

Einführung in die Geophysik I

Geoelektrik

Thomas Bohlen, Geophysikalisches Institut, Fakultät für Physik

Inhalte der Vorlesung im Semester WS 2022/23

• Einführung	(02.11)
--------------	---------

Seismische Wellenausbreitung (02.11, 09.11)

3 Refraktionsseismik (16.11)

Reflexionsseismik
 (23.11)

5 Elektromagnetische Verfahren (30.11, 07.12, 14.12)

6 Geoelektrik (11.01)

7 Gravimetrie (18.01, 25.01)

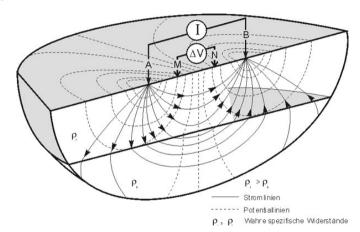
3 Magnetik (01.02, 08.02)

Die Klausur findet voraussichtlich am 15.02.2023 statt.

Vorlesungsinhalte heute

- Prinzip der Methode
- Relevante Untergrundparameter: der spezifische elektrische Widerstand
- Einführung der physikalischen Grundbegriffe: Potential, Strom, elektrisches Feld, Widerstand
- Beschreibung der Ausbreitung des Stromflusses im Erdinneren
- Meßkonfigurationen und deren Auswertung: Sondierung und Kartierung
- Beispiel einer Widerstandstomographie

- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung
- Referenzer



- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung

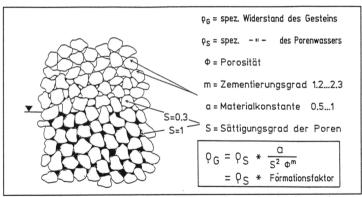
Messprinzip in der Geoelektrik

(Knödel et al. 2005)

Messprinzip in der Geoelektrik

- Ohmsches Experiment für die Erde: Einspeisung eines Stroms I und Messung eines Spannungsabfalls $\triangle V$
- Untergrundparameter: **spezifische elektrische Widerstand** $\rho(x, y, z)$. Dieser wird beeinflusst durch z.B.
 - Wassergehalt
 - Metalle/Erze
 - Salze
 - Tone
- Anwendungsgebiete sind zum Beispiel
 - Hydrologie Kartierung von Wasserwegen
 - Grundwasserqualität, z.B. Salzgehalt
 - Deponiemonitoring Grundwasserverunreinigung
 - Achäologische Prospektion Metallkörper, Bodenfeuchte an Mauern

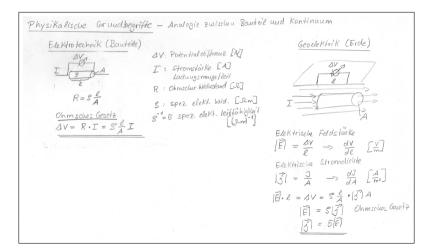
Gestein	spez. Widerstand [Ω m]
Steinsalz	$10^5 - 10^7$
Sand trocken	10^{5}
wassergesättigt	$1000 - 10^4$
Quarzit	$3000 - 10^5$
Eis	$1000 - 10^5$
Granit	$300 - 3 \cdot 10^4$
Böden sandig	150 - 7000
lehmig	50 - 9000
tonig	20 - 4000
Kalkstein	100 - 7000
Moore	30 - 700
glaziale Moränen	10 - 300
Tonschiefer	10 - 1000
Mergel	5 - 200
Lehme	3 - 300
Ton trocken	30 - 1000
naß	1 - 30
Schluff	10 - 1000
Hausmüll	1 - 100


Abnahme des spez. elektrischen Widerstandes mit der Zunahme von

- Wassergehalt
- Porosität
- Metalle/Erze
- Tongehalt

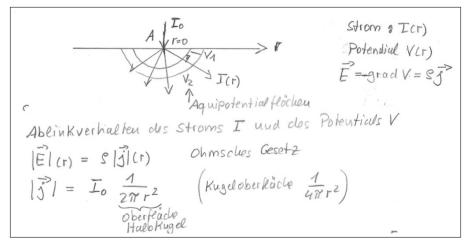
Das Gesetz von Archie

Gesetz von Archie, Abhängigkeit des spezifischen Gesteinswiderstandes vom spezifischen Widerstand des Porenwassers und den Gesteinseigenschaften



- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung
- Referenzen

Ohmsches Experiment - Analogie zwischen Bauteil und Kontinuum



- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung

$$E := |\vec{E}| = |-gradV| = -\frac{dV}{dr} \implies V = -\int E dr = \frac{|SI_0|}{2\pi} \int_{r^2}^{r} dr$$

$$V = \frac{|SI_0|}{2\pi} \int_{r^2}^{r} dr$$

Vier-Punkt Anordnung

Betrachten wir die folgende 4-Punktanordnung

A I M B

dam

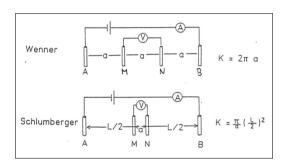
Das Potential im Punkt MI betrögt

neg. Stroman B

$$V_M = \frac{SI}{2\pi r} \left(\frac{1}{dAM} - \frac{1}{dBM} \right)$$
 $V_N = \frac{SI}{2\pi r} \left(\frac{1}{dAN} - \frac{1}{dBN} \right)$

Vier-Punkt Anordnung

Die Potential differenz ist dem nach

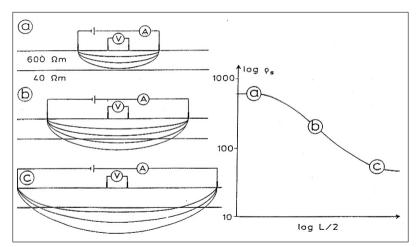

$$\Delta V = V_m - V_n = \frac{SI}{2\pi} \left(\frac{1}{d_{AM}} - \frac{1}{d_{BM}} + \frac{1}{d_{BN}} + \frac{1}{d_{BN}} \right)$$
 $= \frac{SI}{K} \qquad K=\frac{1}{2\pi} \left(\frac{1}{d_{AM}} - \frac{1}{d_{BN}} - \frac{1}{d_{AN}} - \frac{1}{d_{BN}} - \frac{1}{d_{AN}} + \frac{1}{d_{BN}} \right)$

Die Meßgröße Sa: = $K \stackrel{V}{=} V$ heißt

"Scheinbarer spezifischer elektrischer Widerstand"

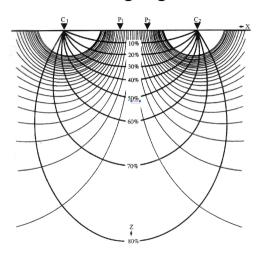
Typische Vier-Punkt Anordnungen

- Scheinbarer spezifischer elektrischer Widerstand $\rho_a = K \frac{V}{I}$
- Schlumberger: Tiefensondierung
- Wenner: Kartierung

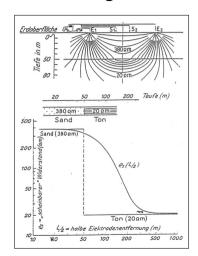


- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung
- Referenzen

Entstehung der Sondierungskurve

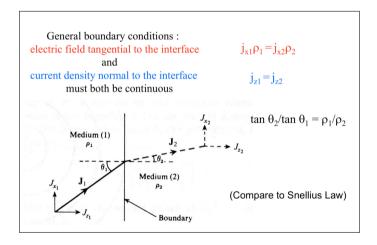


Tiefeneindringung

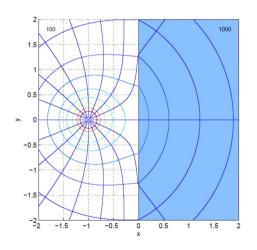


Im homogenen Medium dringt 50 Prozent der Energie etwa bis in eine Tiefe von L/2 - L/3

