

Einführung in die Geophysik II Magnetismus und Erdmagnetfeld

Geophysikalisches Institut, Fakultät für Physik

Einführung in die Geophysik II

Erdmagnetfels

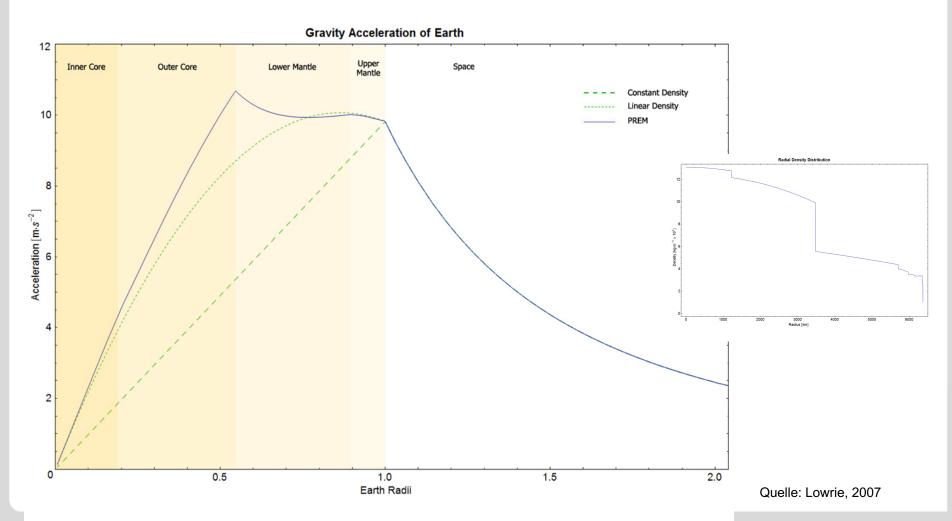
Geophysikalisches Institut, Fakultät für Physik

- Welche zeitlichen und räumlichen Änderungen treten auf?
- Wo liegt sein Ursprung?

		The state of the s	Übungsblatt		Übung: Mo., 11:30-13:00, HS B
		Vorlesung: Mi., 11:30-13:00, HS B	online		Besprechung der Übungsblätter
	19.04	keine Vorlesung		17.04	
		Aufbau der Erde &		24.04	
VL1	26.04	Plattentektonik		24.04	
VL2	03.05	Radiometrische Altersbestimmung	Ü1	01.05	
	40.05	Seismische Wellen und ihre Wechselwirkungen,		00.05	04. B-#
VL3	10.05	elastische Eigenschaften von Gesteinen		08.05	Ü1: Radiometrische Altersbestimmung
		Erdbeben: Bruchprozesse, Messung &			
VL4	17.05	Lokalisierung von Erdbeben	Ü2	15.05	
124	27.00	Londarding von Eraboben		10.00	
		Ausbreitung von Erdbebenwellen,			
VL5	24.05	Strukturerkundung		22.05	Ü2: Seismische Wellen, elst. Eigen.
	1000				
	31.05	keine Vorlesung, Pfingswoche		29.05	
VL6	07.06	Eigenschwingungen	Ü3	05.06	
VLO	07.00	Ligenscriwingungen	03	03.00	
VL7	14.06	Seismizität, Gefährdung, Magnituden		12.06	
	1 280 200			10000000	
VL8	21.06	Schwere und Gravimetrie	Ü4	19.06	Ü3: Eigenschwingungen, Seismizität
VL9	28.06	Magnetismus	Ü5	26.06	Ü4: Schwere und Gravimetrie
V L S	20.00	Magnetismas	03	20.00	04. Schweie und Gravilliettie
VL10	05.07	Temperatur	Ü6	03.07	
		Aufbau und Dynamik des Erdinneren:			
VL11	12.07	Mantel		10.07	Ü5: Magnetismus
		Author and Danomik des Endinesses			
VL12	19.07	Aufbau und Dynamik des Erdinneren: Erdkern		17.07	Ü6: Temperatur
VLIZ	19.07	Liukeiii		17.07	Too. Temperatur

Vorlesung: Die Vorlesung findet mittwochs um 11:30 - 13:00h im Hörsaal B (Geb. 30.22) statt und beginnt am 26.4.2023.

Übungen: Die Übungen finden nach obrigen Zeitplan montags um 11:30 - 13:00h im Hörsaal B (Geb. 30.22) statt. Die Termine finden sich in der oben stehenden Tabelle. Übungsblätter werden nach den jeweiligen Vorlesungen online gestellt. Durch Vorrechnen von Übungsaufgaben können Punkte (max. 3) erworben werden, die auf die Klausur als Bonuspunkte* angerechnet werden. Die Punktzahl, die für das Vorrechnen der einzelnen Aufgaben vergeben wird, wird in der jeweiligen Übung bekannt gegeben.


*d.h. das Bestehen der Prüfung durch diese Punkte ist nicht möglich; bei bestandener Klausur lässt sich dadurch jedoch die Note verbessern.

Klausur: Erster Termin am 26.07.2022, 14:00 - 15:30h, zweiter Termin am 20.09.2022, 09:00 - 10:30h. Die der Ort der Klausuren ist der Otto-Lehmann-Hörsaal.

Gravitation

Erde: Effekt der inhomogenen Dichteverteilung

Schweremessungen - Satellitenmessungen

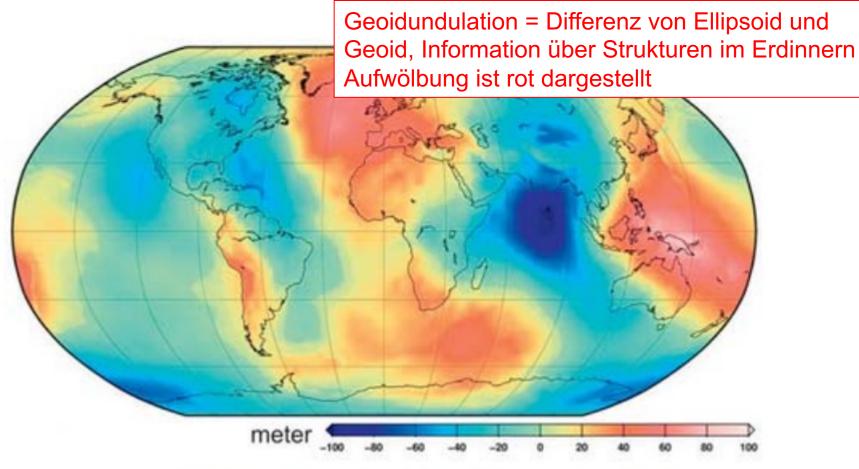
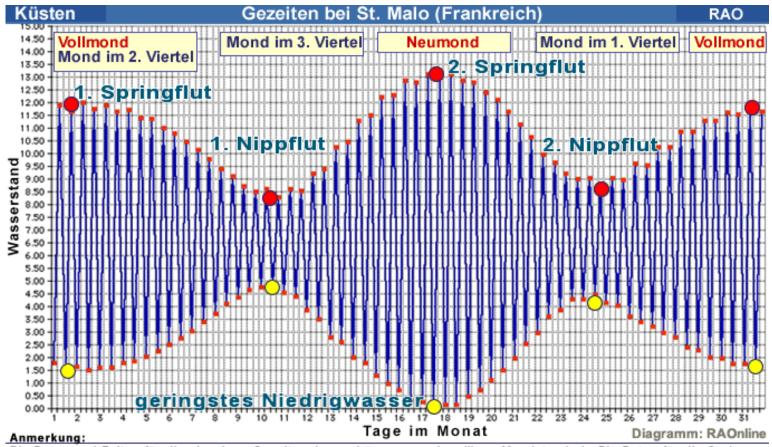
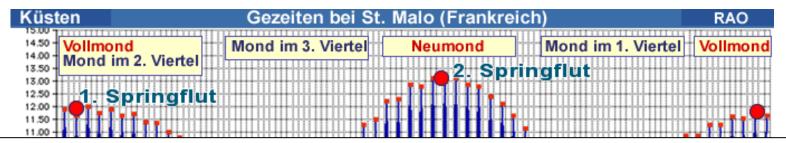
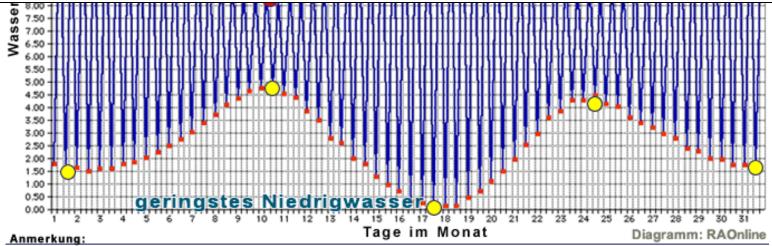



Abb. 6: Zweidimensionale Darstellungen des aktuellen Schwerefeldmodells EIGEN-5C des GFZ, als Geoidundulationen (Meter)

Quelle: Foerste, 2010

Karlsruher Institut für Technologie


Gezeiten


Die Daten und Zeiten für die einzelnen Gezeitenphasen hängen vom jeweiligen Mondstand ab. Die Daten für die Springund Nippflutenverändern sich von Monat zu Monat. Das oben dargestellte Beispiel kann daher nicht auf andere Monate übertragen werden.

Karlsruher Institut für Technologie

Gezeiten

- Mittlerer Gezeitenhub der Wasseroberfläche: +- 21 cm
- Mittlerer Gezeitenhub der "festen" Erde: +- 9 cm (bei Springflut bis zu 21 cm)

Die Daten und Zeiten für die einzelnen Gezeitenphasen hängen vom jeweiligen Mondstand ab. Die Daten für die Springund Nippflutenverändern sich von Monat zu Monat. Das oben dargestellte Beispiel kann daher nicht auf andere Monate übertragen werden.

Quelle: Clauser, 2015

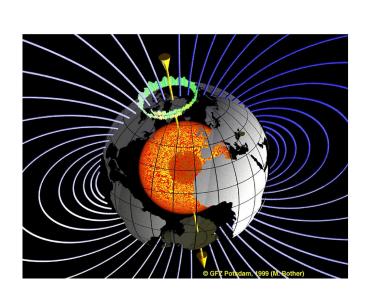
Zusammenfassung – Take-home-message

 Wie lässt sich die Gestalt der Erde (Größe, Form) beschreiben und messen?

Kugel, Ellipsoid, Geoid/ Messung heute mit Satellitenverfahren

 Wie lässt sich die Schwere physikalisch erklären und mathematisch beschreiben?

Aufteilung in Gravitations- und Zentrifugalbeschleunigung, Beschreibung als Potential, Addition der Potentiale


- Wie lässt sich die Schwere messen (= Gravimetrie)?
 siehe oben, Messung der Gestalt der Erde
- Welchen Einfluss haben die Gezeiten auf die Schweremessungen?
 Größenordnung 10⁻⁷ diese Genauigkeit ist erforderlich, um Gezeiten zu messen

Karlsruher Institut für Technologie

Das Erdmagnetfeld

Nicht wahrnehmbar, aber doch nützlich:

- Navigation, Magnetkompass
- dient Vögeln zur Orientierung
- Schutzschild für die Erde
- •liefert Information über das Innere der Erde, insbesondere Prozesse an der Kern/Mantel-Grenze.

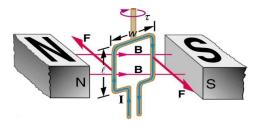
Historische Daten

- 500 B.C: Griechen entdecken magnetische Eigenschaften des Magneteisensteins (Magnetit)
- 500 A.: Chinesen erfinden den Magnetkompass
- 14. Jh.: Reisende bringen Kompass nach Europa, Voraussetzung für Zeitalter der Entdeckung: Columbus, Magellan
- 1600: William Filbert, "De Magnete": Alle Kenntnisse über Magnetismus als Buch niedergeschrieben. Aus Experimenten folgert er: Die Erde ist selbst ein großer Magnet
- 1634: Gellibrand (London) entdeckt zeitliche Änderung der Deklination (Säkularvariation)
- >16. Jh.: Kontinuierliche Beobachtung des erdmagnetischen Feldes
- 1831: James Clar Ross, Expedition zum geomagnetischen Nordpol
- 1908-09 David und Mason, Expedition zum geomagnetischen Südpol

Fundamentale Eigenschaften und Größen

- Magnetische Größen treten nie als Monopole auf: Feldlinien sind geschlossen
- Magnetische Nordpole = Quellen des Magnetfelds/ Südpole = Senken
- Gleichnamige Pole stoßen sich ab

Fundamentale Eigenschaften und Größen



- Magnetische Größen treten nie als Monopole auf: Feldlinien sind geschlossen
- Magnetische Nordpole = Quellen des Magnetfelds/ Südpole = Senken
- Gleichnamige Pole stoßen sich ab

Definition: $\mathbf{F} = \mathbf{I}(\mathbf{l} \times \mathbf{B})$

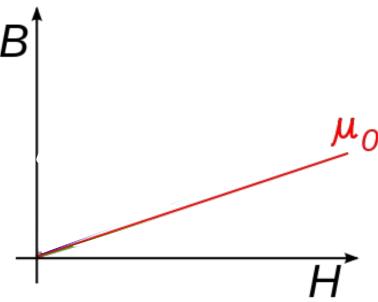
l: Länge eines von einem Strom I durchflossenen Leiters

Fundamentale Eigenschaften und Größen

- Magnetische Größen treten nie als Monopole auf: Feldlinien sind geschlossen
- Magnetische Nordpole = Quellen des Magnetfelds/ Südpole = Senken
- Gleichnamige Pole stoßen sich ab

Definition: $\mathbf{F} = \mathbf{I}(\mathbf{l} \times \mathbf{B})$

$$\mathbf{B} = \mu \mathbf{H}$$
 mit μ = magnetische Permeabilität

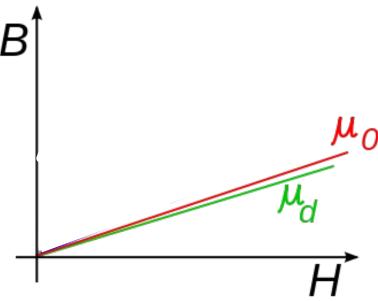


$$\mu = \mu_0 \mu_R$$

mit μ = magnetische Permeabilität, Permeabilität = Durchlässigkeit

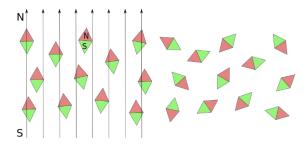
 μ_0 = magnetische Permeabilität des Vakuums, magn. Feldkonstante

