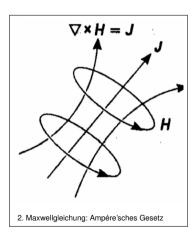

- Ein zeitlich variabler magnetischer Fluss verursacht ein senkrecht dazu stehendes elektrisches Feld.
- Anwendung: Generator (rotierender Magnet erzeugt Strom)

 \vec{E} : elektrisches Feld (V/m), \vec{B} : magnetische Fluss (T)

Experiment

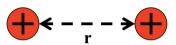
- Beobachtung: Strom in elektrischem Leiter verursacht Ablenkung einer Kompass-Nadel
- Erklärung: Eine Magnetfeld entsteht durch bewegte Ladungen (Ströme)

Hans Christian Oersted & André Marie Ampére 1820



Mathematische Formulierung des Ampére'schen Gesetzes nach Maxwell

$$\vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{j}$$


- Verschiebungs- und Leitungsströme induzieren ein senkrecht auf dem Stromfluss stehendes magnetisches Feld
- Anwendung: Elektromagnet (stromduchflossene Spule mit Elsenkern)

 \vec{H} : Magnetfeld (A/m), \vec{D} : dielektrische Verschiebung (C/m^2), \vec{i} : Stromleitungsdichte (A/m^2)

1785 Experimente zur Messung der Kraft durch geladene Kugeln

 $\mathbf{q_1}$

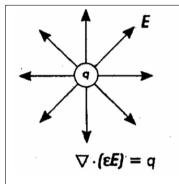
 $\mathbf{q_2}$

Beobachtung

$$|\vec{F}| = \pm K_e \frac{q_1 q_2}{r^2}$$

inverses quadratisches Gesetz

Charles Augustin de Coulomb 1736-1806

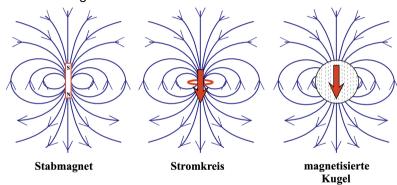


Mathematische Formulierung des Coloumb'schen Gesetzes nach Maxwell als Gauss'sches Gesetz für das elektrische Feld

$$ec{
abla} \cdot ec{{\sf E}} = rac{{\sf q}}{\epsilon}$$

Das elektrische Feld muss geschlossene Feldlinien bilden oder an der Ladung enden.

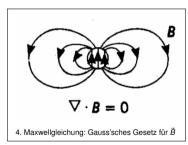
 \vec{E} : elektrisches Feld (V/m, \vec{a} : Ladungsdichte (C/m^3))



3. Maxwellgleichung: Gauss'sches Gesetz für E

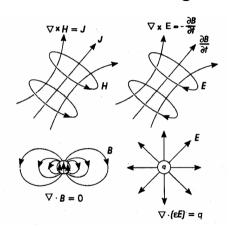
Beobachtung

Die Magnetfeldlinien sind immer in in sich geschlossen



Mathematische Formulierung des Gauss'schen Gesetzes für das Magnetfeld nach Maxwell

$$\vec{\nabla} \cdot \vec{B} = 0$$


Es gibt weder Quellen noch Senken für das magn. Feld. d.h. keine isolierten magn. Ladungen oder Monopole

 \vec{B} : magnetische Fluss (T)

Die Maxwell-Gleichungen

Veranschaulichung der Maxwell-Gleichungen

Induktionsgesetz

$$ec{
abla} imes ec{\mathcal{E}} = -rac{\partial ec{\mathcal{B}}}{\partial t}$$

② Duchflutungsgesetz

$$\vec{
abla} imes \vec{H} = rac{\partial \vec{D}}{\partial t} + \vec{j}$$

3 Coulomb'sches Gesetz

$$ec{
abla} \cdot ec{\it E} = rac{q}{\epsilon}$$

Gauss'sches Gesetz

$$ec{
abla} \cdot ec{\emph{B}} = 0$$

Materialgleichungen

Die Materialgleichungen beschreiben die Veränderung der Felder in Materialien.

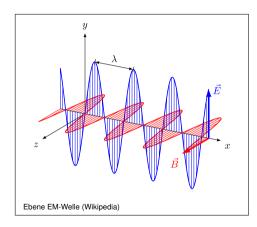
- Elektrische Permittivität in einem Dielektrikum: $\vec{D} = \epsilon_r \epsilon_0 \vec{E}$
- **2** Magnetische Permeabilität: $\vec{B} = \mu_r \mu_0 \vec{H}$
- **3** Stromleitung: $\vec{j} = \sigma \vec{E}$

Die (geophysikalisch) relevanten Materialparameter sind

- ϵ_r : relative dielektrische Permittivität (Vs/Am)
- 2 μ_r : relative magnetische Permeabilität (Vs/Am)
- \circ σ : elektrische Leitfähgkeit (S/m)

Agenda

- Das elektrische Feld
- Das magnetische Feld
- Maxwell-Gleichungen
- Telegraphengleichung
- Geophysikalische Verfahren