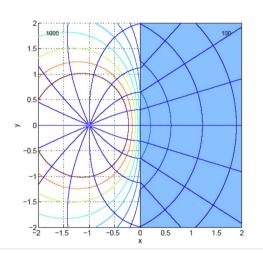
Sondierungskurve bei 2 Schichten



- Bei kleinen L gibt ρ_a den tatsächlichen spez. Widerstand bei geringen Tiefen wieder
- Es findet Brechung der Stromlinien statt
- Der Widerstand des Halbraumes wird erst bei sehr großenßen L erreicht

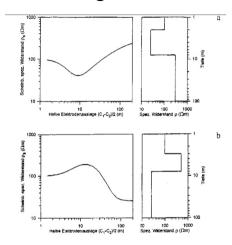


Brechung von Stromlinien



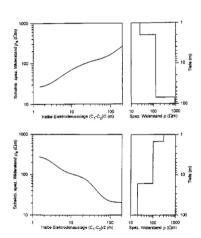
- Übergang vom guten zum schlechten Leiter
- Stromlinien im guten Leiter werden von der Grenzfläche "abgestossen".
- Stromdichte ist geringer in schlechtleitender Schicht

Brechung von Stromlinien



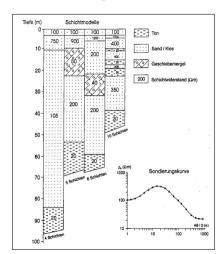
- Übergang vom schlechten zum guten Leiter
- Stromlinien im guten Leiter werden "angezogen"
- Stromdichte ist h\u00f6her in gutleitender Schicht

Sondierungskurve bei 3 Schichten



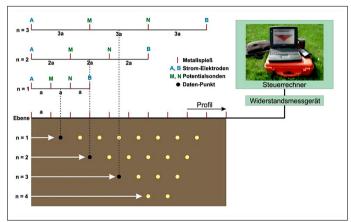
- Ein guter bzw. schlechter Leiter im Bereich der Eindringung äußert sich als ein Minimum bzw. Maximum der Sondierungskurve
- Der Betrag von ρ_a gibt nicht die tatsächlichen spezifischen
 Widerstände im Untergrund wieder

Sondierungskurve bei 3 Schichten

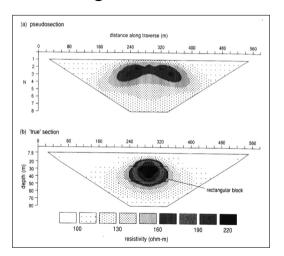


Ein kontinuierliche
Abnahme/Zunahme des
tatsächlichen spezifischen
Widerstandes mit der Tiefe äußert
sich als kontinuierliche
Abnahme/Zunahme des scheinbaren
spez. Widerstandes ρ_a in der
Sondierungskurve

- **E**s existieren verschiedene Modelle $\rho(z)$, die die Sondierungskurve $\rho_a(L/2)$ gleich gut erklären
- Einbeziehung unabhängiger Informationen notwendig



- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung



Zuordnung von ρ_a in den Tiefenpunt. Kein wahres Abbild sondern nur Kartierung von Anomalien.

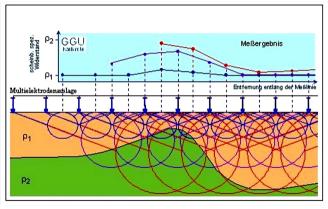
Kartierung mit der Wenner-Konfiguration

- Eine Pseudosektion zeigt scheinbare spez. Widerstände ρ_a .
- Anomalien in ρ_a lassen sich gut erfassen.
- Fine anschließende Tiefensondierung/Tomographie nötig, um ρ_{true} zu bestimmen.

11.01.2023

- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung

Widerstandstomographie

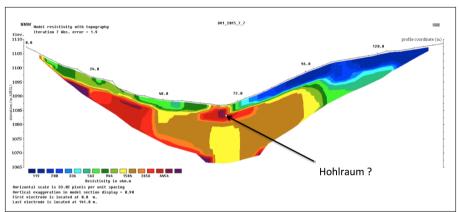

Bei komplexen (nicht geschichteten) Widerstandsverteilungen ist die Durchführung einer Widerstandstomographie erforderlich (engl. ERT=Electrical Resistivity Tomography).