μ_R = relative magnetische Permeabilität, Permeabilitätszahl (dimensionslos): gibt Verhältnis der Permeabilität des Stoffs zu der Permeabilität im Vakuum an


$$\mu = \mu_0 \mu_R$$

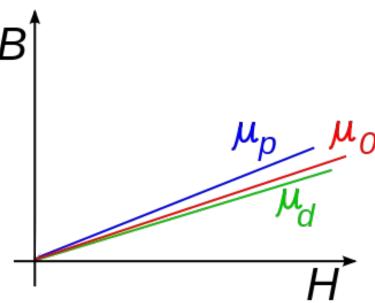
mit μ = magnetische Permeabilität

 μ_0 = magnetische Permeabilität des Vakuums, magn. Feldkonstante


μ_R = relative magnetische Permeabilität, Permeabilitätszahl (dimensionslos): gibt Verhältnis der Permeabilität des Stoffs zu der Permeabilität im Vakuum an

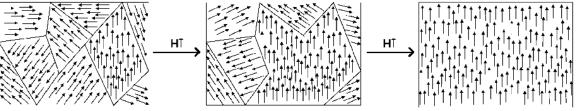
 $0 < \mu_R < 1$: Diamagnetismus: Stoffe verdrängen das Magnetfeld aus dem Inneren

$$\mu = \mu_0 \mu_R$$


mit μ = magnetische Permeabilität

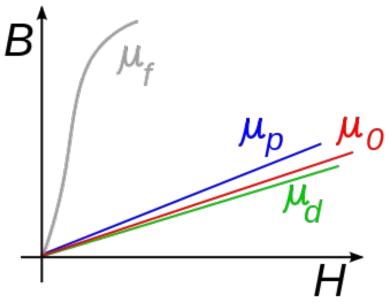
 μ_0 = magnetische Permeabilität des Vakuums, magn. Feldkonstante

μ_R = relative magnetische Permeabilität, Permeabilitätszahl (dimensionslos): gibt Verhältnis der Permeabilität des Stoffs zu der Permeabilität im Vakuum an

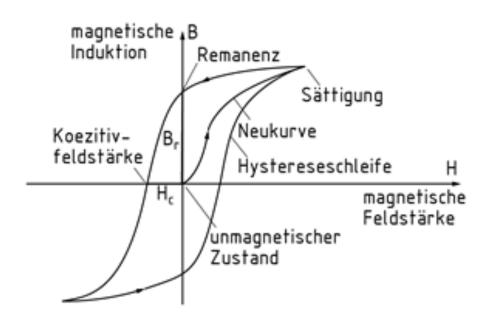

 $0 < \mu_R < 1$: Diamagnetismus: Stoffe verdrängen das Magnetfeld aus dem Inneren

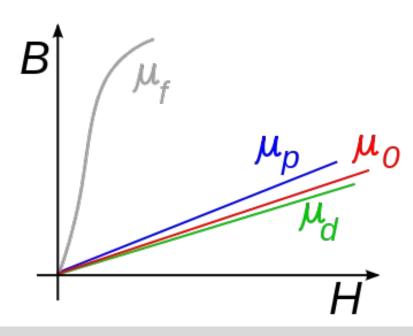
μ_R > 1: Paramagnetismus: Im Inneren der Stoffe wird Magnetfeld leicht verstärkt

$$\mu = \mu_0 \mu_R$$

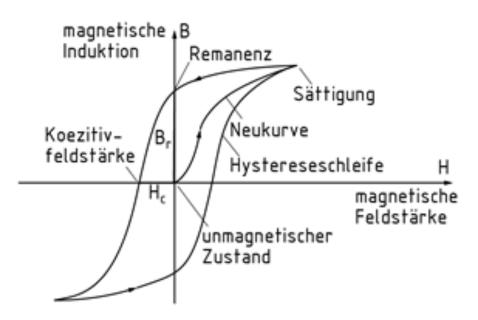

mit μ = magnetische Permeabilität

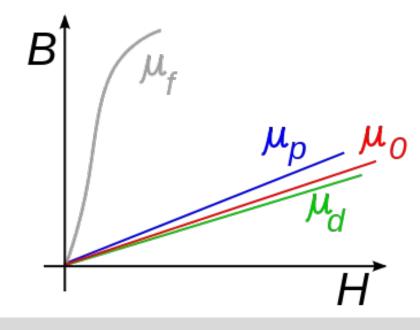
 μ_0 = magnetische Permeabilität des Vakuums, magn. Feldkonstante


μ_R = relative magnetische Permeabilität, Permeabilitätszahl (dimensionslos): gibt Verhältnis der Permeabilität des Stoffs zu der Permeabilität im Vakuum an


Quelle: Wikipedia; Der ursprünglich hochladende Benutzer war 4lex in der Wikipedia auf Spanisch -Übertragen aus es.wikipedia nach Commons., CC BY-SA 3.0, https://commons.wikimedia.org/w/ index.php?curid=2172444

- $0 < \mu_R < 1$: Diamagnetismus: Stoffe verdrängen das Magnetfeld aus dem Inneren
 - μ_R > 1: Paramagnetismus: Im Inneren der Stoffe wird Magnetfeld leicht verstärkt
 - μ_R >> 1: Ferromagnetismus: Im Inneren der Stoffe wird Magnetfeld stark verstärkt durch Kopplung der magnetischen Momente auch über Grenzen der Weiß-Bezirke hinweg





Bei Überschreiten der Curie-Temperatur verschwinden ferromagnetische Eigenschaften, Materialen sind nur noch paramagnetisch

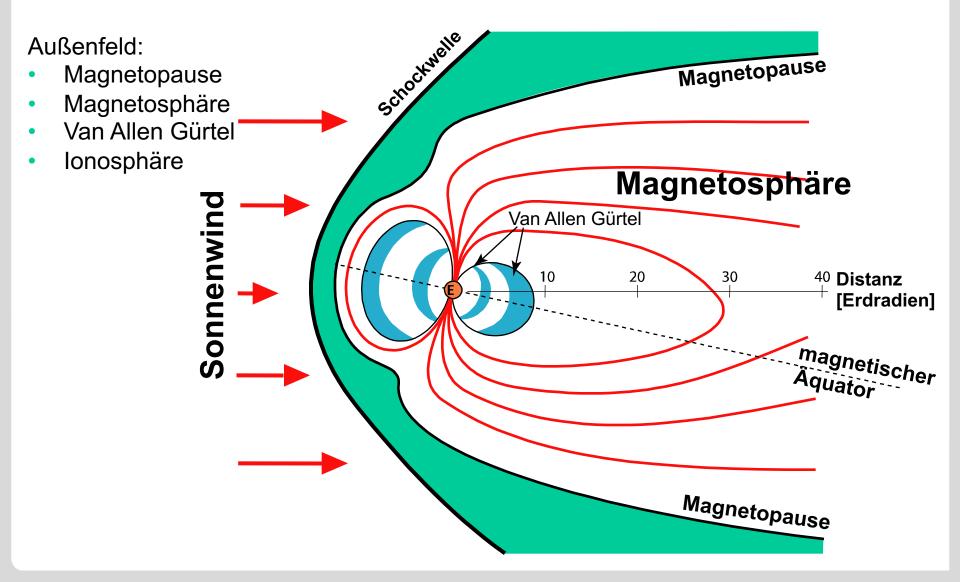
B	Н
Magnetische Induktion/ Magnetische Flussdichte	Magnetische Feldstärke/ Magnetfeld
Magnetische Feldstärke	Magnetische Erregung

Das Erdmagnetfeld besteht aus drei Komponenten:

- Dipolfeld = Außenfeld in der Nähe der Erde; hat Ursachen im tiefen Inneren der Erde: 94% des Erdmagnetfelds werden vom äußeren flüssigen Kern der Erde aufrecht erhalten: Geodynamo
- •Nicht-Dipol-Feld, Multipolfeld, Ursache für Säkularvariationen, ca. 4-5%
- Außenfeld: entsteht durch Ströme geladener Teilchen in der Magnetosphäre und Ionosphäre, die von der Sonne beeinflusst werden, Verformung des Dipolfelds

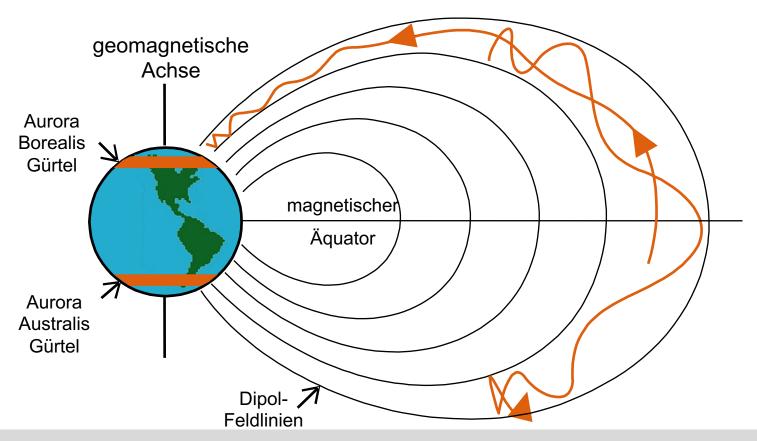
Außerdem: Lokales Anomaliefeld, Messung durch magnetische Messverfahren, Einführung in die Geophysik 1

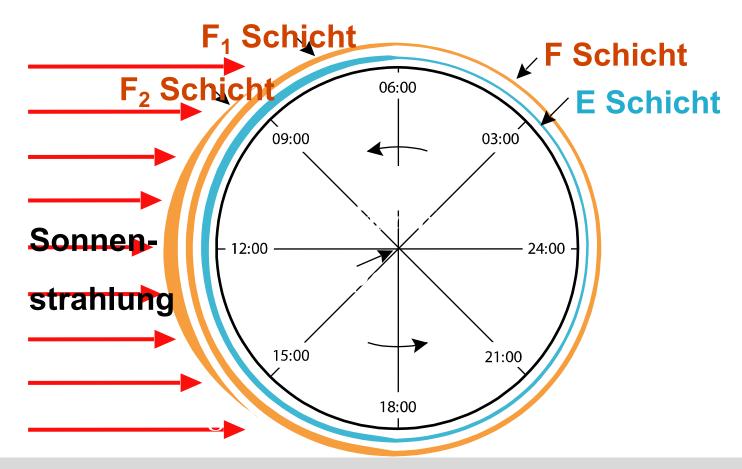
Das Erdmagnetfeld besteht aus drei Komponenten:


- Dipolfeld = Außenfeld in der Nähe der Erde; hat Ursachen im tiefen Inneren der Erde: 94% des Erdmagnetfelds werden vom äußeren flüssigen Kern der Erde aufrecht erhalten: Geodynamo
- Nicht-Dipol-Feld, Multipolfeld, ca. 4-5%

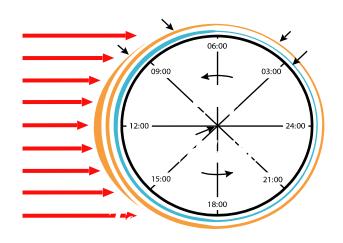
Außenfeld: entste Ganz kurze Wiederholung en in der Magnetosphäre und ionosphare, die von der Sonne beeinflusst werden, Verformung des Dipolfelds

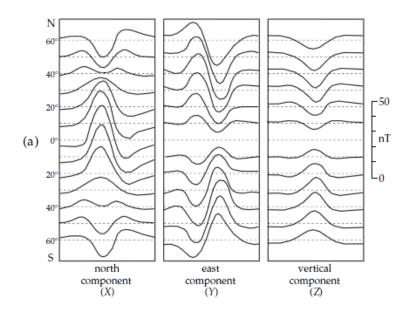
Außerdem: Lokales Anomaliefeld, Messung durch magnetische Messverfahren, Einführung in die Geophysik 1

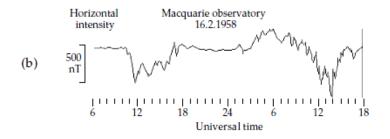

Das Erdmagnetfeld: Außenfeld



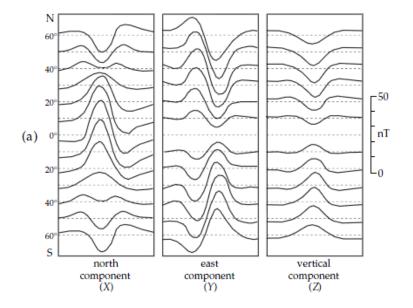
Die Bewegung der eingefangenen geladenen Partikel im erdmagnetischen Feld

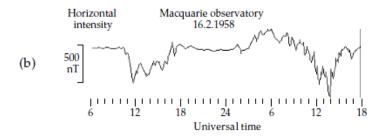



Änderung der Ionosphäre während eines Tages



Tägliche Variation des Erdmagnetfelds




Fig. 5.32 (a) The time-dependent daily (or diurnal) variation of the components of geomagnetic field intensity at different latitudes (after Chapman and Bartels, 1940), and (b) the variation of horizontal field intensity during a magnetic storm (after Ondoh and Maeda, 1962).