Lösung für eine ebene EM-Welle

Wir wollen nun die Lösung der Maxwellgleichungen für eine ebene elektromagnetische Welle berechnen:

$$E_{y}(x) = E_{0} \exp(i\omega(t - x/c))$$

$$H_{z}(x) = H_{0} \exp(i\omega(t - x/c))$$

Lösung für eine ebene EM-Welle

Für diesen Fall der ebenen Welle vereinfacht sich die ersten Maxwellgleichung

$$ec{
abla} imesec{E}=-rac{\partial ec{B}}{\partial t}$$

zu

$$\vec{\nabla} \times \vec{E}|_z = -\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t} = -\mu \frac{\partial H_z}{\partial t}$$

Wir differenzieren nochmal nach $x \to \frac{\partial}{\partial x}$

$$\frac{\partial^2 E_y}{\partial x^2} = \mu \frac{\partial^2 H_z}{\partial x \partial t}$$

(1)

Ebenso vereinfacht sich die zweite Maxwellgleichung

$$\vec{\nabla} \times \vec{H} = \epsilon \frac{\partial \vec{E}}{\partial t} + \vec{j}$$

zu

$$\vec{\nabla} \times \vec{H}|_{y} = \frac{\partial H_{z}}{\partial x} = \epsilon \frac{\partial E_{y}}{\partial t} + j_{y} = \epsilon \frac{\partial E_{y}}{\partial t} + \sigma E_{y}$$

Wir differenzieren nochmal nach $t \rightarrow \frac{\partial}{\partial t}$

$$\frac{\partial^2 H_z}{\partial x \partial t} = \epsilon \frac{\partial^2 E_y}{\partial t^2} + \sigma \frac{E_y}{\partial t}$$

(2)

Wir setzen nun Gl 2 in Gl 1 ein:

$$\frac{\partial^2 H_z}{\partial x \partial t} = \mu^{-1} \frac{\partial^2 E_y}{\partial x^2} = \epsilon \frac{\partial^2 E_y}{\partial t^2} + \sigma \frac{E_y}{\partial t}$$

Damit ergibt sich die Telegraphengleichung für E_{ν} :

$$\frac{\partial^2 E_y}{\partial x^2} = \mu \epsilon \frac{\partial^2 E_y}{\partial t^2} + \mu \sigma \frac{E_y}{\partial t}$$

Lösung für eine ebene EM-Welle

Fallunterscheidungen

1 Optik/Licht, Georadar (bei kleinem σ)

$$\mu\sigma\frac{E_y}{\partial t} \lll \mu\varepsilon\frac{\partial^2 E_y}{\partial t^2}$$

Dies is bei hohen Frequenzen $> 10^6 Hz$ und sehr kleinem σ der Fall. Dann gilt die Wellengleichung

$$\frac{\partial^2 E_y}{\partial x^2} = \mu \epsilon \frac{\partial^2 E_y}{\partial t^2} = \frac{1}{c^2} \frac{\partial^2 E_y}{\partial t^2}$$

Diese beschreibt eine ungedämpfte EM-Welle mit der Geschwindigkeit

$$c = \frac{1}{\sqrt{\mu \epsilon}} = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}} = \frac{c_0}{\sqrt{\mu_r \epsilon_r}} \approx \frac{c_0}{\sqrt{\epsilon_r}} \quad \mu_r \approx 1$$

mit der Lichtgeschwindigkeit $c_0 = \frac{1}{\sqrt{I_0 \epsilon_0}}$.

Fallunterscheidungen

2 Georadar (bei großem σ)

$$\mu\sigma\frac{E_y}{\partial t}\approx\mu\epsilon\frac{\partial^2 E_y}{\partial t^2}$$

Dies is bei Frequenzen $10^6 Hz - 10^9 Hz$ und signifikanter Leitfähigkeit der Fall. Es breitet sich dann eine gedämpfte EM-Welle aus.

3 Elektromagnetik

$$\mu\sigma\frac{E_y}{\partial t} \gg \mu\varepsilon\frac{\partial^2 E_y}{\partial t^2}$$

Dies ist bei sehr geringen Freguenzen $\ll 10^6 Hz$ der Fall. Es tritt dann Diffusion und keine Wellenausbreitung mehr auf. Diese niederfrequenten Verfahren werden mit dem Beariff "Elektromagnetik" beschrieben.

Agenda

- Das elektrische Feld
- Das magnetische Feld
- Maxwell-Gleichungen
- Telegraphengleichung
- Geophysikalische Verfahren

Geophysikalische Verfahren

Methode	Frequenz	Grundgl.	Materialpar.	Quelle	Messgr.
Geoelektrik	0	$ec{j}=\sigmaec{\mathcal{E}}$	σ	Stromeinspeisung	E_z
Magnetik	0	$ec{B}=\mu_r\mu_0ec{H}$	μ_r	Erdmagnetfeld	B
Elektromagnetik	≪ 10 ³ <i>Hz</i>	$\frac{\partial^2 E_y}{\partial x^2} = \mu \sigma \frac{E_y}{\partial t}$	σ	künstl. E-Felder	Ē
Georadar	10 ⁶ — 10 ⁹ <i>Hz</i>	$\frac{\partial^2 E_y}{\partial x^2} = \frac{\epsilon_r^2}{c_0^2} \frac{\partial^2 E_y}{\partial t^2} + \mu \sigma \frac{E_y}{\partial t}$	ϵ_r, σ	Antennen	Ė

Vielen Dank für Ihre Aufmerksamkeit

Thomas.Bohlen@kit.edu

http://www.gpi.kit.edu/

Veröffentlicht unter @ 00 Lizenz.