- Messung verschiedener Konfigurationen mit verschiedenen Geometriefaktoren
- Rekonstruktion eines Modells, das alle beobachteten scheinbaren spez. Widerstände ρ_a möglichst gut erklärt.
- Tomographie liefert ein 2D-Modell des spez. Widerstandes $\rho(x,z)$ unter dem Messprofil.
- Die Modelle sind nicht unbedingt eindeutig.

Widerstandstomographie

Widerstandstomographie im Kleinwalsertal 2015

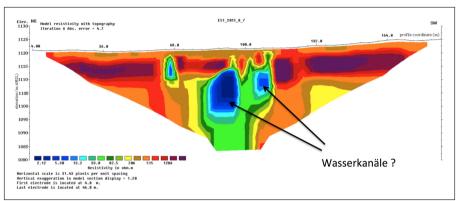
- Ziel: Detektion unterirdischer. Wasserkanäle oder Hohlräume im Kleinwalsertal
- Zusammenarbeit mit Prof. Dr. Goldscheider, Hydrogeologie, KIT
- Bachelorarbeit Svenja Schaneng, 2015 (Schaneng 2015)


Profil 1

11.01.2023

Ergebnis der Tomographie auf Profil 1

Der Bereich hoher Widerstände in der Talmitte wird als luftgefüllter Wasserkanal interpretiert.


Messungen auf Profil 2

Ergebnis der Tomographie auf Profil 2

Die Bereiche niedriger Widerstände in der Talmitte werden als wassergefüllte Kanäle interpretiert.

- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung
- Referenzen

Zusammenfassung

- lacktriangle Die Zielgröße in der Geoelektrik ist der spezifische elektrische Widerstand ho(x,y,z) im Untergrund.
- Zu deren Bestimmung wird i.d.R. ein Ohmsches Experiment durchgeführt: in einer Vierpunkt-Anordnung von 2 Sonden (A,B) und 2 Elektroden (M,N) mit dem Geometriefaktor *K* wird bei einem in (A,B) eingespeisten Strom *I* die Potentialdifferenz △ *V* an (M,N) gemessen.
- Die abgeleitete Messgröße in der Geoelektrik ist der scheinbare spezifische elektrische Widerstand $\rho_a = K \frac{\triangle V}{I}$.
- **Eine Inversion** (Least-Squares-Fit) von ρ_a liefert den wahren spezifischen Widerstand ρ im Untergrund.
 - Die Tiefensondierung mit der Schlumberger-Konfiguration liefert die Sondierungskurve $\rho_a(L/2) \rightarrow \rho(z)$.
 - Die Wenner-Kartierung ergibt Pseudosektionen $\rho_a(x,z)$, in denen sich Anomalien von $\rho(x,z)$ abbilden.
 - Die Widerstandtomographie führt eine Rekonstruktion $\rho_a(K, L) \rightarrow \rho(x, z)$ durch.
- Der spezifische elektrische Widerstand wird vor allem beeinflusst durch den Wassergehalt, die Porosität und den Tongehalt.
- Anwendungen sind daher vor allem hydologische Fragestellungen, z.B. die Kartierung von Fließwegen des Grundwassers.

Vielen Dank für Ihre Aufmerksamkeit

Thomas.Bohlen@kit.edu

http://www.gpi.kit.edu/

Veröffentlicht unter @ 00 Lizenz.

- Einführung und Anwendungsgebiete
- Physikalische Grundbegriffe
- Vier-Punkt Anordnungen
- Tiefensondierung
- Kartierung
- Beispiel einer Widerstandstomographie
- Zusammenfassung
- Referenzen

Referenzen

Knödel, K., Krummel, H. & Lange, G. (2005), Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten / BGR, Bundesanstalt für Geowissenschaften und RohstoffeBd. 3: Geophysik, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg. URL: http://dx.doi.org/10.1007/b137869

Schaneng, S. (2015), 'Geoelektrische Tomografien und Seismik für die Detektion von Karstgrundwasserleitern im Schwarzwassertal'.

URL: https://publikationen.bibliothek.kit.edu/1000052723