Karlsruher Institut für Technologie

Ursache für tägliche Variation des Erdmagnetfelds:

Tägliche Variation ist wichtig für kleinräumige Messungen: Einführung in die Geophysik 1

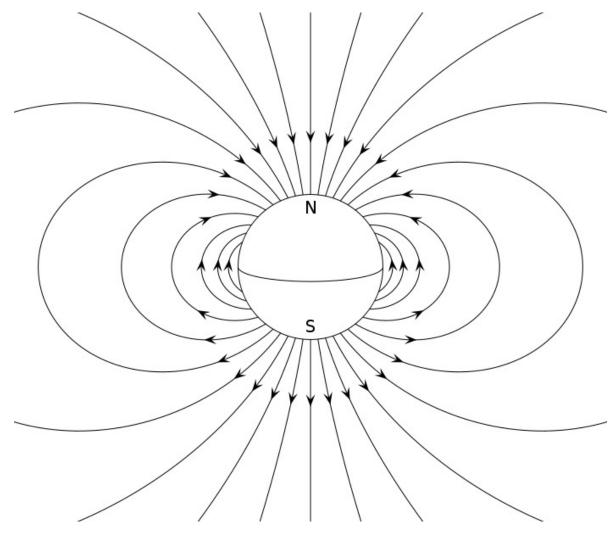
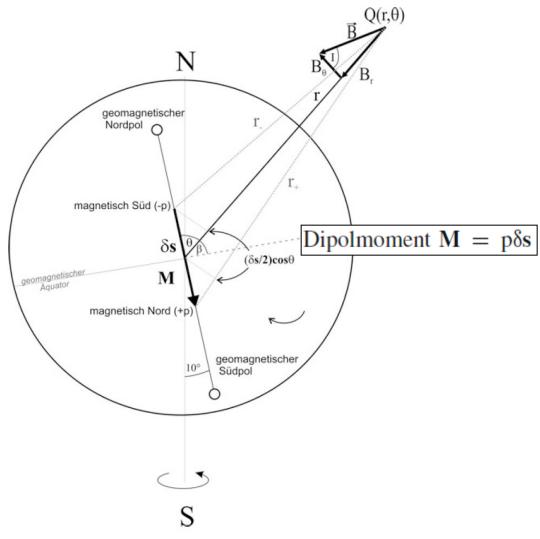
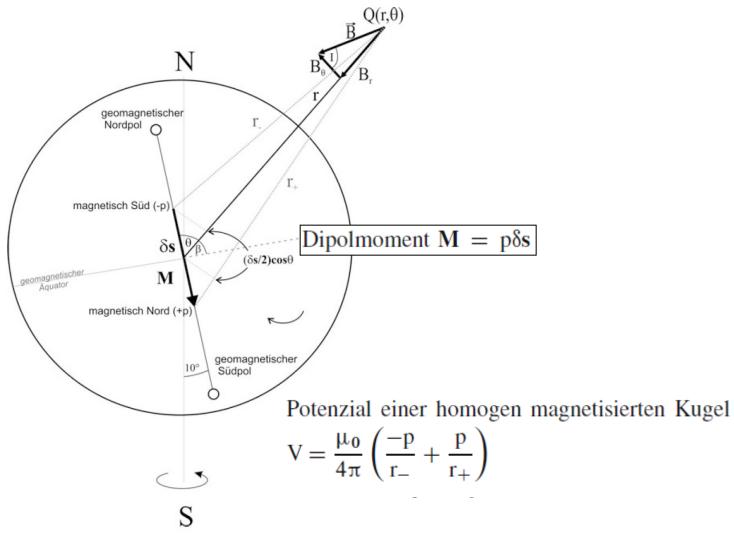
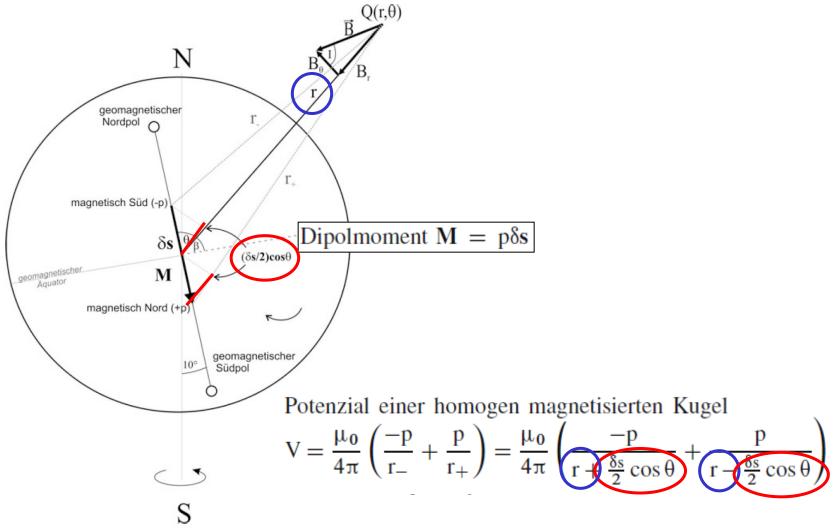


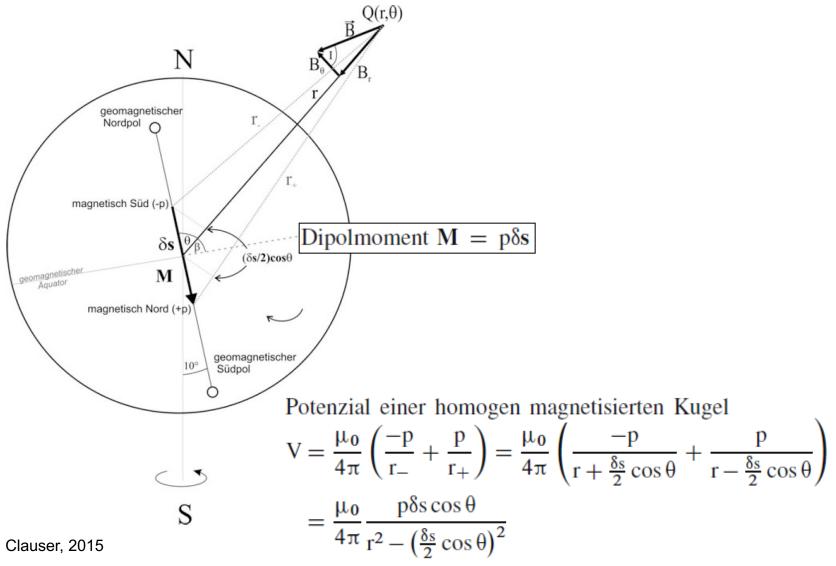
Fig. 5.32 (a) The time-dependent daily (or diurnal) variation of the components of geomagnetic field intensity at different latitudes (after Chapman and Bartels, 1940), and (b) the variation of horizontal field intensity during a magnetic storm (after Ondoh and Maeda, 1962).

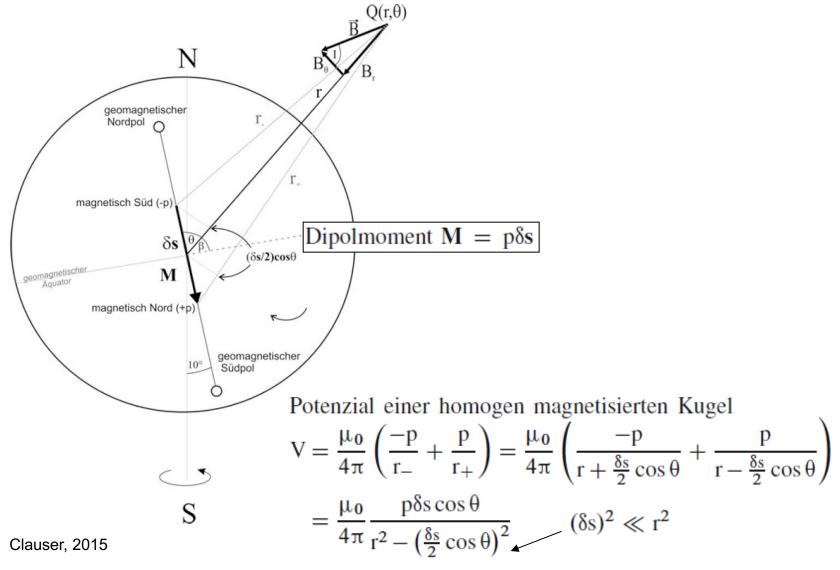

Erdmagnetfeld

Dipolfeld im Außenraum

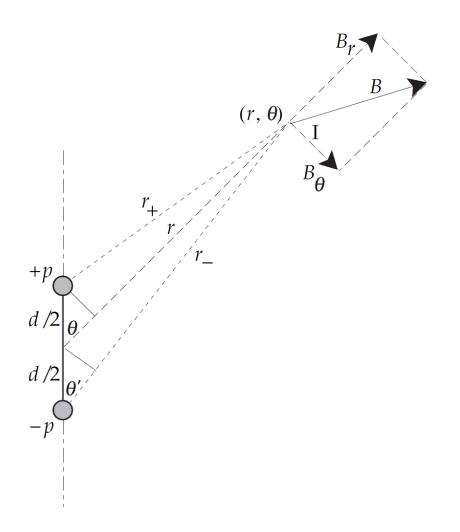


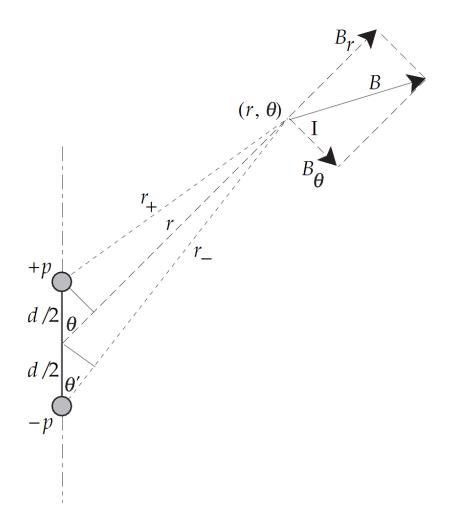

Clauser, 2015


Clauser, 2015



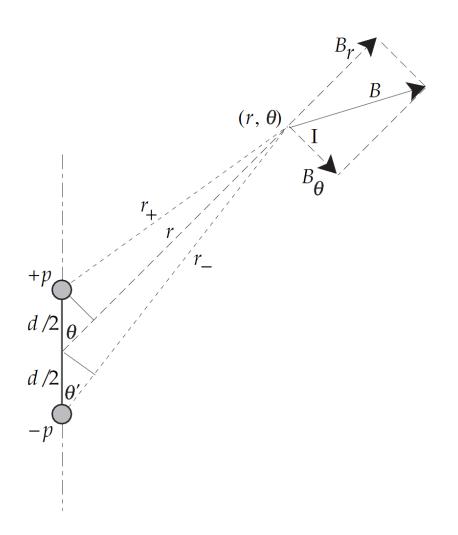
Clauser, 2015





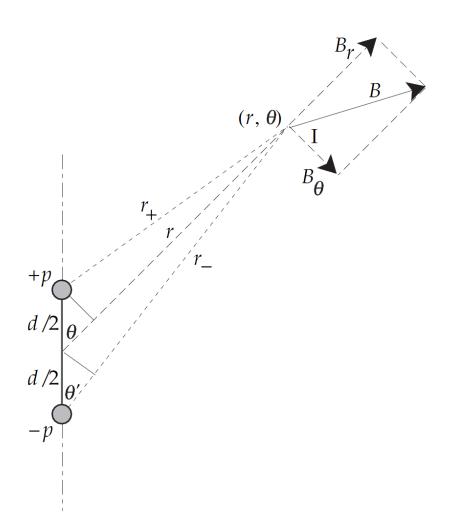
$$W = \frac{\mu_0 p}{4\pi} \left(\frac{1}{r_+} - \frac{1}{r_-} \right)$$
$$= \frac{\mu_0 p}{4\pi} \left(\frac{r_- - r_+}{r_+ r_-} \right)$$

Lowrie, 2007



$$\begin{split} W &= \frac{\mu_0 p}{4\pi} \left(\frac{1}{r_+} - \frac{1}{r_-} \right) \qquad V = \frac{\mu_0}{4\pi} \left(\frac{-p}{r_-} + \frac{p}{r_+} \right) \\ &= \frac{\mu_0 p}{4\pi} \left(\frac{r_- - r_+}{r_+ r_-} \right) \end{split}$$

Lowrie, 2007

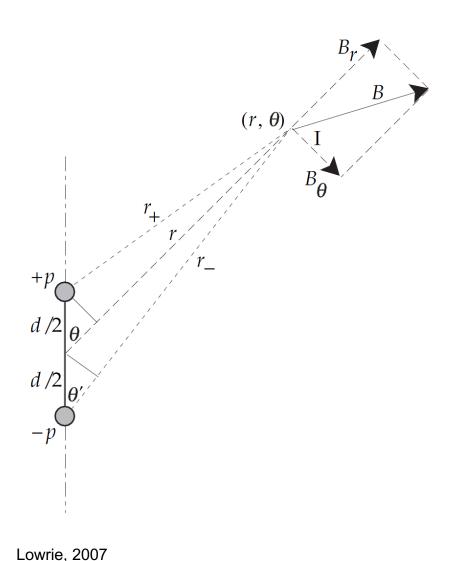


$$W = \frac{\mu_0 p}{4\pi} \left(\frac{1}{r_+} - \frac{1}{r_-} \right)$$
$$= \frac{\mu_0 p}{4\pi} \left(\frac{r_- - r_+}{r_+ r_-} \right)$$

mit
$$d \le r$$
 folgt $r_+ \approx r - \frac{d}{2} \cos \theta$
$$r_- \approx r + \frac{d}{2} \cos \theta'$$

Lowrie, 2007

$$W = \frac{\mu_0 p}{4\pi} \left(\frac{1}{r_+} - \frac{1}{r_-} \right)$$


$$= \frac{\mu_0 p}{4\pi} \left(\frac{r_- - r_+}{r_+ r_-} \right)$$

mit
$$d \le r$$
 folgt $r_+ \approx r - \frac{d}{2} \cos \theta$
$$r_- \approx r + \frac{d}{2} \cos \theta'$$

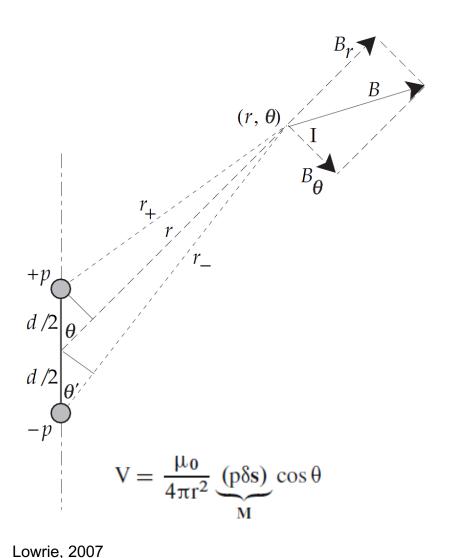
mit
$$\theta \approx \theta'$$
 folgt
$$r_{-} - r_{+} \approx \frac{d}{2} (\cos \theta' + \cos \theta) \approx d \cos \theta$$

$$r_{+} r_{-} \approx r^{2} - \frac{d^{2}}{4} \cos^{2} \theta \approx r^{2}$$

Lowrie, 2007

$$W = \frac{\mu_0 p}{4\pi} \left(\frac{1}{r_+} - \frac{1}{r_-} \right)$$

$$= \frac{\mu_0 p}{4\pi} \left(\frac{r_- - r_+}{r_+ r_-} \right)$$


mit
$$d \ll r$$
 folgt $r_{+} \approx r - \frac{d}{2} \cos \theta$
 $r_{-} \approx r + \frac{d}{2} \cos \theta'$

mit
$$\theta \approx \theta'$$
 folgt
$$r_{-} - r_{+} \approx \frac{d}{2} (\cos \theta' + \cos \theta) \approx d \cos \theta$$

$$r_{+} r_{-} \approx r^{2} - \frac{d^{2}}{4} \cos^{2} \theta \approx r^{2}$$

Einsetzen ergibt

$$W = \frac{\mu_0}{4\pi} \frac{(dp)\cos\theta}{r^2} = \frac{\mu_0}{4\pi} \frac{m\cos\theta}{r^2}$$

$$W = \frac{\mu_0 p}{4\pi} \left(\frac{1}{r_+} - \frac{1}{r_-} \right)$$
$$= \frac{\mu_0 p}{4\pi} \left(\frac{r_- - r_+}{r_+ r_-} \right)$$

mit
$$d \le r$$
 folgt $r_+ \approx r - \frac{d}{2} \cos \theta$
$$r_- \approx r + \frac{d}{2} \cos \theta'$$

mit
$$\theta \approx \theta'$$
 folgt
$$r_{-} - r_{+} \approx \frac{d}{2} (\cos \theta' + \cos \theta) \approx d \cos \theta$$

$$r_{+} r_{-} \approx r^{2} - \frac{d^{2}}{4} \cos^{2} \theta \approx r^{2}$$

Einsetzen ergibt

$$W = \frac{\mu_0}{4\pi} \frac{(dp)\cos\theta}{r^2} = \frac{\mu_0}{4\pi} \frac{m\cos\theta}{r^2}$$

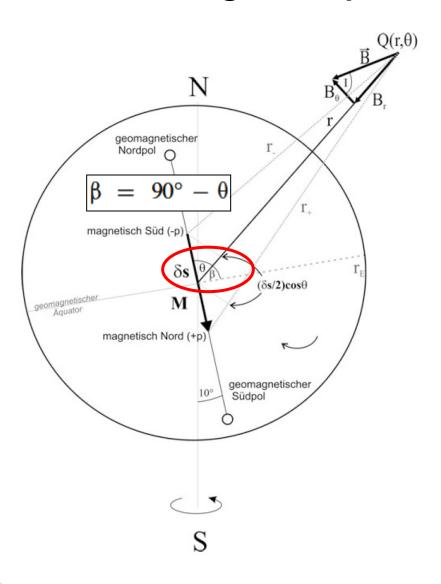
Bestimmung der radialen und azimutalen Feldkomponenten B_r und B_θ Ableitungen des Potenzials

Clauser, 2015

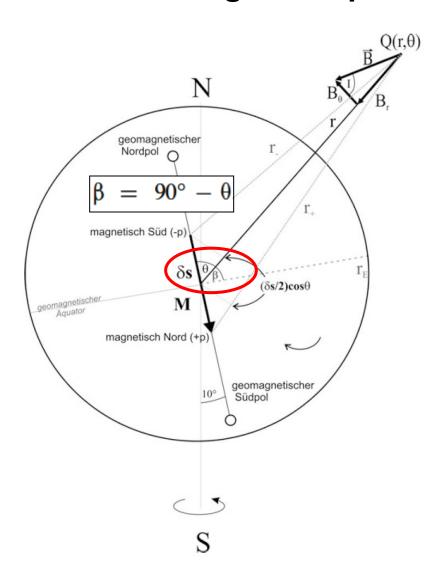
$$V = \frac{\mu_0}{4\pi r^2} \underbrace{(p\delta s)}_{M} \cos \theta$$

$$B_{r} = -\frac{\partial V}{\partial r} = \frac{\mu_{0} M \cos \theta}{2\pi r^{3}}$$

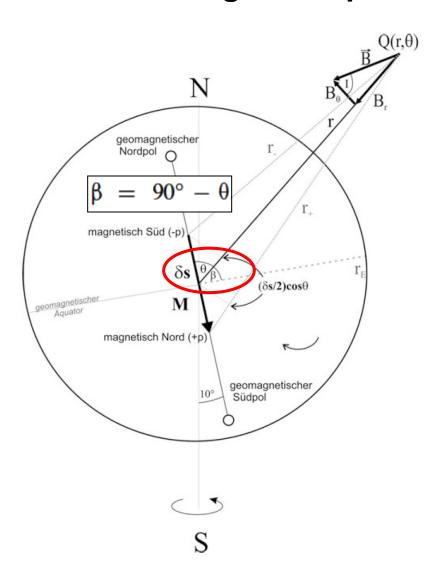
$$B_{\theta} = -\frac{1}{r} \frac{\partial V}{\partial \theta} = \frac{\mu_0}{4\pi} \frac{M \sin \theta}{r^3}$$

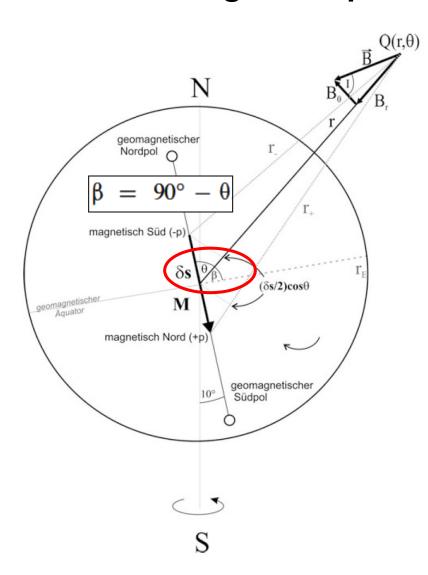

Lowrie, 2007

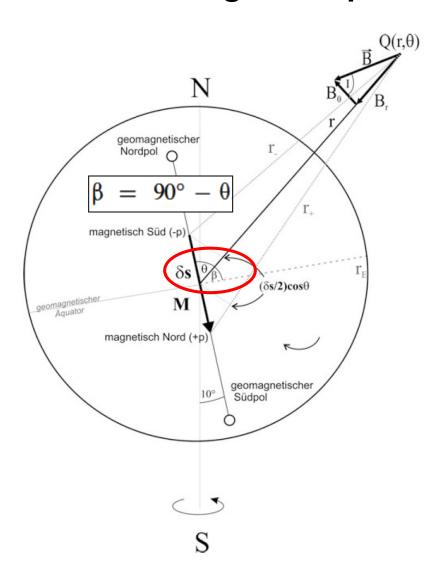
$$W = \frac{\mu_0}{4\pi} \frac{(dp)\cos\theta}{r^2} = \frac{\mu_0}{4\pi} \frac{m\cos\theta}{r^2}$$


$$B_r = -\frac{\partial W}{\partial r} = \frac{\mu_0}{4\pi} \frac{2m\cos\theta}{r^3}$$

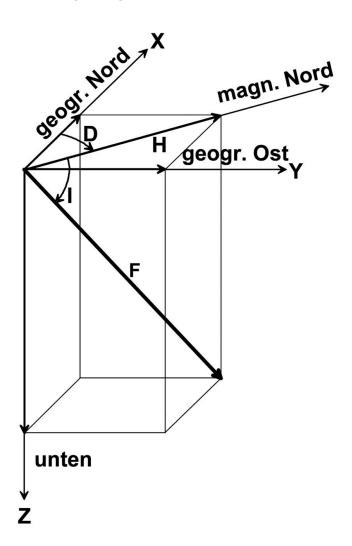
$$B_{\theta} = -\frac{1\partial W}{r \partial \theta} = \frac{\mu_0}{4\pi} \frac{m \sin \theta}{r^3}$$




$$B_z = \frac{\mu_0}{2\pi} \frac{M}{r^3} \cos \theta = \frac{\mu_0}{2\pi} \frac{M}{r^3} \sin \beta ;$$

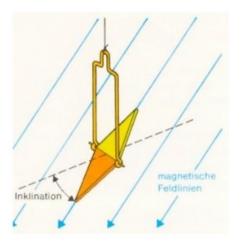

$$\begin{split} B_z &= \frac{\mu_0}{2\pi} \frac{M}{r^3} \cos\theta = \frac{\mu_0}{2\pi} \frac{M}{r^3} \sin\beta\;;\\ B_h &= \frac{\mu_0}{4\pi} \frac{M}{r^3} \sin\theta = \frac{\mu_0}{4\pi} \frac{M}{r^3} \cos\beta\;; \end{split}$$

$$\begin{split} B_z &= \frac{\mu_0}{2\pi} \frac{M}{r^3} \cos\theta = \frac{\mu_0}{2\pi} \frac{M}{r^3} \sin\beta\;;\\ B_h &= \frac{\mu_0}{4\pi} \frac{M}{r^3} \sin\theta = \frac{\mu_0}{4\pi} \frac{M}{r^3} \cos\beta\;;\\ \tan I &= \frac{B_z}{B_h} = 2\cot\theta = 2\tan\beta\;; \end{split}$$



$$\begin{split} B_z &= \frac{\mu_0}{2\pi} \frac{M}{r^3} \cos \theta = \frac{\mu_0}{2\pi} \frac{M}{r^3} \sin \beta \; ; \\ B_h &= \frac{\mu_0}{4\pi} \frac{M}{r^3} \sin \theta = \frac{\mu_0}{4\pi} \frac{M}{r^3} \cos \beta \; ; \\ \tan I &= \frac{B_z}{B_h} = 2 \cot \theta = 2 \tan \beta \; ; \\ B &= \sqrt{B_z^2 + B_h^2} = \frac{\mu_0}{4\pi} \frac{M}{r^3} \; \underbrace{(1 + 3 \cos^2 \theta)^{1/2}}_{\sin^2 \theta + \cos^2 \theta + 3 \cos^2 \theta} \end{split}$$

Zerlegung in Komponenten

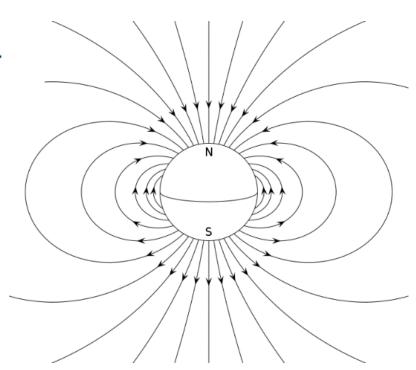

F: Betrag des Erdmagnetfeldvektors

H: Betrag der Horizontalkomponente

Z: Betrag der Vertikalkomponente

D: Deklination (Winkel)

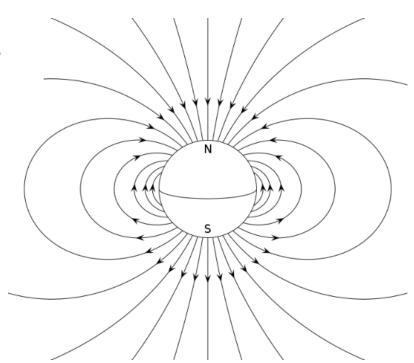
I: Inklination (Winkel)


Stolle, 2015

Am magnetischen Pol ($\theta=0^\circ$) und am Äquator ($\theta=90^\circ$) verschwindet jeweils eine der beiden Komponenten:

$$\theta = 0^{\circ} \text{ und } \beta = 90^{\circ} : B_z^{Pol} = \frac{\mu_0}{2\pi} \frac{M}{r^3} \text{ und } B_h^{Pol} = 0 ;$$

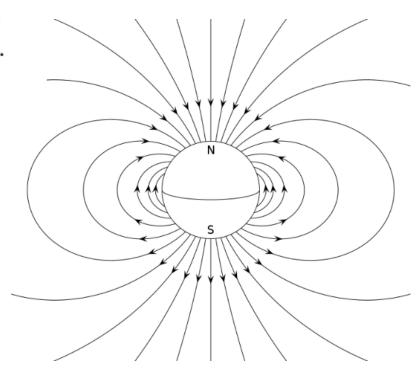
$$\theta = 90^{\circ} \text{ und } \beta = 0^{\circ} : B_z^{\ddot{A}q.} = 0 \text{ und } B_h^{\ddot{A}q.} = \frac{\mu_0}{4\pi} \frac{M}{r^3} .$$



Am magnetischen Pol ($\theta = 0^{\circ}$) und am Äquator ($\theta = 90^{\circ}$) verschwindet jeweils eine der beiden Komponenten:

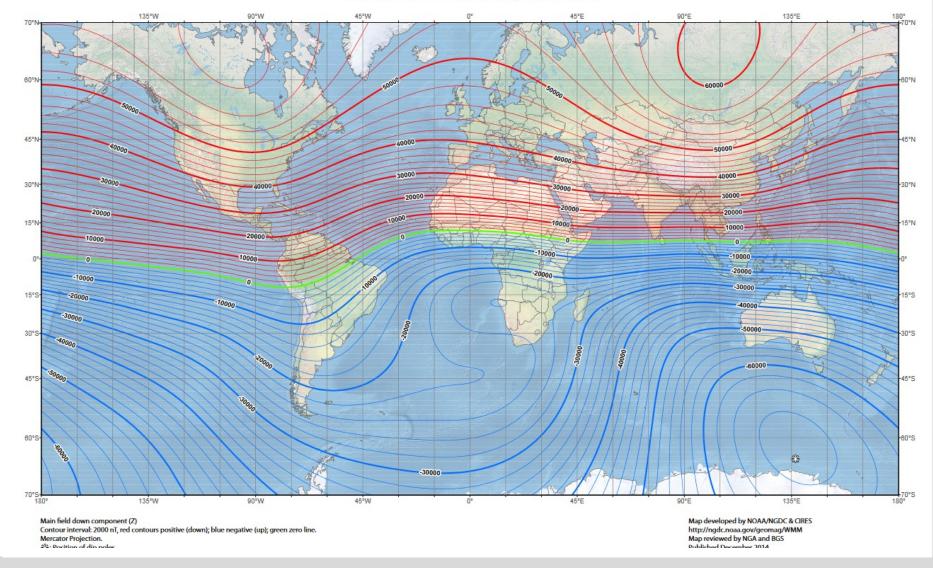
$$\begin{array}{l} \theta = 0^{\circ} \text{ und } \beta = 90^{\circ} : B_{z}^{Pol} = \frac{\mu_{0}}{2\pi} \frac{M}{r^{3}} \text{ und } B_{h}^{Pol} = 0 \; ; \\ \theta = 90^{\circ} \text{ und } \beta = 0^{\circ} : B_{z}^{\ddot{A}q.} = 0 \text{ und } B_{h}^{\ddot{A}q.} = \frac{\mu_{0}}{4\pi} \frac{M}{r^{3}} \; . \end{array}$$

$$\begin{split} B_z^{Pol} &= \frac{\mu_0}{2\pi} \, \frac{M}{r_E^3} = \frac{4\pi \times 10^{-7}}{2\pi} \, \frac{V\,\text{s}}{A\,\text{m}} \frac{7.75 \times 10^{22} \text{A}\,\text{m}^2}{(6.37 \times 10^6)^3\,\text{m}^3} \\ &= \frac{15.5 \times 10^{15}\,\text{V}\,\text{s}\,\text{m}}{(6.37 \times 10^6)^3\,\text{m}^3} = \frac{15.5 \times 10^{15}\,\text{V}\,\text{s}}{2.58 \times 10^{20}\,\text{m}^2} \\ &= 6.0078 \times 10^{-5} \text{T} = 60.078\,\mu\text{T} = 60\,078\,\text{nT}\,; \end{split}$$

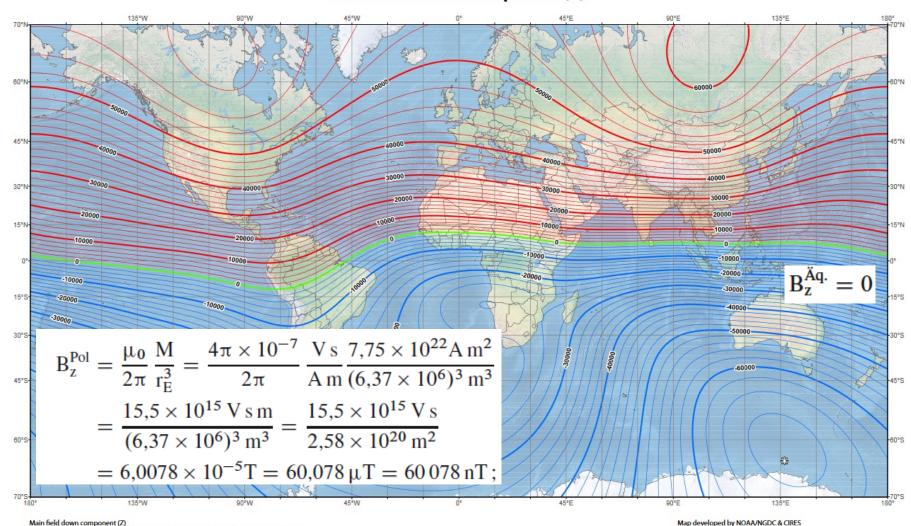


Am magnetischen Pol ($\theta = 0^{\circ}$) und am Äquator ($\theta = 90^{\circ}$) verschwindet jeweils eine der beiden Komponenten:

$$\begin{array}{l} \theta = 0^{\circ} \text{ und } \beta = 90^{\circ} : B_{z}^{Pol} = \frac{\mu_{0}}{2\pi} \frac{M}{r^{3}} \text{ und } B_{h}^{Pol} = 0 \; ; \\ \theta = 90^{\circ} \text{ und } \beta = 0^{\circ} : B_{z}^{\ddot{A}q.} = 0 \text{ und } B_{h}^{\ddot{A}q.} = \frac{\mu_{0}}{4\pi} \frac{M}{r^{3}} \; . \end{array}$$

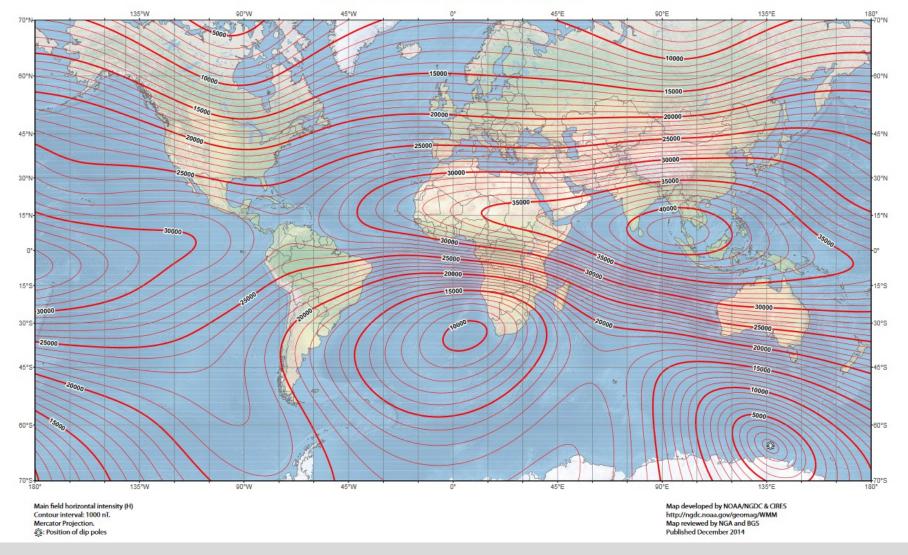

$$\begin{split} B_z^{Pol} &= \frac{\mu_0}{2\pi} \, \frac{M}{r_E^3} = \frac{4\pi \times 10^{-7}}{2\pi} \, \frac{V \, \text{s}}{A \, \text{m}} \frac{7.75 \times 10^{22} \text{A} \, \text{m}^2}{(6.37 \times 10^6)^3 \, \text{m}^3} \\ &= \frac{15.5 \times 10^{15} \, \text{V} \, \text{s} \, \text{m}}{(6.37 \times 10^6)^3 \, \text{m}^3} = \frac{15.5 \times 10^{15} \, \text{V} \, \text{s}}{2.58 \times 10^{20} \, \text{m}^2} \\ &= 6.0078 \times 10^{-5} T = 60.078 \, \mu T = 60.078 \, \text{nT} \, ; \end{split}$$

$$\begin{split} B_h^{\text{Äq}} &= \frac{\mu_0}{4\pi} \, \frac{M}{r_E^3} = \frac{4\pi \times 10^{-7}}{4\pi} \, \frac{\text{V s}}{\text{A m}} \, \frac{7,75 \times 10^{22} \, \text{A m}^2}{(6,37 \times 10^6)^3 \, \text{m}^3} \\ &= \frac{7,75 \times 10^{15} \, \text{V s m}}{(6,37 \times 10^6)^3 \, \text{m}^3} = \frac{7,75 \times 10^{15} \, \text{V s}}{2,58 \times 10^{20} \, \text{m}^2} \\ &= 3,0039 \times 10^{-5} \, \text{T} = 30,039 \, \mu \text{T} = 30\,039 \, \text{nT} \, . \end{split}$$



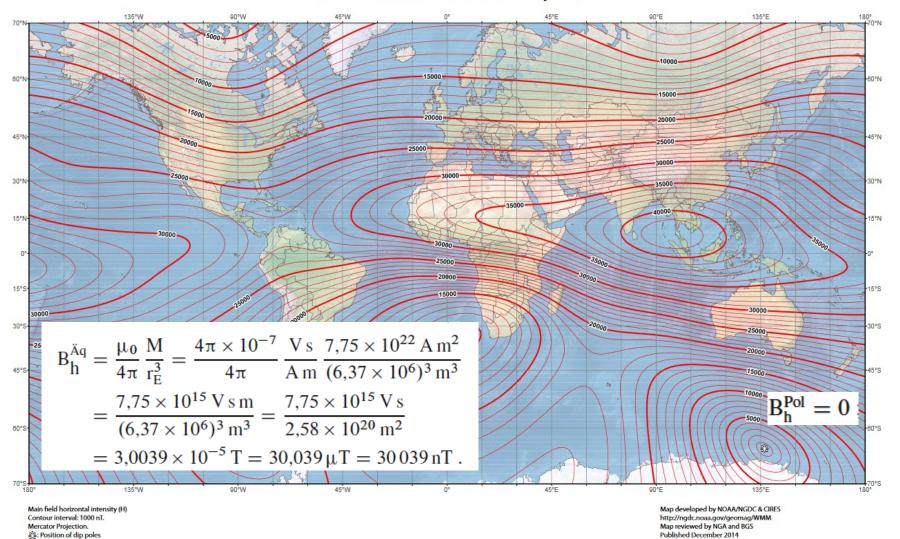
Main Field Down Component (Z)

Main Field Down Component (Z)

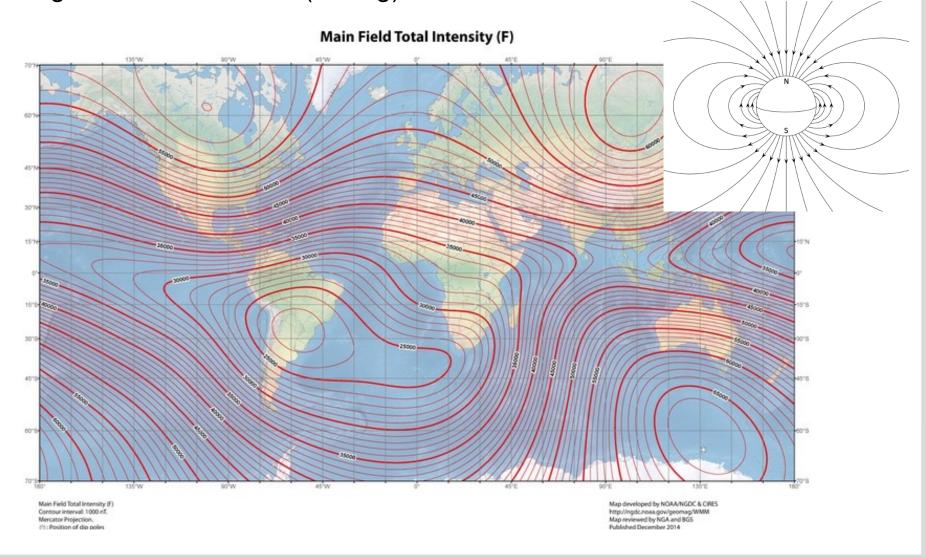

Contour interval: 2000 nT, red contours positive (down); blue negative (up); green zero line. Mercator Projection.

292 · Position of din pole

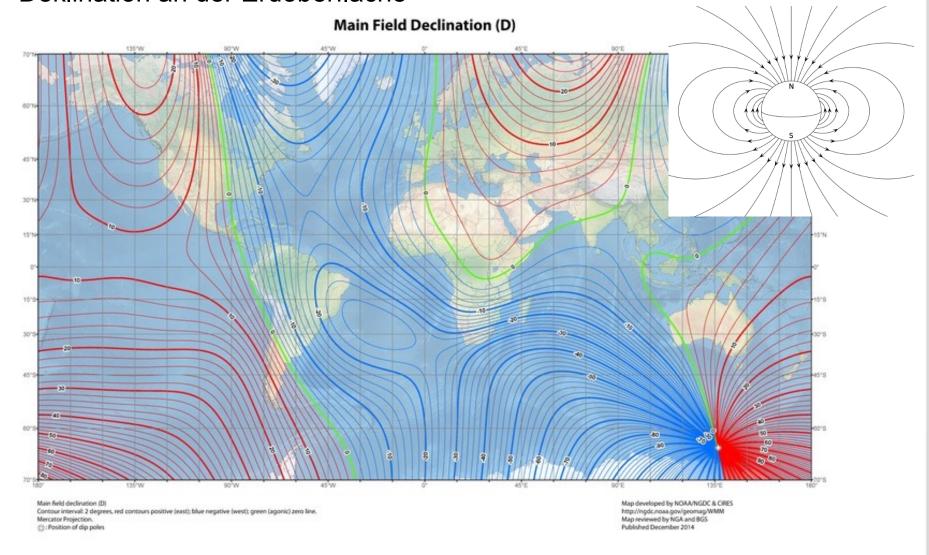
http://ngdc.noaa.gov/geomag/WMM
Map reviewed by NGA and BGS
Published December 2014



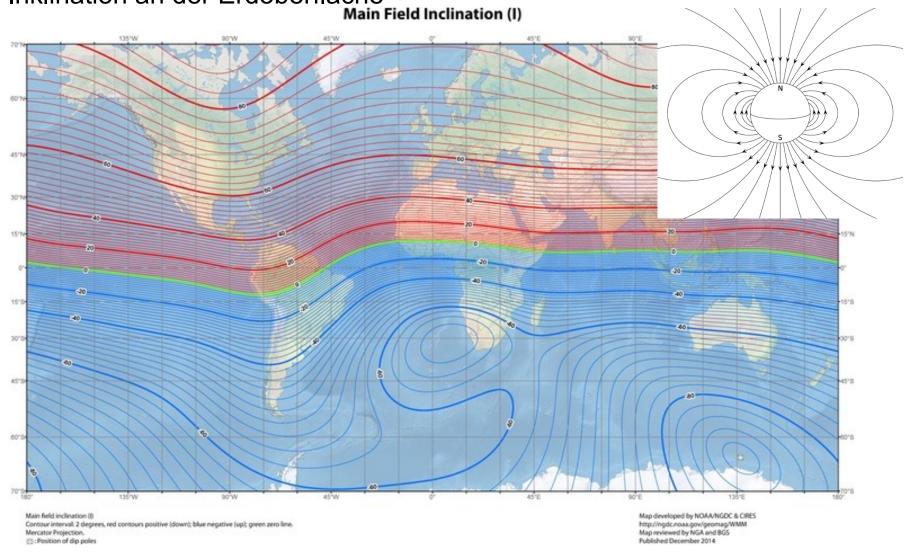
Main Field Horizontal Intensity (H)



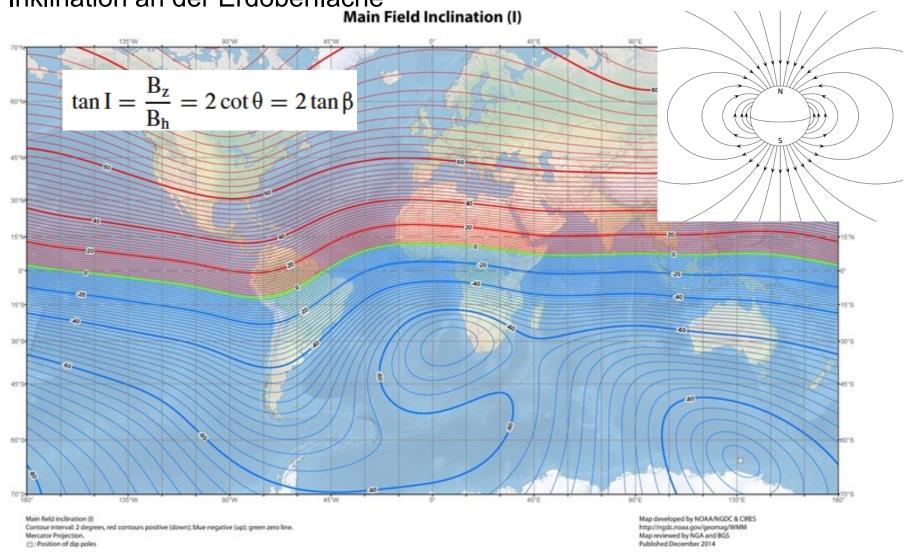
Main Field Horizontal Intensity (H)



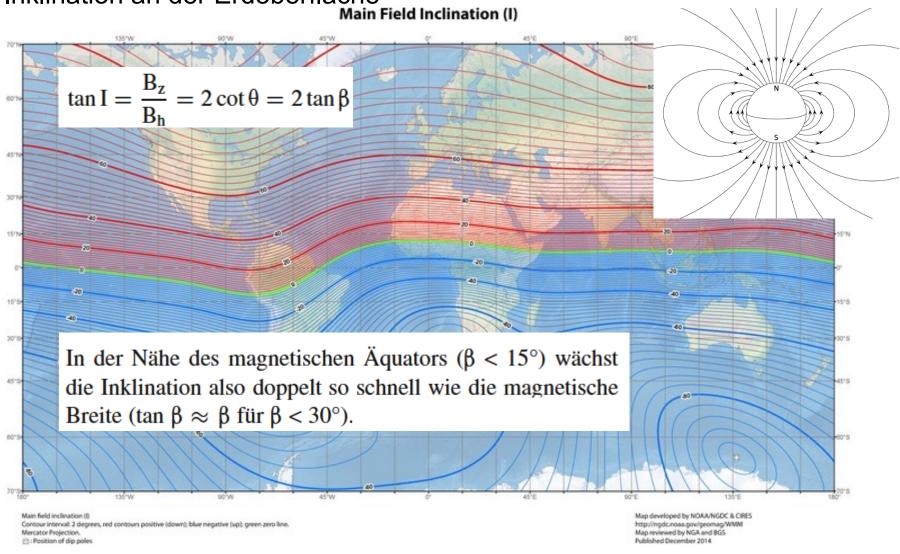
Magnetische Feldstärke (Betrag) an der Erdoberfläche



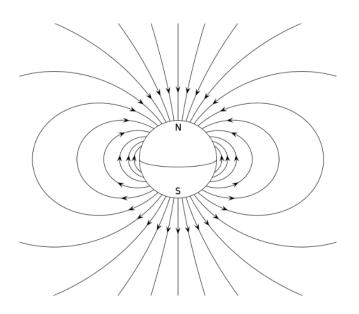
Deklination an der Erdoberfläche



Inklination an der Erdoberfläche

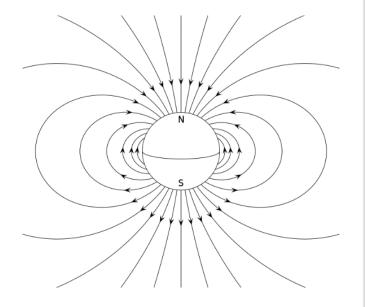


Inklination an der Erdoberfläche


Inklination an der Erdoberfläche

Räumliche Änderung der Komponenten

Die Größe der Elemente des Erdmagnetfelds ändert sich entsprechend dem überwiegenden Dipolcharakter des Felds sowohl mit der Höhe h über der Erdoberfläche als auch mit der Breite.

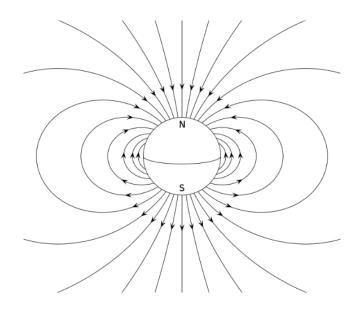

Räumliche Änderung der Komponenten

Die Größe der Elemente des Erdmagnetfelds ändert sich entsprechend dem überwiegenden Dipolcharakter des Felds sowohl mit der Höhe h über der Erdoberfläche als auch mit der Breite.

Änderung mit der Höhe h

Setze
$$r = r_E + h$$

Räumliche Änderung der Komponenten


Die Größe der Elemente des Erdmagnetfelds ändert sich entsprechend dem überwiegenden Dipolcharakter des Felds sowohl mit der Höhe h über der Erdoberfläche als auch mit der Breite.

Änderung mit der Höhe h

Setze
$$r = r_E + h$$

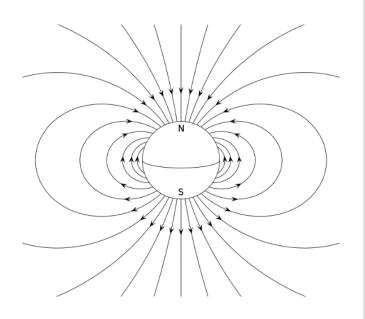
Potenzreihenentwicklung für

$$B(r_E + h) \approx B_0 (1 - 3(h/r_E) + 6(h/r_E)^2 + ...)$$

Räumliche Änderung der Komponenten

Die Größe der Elemente des Erdmagnetfelds ändert sich entsprechend dem überwiegenden Dipolcharakter des Felds sowohl mit der Höhe h über der Erdoberfläche als auch mit der Breite.

Änderung mit der Höhe h


Setze
$$r = r_E + h$$

Potenzreihenentwicklung für

$$B(r_E + h) \approx B_0 (1 - 3(h/r_E) + 6(h/r_E)^2 + ...)$$

Somit folgt für h = 1 km:

$$\begin{split} B(r_E+10^3) &\approx B_0 \left(1 - \frac{3000}{6,37 \times 10^6}\right) \\ &= B_0 \left(1 - 0,47 \times 10^{-3}\right) \approx 0,999\,53\,B_0 \end{split}$$

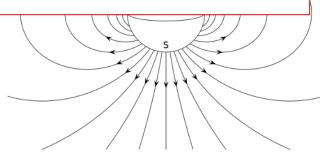
Karlsruher Institut für Technologie

Räumliche Änderung der Komponenten

Die Größe der Elemente des Erdmagnetfelds ändert sich entsprechend dem überwiegenden Dipolcharakter des Felds sowohl mit der Höhe h über der Erdoberfläche als auch mit der Breite.

Die Feldstärke B_0 an der Erdoberfläche vermindert sich also um ca. 1/2 % pro km Höhe.

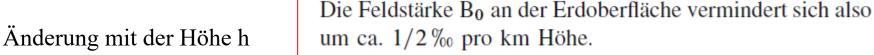
Änderung mit der Höhe h


Setze
$$r = r_E + h$$

Potenzreihenentwicklung für

$$B(r_E + h) \approx B_0 (1 - 3(h/r_E) + 6(h/r_E)^2 + ...)$$

Somit folgt für h = 1 km:

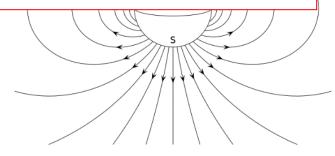

$$\begin{split} B(r_E+10^3) &\approx B_0 \left(1 - \frac{3000}{6,37 \times 10^6}\right) \\ &= B_0 \left(1 - 0,47 \times 10^{-3}\right) \approx 0,999\,53\,B_0 \end{split}$$

Karlsruher Institut für Technologie

Räumliche Änderung der Komponenten

Die Größe der Elemente des Erdmagnetfelds ändert sich entsprechend dem überwiegenden Dipolcharakter des Felds sowohl mit der Höhe h über der Erdoberfläche als auch mit der Breite.

Setze
$$r = r_E + h$$


Potenzreihenentwicklung für

$$B(r_E + h) \approx B_0 (1 - 3(h/r_E) + 6(h/r_E)^2 + ...)$$

Somit folgt für h = 1 km:

$$B(r_E + 10^3) \approx B_0 \left(1 - \frac{3000}{6,37 \times 10^6} \right)$$

$$= B_0 \left(1 - 0,47 \times 10^{-3} \right) \approx 0,99953 B_0$$

Dies gilt analog auch für B_h und B_z . Aufgabe auf Übungsblatt

Karlsruher Institut für Technologie

Räumliche Änderung der Komponenten

Änderung mit der Breite β

$$\begin{split} B_{z,\beta} &= \frac{1}{r} \frac{\partial B_z}{\partial \beta} = \frac{1}{r} \frac{\partial}{\partial \beta} \left(\frac{\mu_0}{2\pi} \frac{M}{r^3} \sin \beta \right) \\ &= \frac{1}{r} \frac{\mu_0}{2\pi} \frac{M}{r^3} \cos \beta = \frac{2}{r} \left(\frac{\mu_0}{4\pi} \frac{M}{r^3} \cos \beta \right) = \frac{2}{r} B_h \end{split}$$

Karlsruher Institut für Technologie

Räumliche Änderung der Komponenten

Änderung mit der Breite β

$$\begin{split} B_{z,\beta} &= \frac{1}{r} \frac{\partial B_z}{\partial \beta} = \frac{1}{r} \frac{\partial}{\partial \beta} \left(\frac{\mu_0}{2\pi} \frac{M}{r^3} \sin \beta \right) \\ &= \frac{1}{r} \frac{\mu_0}{2\pi} \frac{M}{r^3} \cos \beta = \frac{2}{r} \left(\frac{\mu_0}{4\pi} \frac{M}{r^3} \cos \beta \right) = \frac{2}{r} \; B_h \end{split}$$

$$\begin{split} B_{h,\beta} &= \frac{1}{r} \frac{\partial B_h}{\partial \beta} = \frac{1}{r} \frac{\partial}{\partial \beta} \left(\frac{\mu_0}{4\pi} \frac{M}{r^3} \cos \beta \right) \\ &= -\frac{1}{r} \frac{\mu_0}{4\pi} \frac{M}{r^3} \sin \beta = -\frac{B_z}{2r} \end{split}$$

Karlsruher Institut für Technologie

Räumliche Änderung der Komponenten

Änderung mit der Breite β

$$\begin{split} B_{z,\beta} &= \frac{1}{r} \frac{\partial B_z}{\partial \beta} = \frac{1}{r} \frac{\partial}{\partial \beta} \left(\frac{\mu_0}{2\pi} \frac{M}{r^3} \sin \beta \right) \\ &= \frac{1}{r} \frac{\mu_0}{2\pi} \frac{M}{r^3} \cos \beta = \frac{2}{r} \left(\frac{\mu_0}{4\pi} \frac{M}{r^3} \cos \beta \right) = \frac{2}{r} B_h \end{split} \qquad \qquad B_{h,\beta} &= \frac{1}{r} \frac{\partial B_h}{\partial \beta} = \frac{1}{r} \frac{\partial}{\partial \beta} \left(\frac{\mu_0}{4\pi} \frac{M}{r^3} \cos \beta \right) \\ &= -\frac{1}{r} \frac{\mu_0}{4\pi} \frac{M}{r^3} \sin \beta = -\frac{B_z}{2r} \end{split}$$

Für einen Punkt an der Erdoberfläche mit $B_h(r_E) = 20\,000\,\text{nT}$, also nach (5.25) in etwa 50° Breite, gilt somit: $B_{z,\beta} = 2\frac{B_h}{r_E}2\frac{20\,000}{6,37^6} \approx 0,006\,28\,\text{nTm}^{-1} = 6,28\,\text{nT\,km}^{-1}$.

Räumliche Änderung der Komponenten

Tab. 5.4 Änderungen der magnetischen Feldelemente B, B_h, und B_z mit der Höhe und der magnetischen Breite

	Feldstärke (nT) (für $\beta = 50^{\circ}$ N)	Feldänderung mit der Höhe $(nT \text{ km}^{-1})$	Feldänderung mit der Breite (nach Norden) (nT km ⁻¹)
В	52 400	-24,7	4,40
\mathbf{B}_{h}	20 300	- 9,6	-3,79
$\mathbf{B}_{\mathbf{z}}$	48 300	-22,7	6,28

Räumliche Änderung der Komponenten

Tab. 5.4 Änderungen der magnetischen Feldelemente B, B_h, und B_z mit der Höhe und der magnetischen Breite

	Feldstärke (nT) (für $\beta = 50^{\circ}$ N)	Feldänderung mit der Höhe $(nT \text{ km}^{-1})$	Feldänderung mit der Breite (nach Norden) (nT km ⁻¹)
В	52 400	-24,7	4,40
$\boldsymbol{B}_{\boldsymbol{h}}$	20 300	- 9,6	-3,79
$\mathbf{B}_{\mathbf{z}}$	48 300	-22,7	6,28

Wie misst man das Erdmagnetfeld?

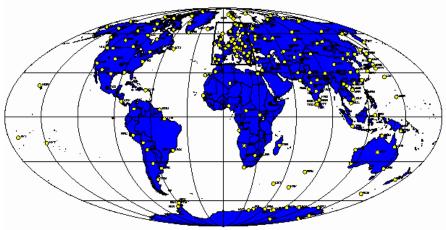
Kleinräumige Messung des Erdmagnetfelds

→ Einführung in die Geophysik 1

Kleinräumige Messung des Erdmagnetfelds

→ Einführung in die Geophysik 1

Messung eines Anomaliefelds Änderung des Erdmagnetfelds im Messgebiet vernachlässigbar



Kontinuierliche Registrierung des Erdmagnetfelds

Geomagnetisches Observatorium Niemegk des GFZ bei Potsdam

Observatorien

Messung

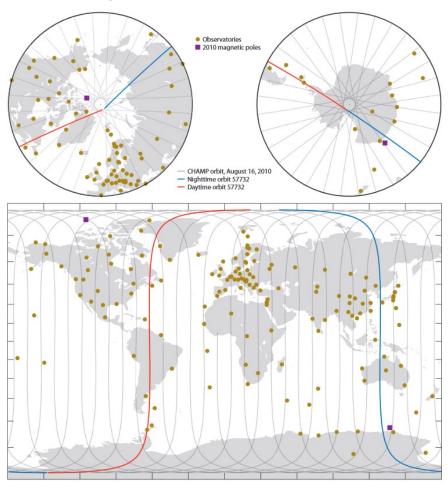
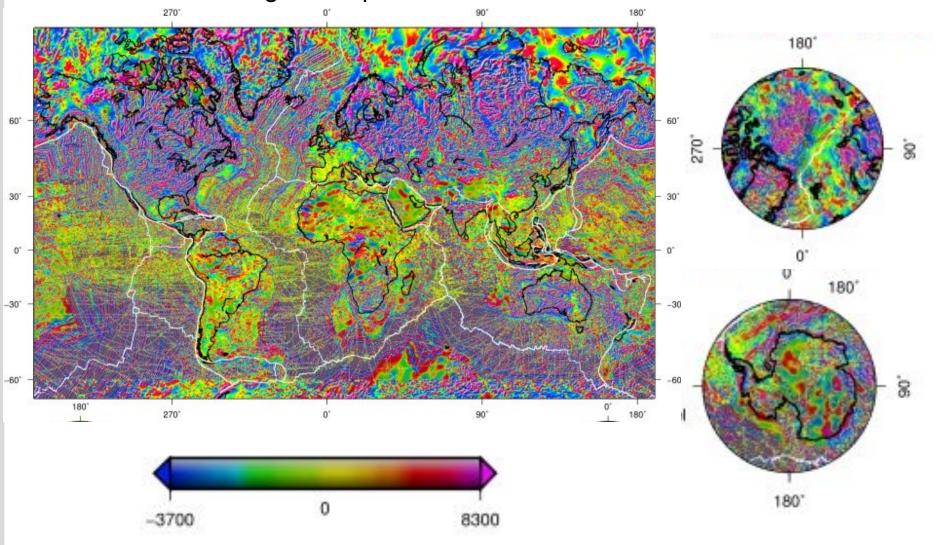


Figure 1

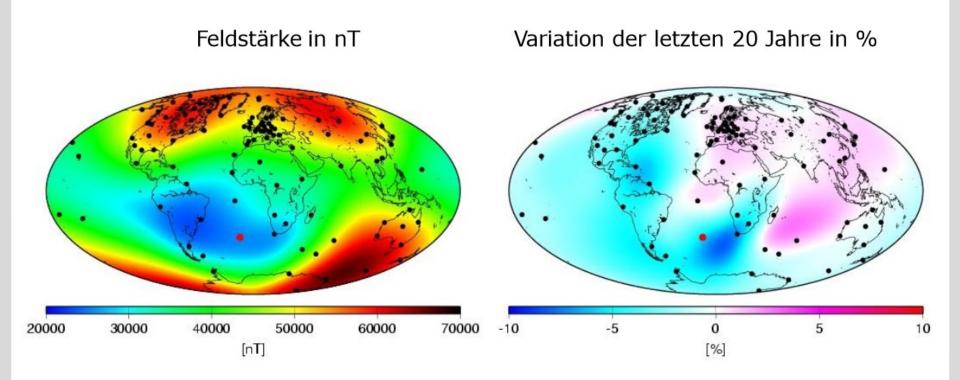
Ground track of 24 h of the CHAMP satellite orbit on August 16, 2010 (multiple gray curves). Highlighted is one particular orbit (orbit number 57732), when the satellite starts close to the geographic North pole and flies southward during local nighttime conditions (blue curve). After approximately 45 min, it reaches its closest approach to the geographic South pole and moves northward on the dayside (red curve). Dark yellow dots indicate the locations of ground-based magnetic observatories. Locations of the magnetic poles in 2010 are shown by the purple squares.

Olsen und Stolle, Annu. Rev. Earth Planet. Sci., 2012, GFZ

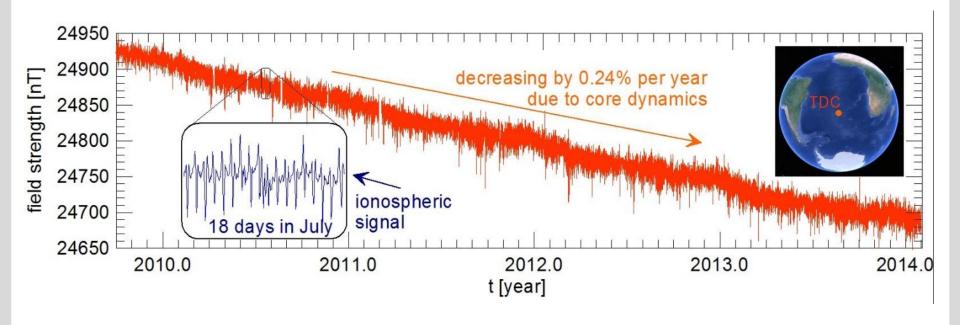
Observatorien



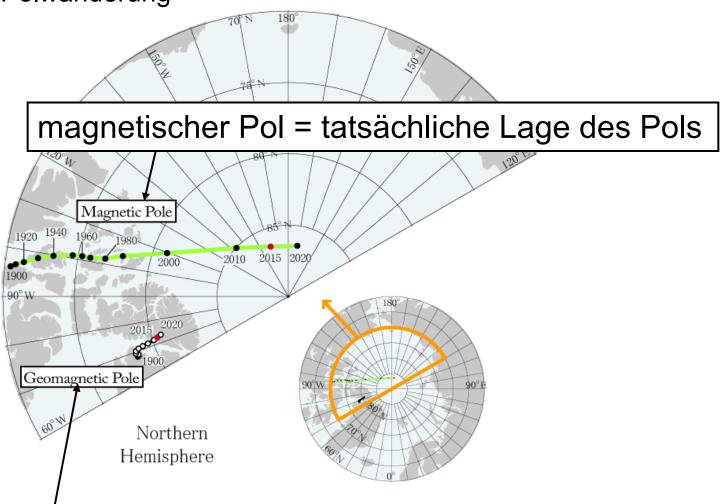
Globale Magnetische Anomalien



Restfeld nach Abzug des Dipolfelds

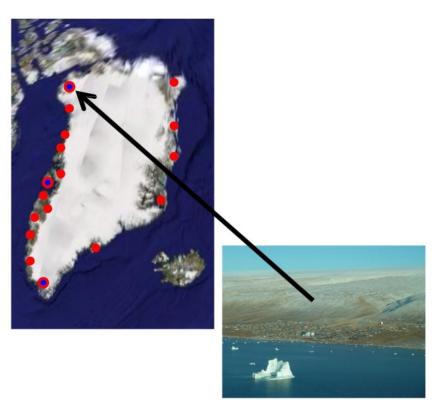

Magnetische Feldstärke (Betrag) an der Erdoberfläche – Variation der letzten 20 Jahre

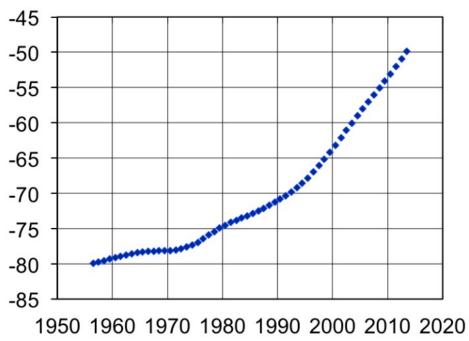
GFZ, 2008


Schnelle Abnahme der südatlantischen Anomalie

Stolle, 2014

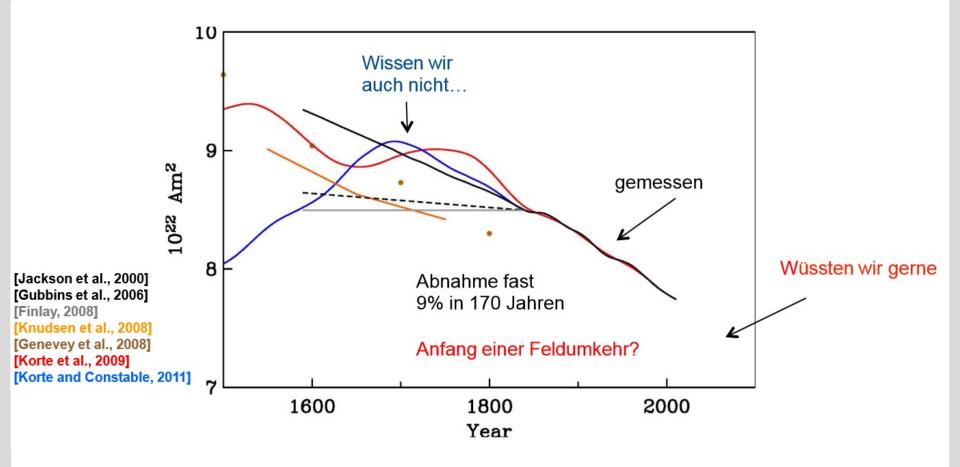
Polwanderung

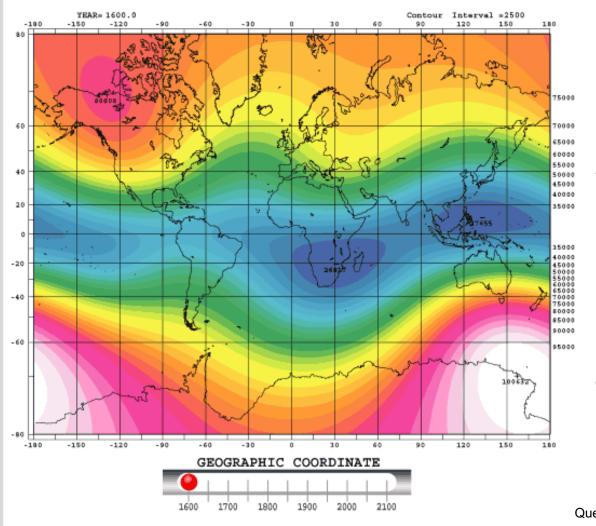



geomagnetischer Pol = theoretischer Pol des Erdmagnetfelds aus mittlerem Verlauf der Feldlinien

014

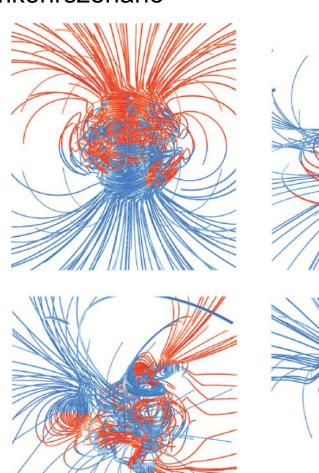
Karlsruher Institut für Technologie


Schnelle Variation der Deklination in Polargebieten

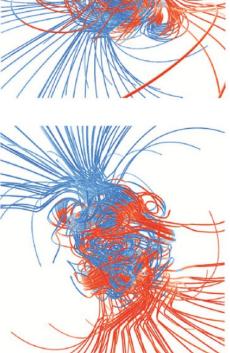

Entwicklung des Dipolfelds in letzten Jahrhunderten

Stolle, 2014

Entwicklung des Dipolfelds in letzten Jahrhunderten

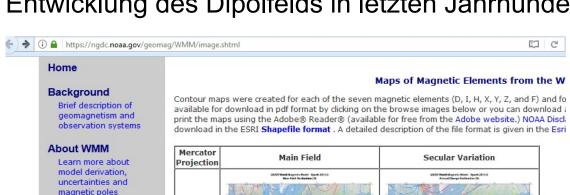

- Abnahme der magnetischen Feldstärke
- 2. Ausbildung von Anomalien
- 3. Starke Polwanderung

... deuten auf mögliche Umkehr oder Exkursion des Erdmagnetfelds hin


Quelle: http://wdc.kugi.kyoto-u.ac.jp/igrf/anime/index.html

Mögliches Umkehrszenario

Abb. 5.12 Erdmagnetfeld aus dreidimensionalen magnetohydrodynamischen Modellrechnungen von G. A. Glatzmaier (University of California Santa Cruz) und P. H. Roberts (University of California Los Angeles) (Mit Genehmigung durch @ Macmillan Publishers Ltd aus Glatzmaier & Roberts 1995a; Glatzmaier & Roberts 1995b, 1997; Glatzmaier 2007; Glatzmaier undatiert). Rote Feldlinien sind nach innen gerichtet, blaue nach außen. Die Rotationsachse der Modellerde ist vertikal und verläuft durch das Zentrum. Oben (von links nach rechts): Magnetfeld im "heutigen" Zustand und 500 Jahre vor einer Feldumkehr. Unten (von links nach rechts): Magnetfeld in der Mitte der Feldumkehr und 500 Jahre danach



Entwicklung des Dipolfelds in letzten Jahrhunderten

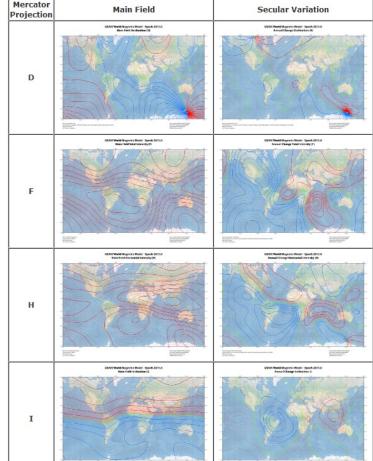
Model & Software

Download model coefficients, software and documentation

Online Calculators

Calculate magnetic field values at or near the Earth surface

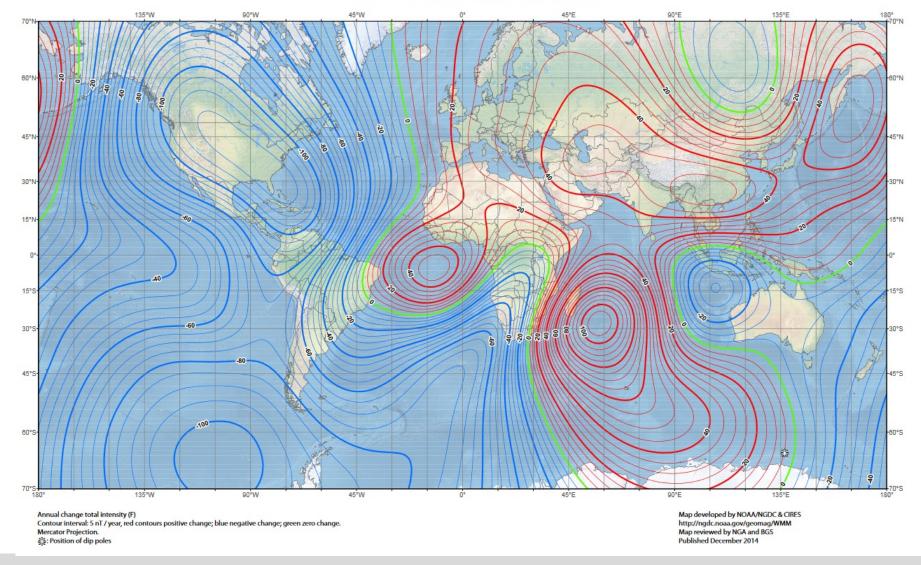
Maps


Browse imagery and contour maps for main field and secular change

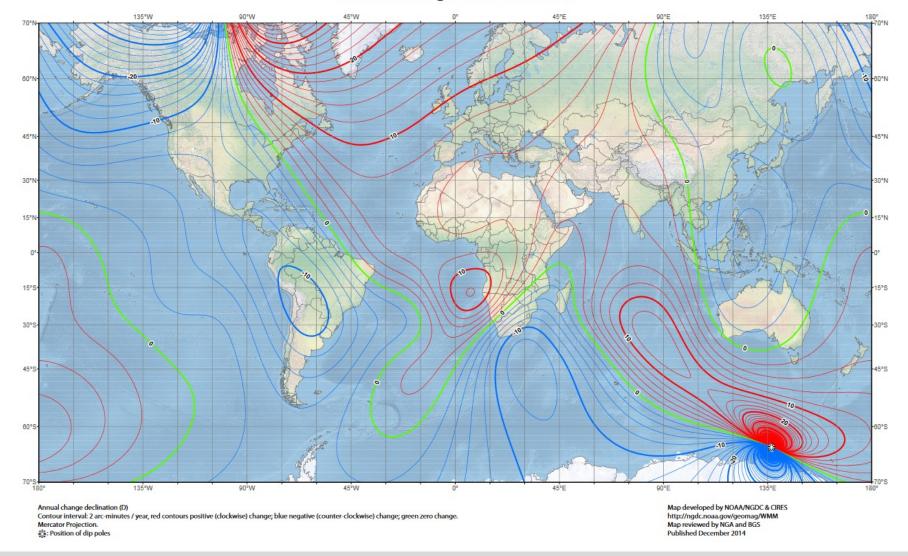
Uses of WMM

Common applications of WMM

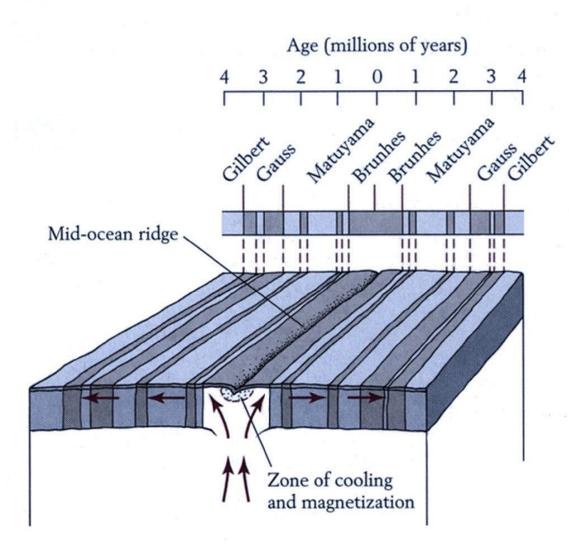
License

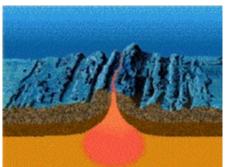

License and copyright information

elle: http://wdc.kugi.kyoto-u.ac.jp/igrf/anime/index.html



Annual Change Total Intensity (F)




Annual Change Declination (D)

Umkehr des Erdmagnetfelds

Umkehr der Polarität des Erdmagnetfelds in der Vergangenheit

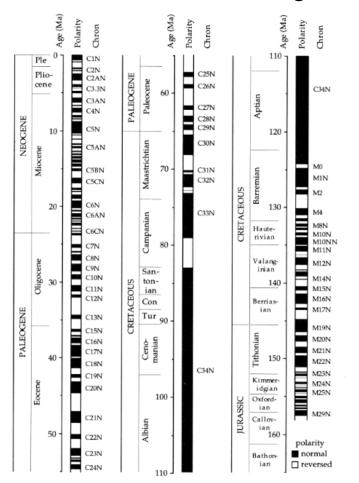


Fig. 5.78 The geomagnetic polarity timescale since the late Jurassic (based upon Harland *et al.*, 1990). Designations for normal polarity chrons are listed.

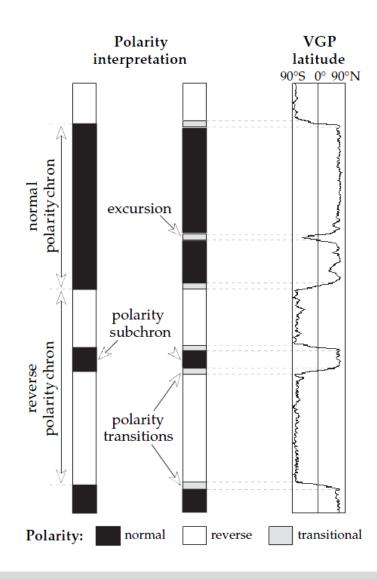
Schwarz: heutige (normale)

Polarität

Weiß: umgekehrte (inverse)

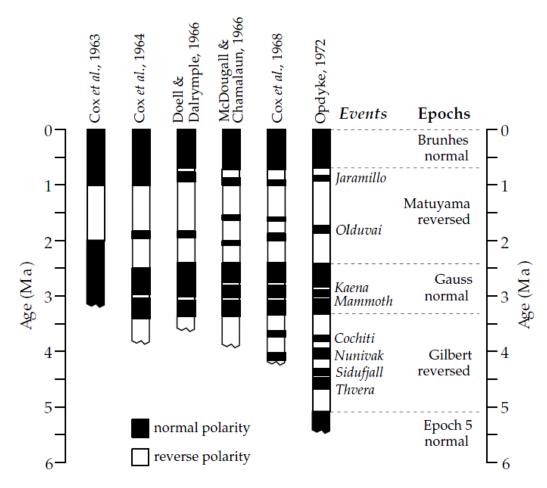
Polarität

Umkehr durchschnittlich alle 500 ka, letzte Umkehr vor 780 ka


Polsprung: innerhalb von ~ 10³ a

Polexkursion: kurzzeitige (10² – 10³ a) Abschwächung, Rückkehr zur ursprünglichen Polarität, trat in letzten 780 ka sieben Mal auf

Vor 160 Millionen Jahren


Umkehr des Erdmagnetfelds

Umkehr des Erdmagnetfelds

Fig. 5.73 Progressive evolution and refinement of the magnetic polarity timescale.

Tab. 5.8 Die Quellen des Erd magnetfelds (Schmucker 1985)

Bezeichnung				Ursache	Entstehungsort	Verteilung an der Erdoberfläche	Größe (nT) des zeitlich konstanten Anteils	Perioden der Variationen	Anteil der Variationen am Magnetfeld
Primärer Norma innerer feld Anteil	Normal- feld	Haupt- feld	Dipolfeld	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von der geoma- gnetischen Breite	$3 \times 10^4 - 5 \times 10^4$	Säkularvariatio- nen; einige 10 ³ a	10% des Hauptfelds in den letzten 100 a; 100 % in geologischen Zeiten
			Nicht-Dipol- Anteil, planetarische Anomalien	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von λ, φ; kein Zusammenhang Land- Meer	2 × 10 ⁴	10 ² -10 ³ a	Bis 10 % des Dipolfelds in den letzten 50 Jahren
		Krusten- feld	Regionaler Anteil	Gesteinsmægnetismus; induzierte und remanente Anteile	Bis Tiefe der Curie- Temperatur: 25 km-30 km	Abhängig von Krusten- struktur	Einige 100	In geologischen Zeiträumen	100% des Krustenfelds
			Lokaler Anteil	Gesteinsmagnetismus; induzierte und remanente Anteile	Nahe der Erdoberfläche	Abhängig von der Struktur der oberen Kruste	2×10 ⁴	In geologischen Zeiträumen	100 % des Krustenfelds
Primärer äu	Berer Antei	1		Stromwirbel in der hohen Atmosphäre, Ionisierung durch Strahlung der Sonne	Ionosphäre, E-Schicht in 100 km Höhe	Lineare Dimension eines Erdquadranten, λ, φ, Orts- zeit, Jahreszeit	?	Mittlerer Son- nentag	10 nT-100 nT
				Durch Gezeiten (Mond, Sonne) erzeugte ionos phä- rische Winde	ca. 100 km Höhe	Lineare Dimension eines Erdquadranten, Ortszeit, Jahreszeit	?	Solare und luna- re Ortszeit	1 nT-10 nT
				Stromwirbel, Partikelstrahlung der Son- ne	Ionosphäre (E- und F-Schicht) 300km	λ, φ, Polarlichtzonen	?	Periode der Son- nenaktivität 27 d	10 nT-1000 nT in mittleren Breiten; 5000 nT in Polarlichtzonen
				Ringströme um die Erde	Einige Erdradien Höhe	Homogen	?	d	Bis 100nT
Sekundärer innerer Ant				Induktion in leitenden Schicht en des Erdinnern	Bis 600 km Tiefe	Regional verschieden	?	d; min; s.	Bis ca. 100 nT

Tab. 5.8 Die Quellen des Erd magnetfelds (Schmucker 1985)

Bezeichnung				Ursache	Entstehungsort	Verteilung an der Erdoberfläche	Größe (nT) des zeitlich konstanten	Perioden der Variationen	Anteil der Variationen am Magnetfeld
Primärer innerer	No mal- feld	Haupt-	Dipolfeld	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von der geoma- gnetischen Breite	Anteils $3 \times 10^4 - 5 \times 10^4$	Sākularvariatio- nen;	10% des Hauptfelds in den letzten 100 a. 100 % in geologischen Zeiten
Anteil			Nicht-Dipol- Anteil, planetarische Anomalien	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von λ, φ; kein Zusammenhang Land- Meer	2×10^4	10 ² –10 ³ a	Bis 10 % des Dipolfelds in den letzten 50 Jahren
		Krusten- feld	Regionaler Anteil	Gesteinsmagnetismus; induzierte und remanente Anteile	Bis Tiefe der Curie- Temperatur: 25 km-30 km	Abhängig von Krusten- struktur	Einige 100	In geologischen Zeiträumen	100% des Krustenfelds
			Lokaler Anteil	Gesteinsmagnetismus; induzierte und remanente Anteile	Nahe der Erdoberfläche	Abhängig von der Struktur der oberen Kruste	2×10 ⁴	In geologischen Zeiträumen	100 % des Krustenfelds
Primärer äu	Berer Antei	1		Stromwirbel in der hohen Atmosphäre, Ionisierung durch Strahlung der Sonne	Ionosphäre, E-Schicht in 100 km Höhe	Lineare Dimension eines Erdquadranten, λ, φ, Orts- zeit, Jahreszeit	?	Mittlerer Son- nentag	10 nT-100 nT
				Durch Gezeiten (Mond, Sonne) erzeugte ionosphä- rische Winde	ca. 100 km Höhe	Lineare Dimension eines Erdquadranten, Ortszeit, Jahreszeit	?	Solare und luna- re Ortszeit	1 n T-10 nT
				Stromwirbel, Partikelstrahlung der Son- ne	Ionosphäre (E- und F-Schicht) 300km	$\lambda, \phi, Polarlichtzonen$?	Periode der Son- nenaktivität 27 d	10 nT-1000 nT in mittleren Breiten; 5000nT in Polarlichtzonen
				Ringströme um die Erde	Einige Erdradien Höhe	Homogen	?	d	Bis 100nT
Sekundärer innerer Ant		r		Induktion in leitenden Schichten des Erdinnern	Bis 600 km Tiefe	Regional verschieden	?	d; min; s.	Bis ca. 100 nT

Tab. 5.8 Die Quellen des Erd magnetfelds (Schmucker 1985)

Bezeichnun	g			Ursache	Entstehungsort	Verteilung an der Erdoberfläche	Größe (nT) des zeitlich konstanten Anteils	Perioden der Variationen	Anteil der Variationen am Magnetfeld
Primärer innerer	Normal- feld	Haupt- feld	Dipolfeld	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von der geoma- gnetischen Breite	$3 \times 10^4 - 5 \times 10^4$	Säkularvariatio- nen;	10% des Hauptfelds in den letzten 100 a; 100 % in
Anteil	<		Nicht-Dipol- Anteil, planetarische Anomalien	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von λ, φ; kein Zusammenhang Land- Meer	2 × 10 ⁴	chilge 10 ³ a 10 ² –10 ³ a	geologischen Zeiten Bis 10 % des Dipolfolds in den letzten 50 Jahren
		Krusten-	Regionaler	Gesteinsmagnetismus;	Bis Tiefe	Abhängig von Krusten-	Einige 100	In geologischen	100 % ues Krustenfelds
		feld	Anteil	induzierte und remanente Anteile	Temperatur: 25 km-30 km	struktur		Zeiträumen	
			Lokaler Anteil	Gesteinsmagnetismus; induzierte und remanente Anteile	Nahe der Erdoberfläche	Abhängig von der Struktur der oberen Kruste	2 × 10 ⁴	In geologischen Zeiträumen	100 % des Krustenfelds
Primärer äu	Berer Antei	1		Stromwirbel in der hohen Atmosphäre, Ionisierung durch Strahlung der Sonne	Ionosphäre, E-Schicht in 100 km Höhe	Lineare Dimension eines Erdquadranten, λ, φ, Orts- zeit, Jahreszeit	?	Mittlerer Son- nentag	10 nT-100 nT
				Durch Gezeiten (Mond, Sonne) erzeugte ionos phä- rische Winde	ca. 100 km Höhe	Lineare Dimension eines Erdquadranten, Ortszeit, Jahreszeit	?	Solare und luna- re Ortszeit	1 nT-10 nT
				Stromwirbel, Partikelstrahlung der Son- ne	Ionosphäre (E- und F-Schicht) 300km	$\lambda, \varphi, Polarlichtzonen$?	Periode der Son- nenaktivität 27 d	10 nT-1000 nT in mittleren Breiten; 5000nT in Polar lichtzonen
				Ringströme um die Erde	Einige Erdradien Höhe	Homogen	?	d	Bis 100nT
Sekundärer innerer Ant				Induktion in leitenden Schicht en des Erdinnern	Bis 600 km Tiefe	Regional verschieden	?	d; min; s.	Bis ca. 100 nT

Tab. 5.8 Die Quellen des Erd magnetfelds (Schmucker 1985)

Bezeichnung				Ursache	Entstehungsort	Verteilung an der Erdoberfläche	Größe (nT) des zeitlich konstanten Anteils	Perioden der Variationen	Anteil der Variationen am Magnetfeld	
Primärer Norma innerer feld Anteil	Normal- feld	feld		Nicht-Dipol- Anteil, planetarische	Elektrische Stromwirbel Elektrische Stromwirbel	Äußerer Erdkern Äußerer Erdkern	Abhängig von der geoma- gnetischen Breite Abhängig von λ, φ; kein Zusammenhang Land- Meer	$3 \times 10^4 - 5 \times 10^4$ 2×10^4	Sākularvariatio- nen; einige 10 ³ a 10 ² -10 ³ a	10% des Hauptfelds in den letzten 100 a; 100 % in geologischen Zeiten Bis 10 % des Dipolfelds in den letzten 50 Jahren
		Krusten- feld	Anomalien Regionaler Anteil	Gesteinsmagnetismus; induzierte und remanente Anteile	Bis Tiefe der Curie- Temperatur: 25 km-30 km	Abhängig von Krusten- struktur	Einige 100	In geologischen Zeiträumen	100% des Krustenfelds	
			Lokaler Anteil	Gesteinsmagnetismus; induzierte und remanente Anteile	Nahe der Erdoberfläche	Abhangig von der Struktur der oberen Kruste	2×10*	In geologischen Zeiträumen	100 % des Krustenfelds	
Primärer äu	Berer Antei	1		Stromwirbel in der hohen Atmosphäre, Ionisierung durch Strahlung der Sonne	Ionosphäre, E-Schicht in 100 km Höhe	Lineare Dimension eines Erdquadranten, λ, φ, Orts- zeit, Jahreszeit	?	Mittlerer Son- nentag	10 nT-100 nT	
				Durch Gezeiten (Mond, Sonne) erzeugte ionosphä- rische Winde	ca. 100 km Höhe	Lineare Dimension eines Erdquadranten, Ortszeit, Jahreszeit	7	Solare und luna- re Ortszeit	1 n T-10 nT	
				Stromwirbel, Partikelstrahlung der Son- ne	Ionosphäre (E- und F-Schicht) 300km	$\lambda, \phi, Polarlichtzonen$?	Periode der Son- nenaktivität 27 d	10 nT-1000 nT in mittleren Breiten; 5000nT in Polarlichtzonen	
				Ringströme um die Erde	Einige Erdradien Höhe	Homogen	?	d	Bis 100nT	
Sekundärer innerer Ant				Induktion in leitenden Schicht en des Erdinnern	Bis 600 km Tiefe	Regional verschieden	?	d; min; s.	Bis ca. 100 nT	

Tab. 5.8 Die Quellen des Erd magnetfelds (Schmucker 1985)

Bezeichnun	g			Ursache	Entstehungsort	Verteilung an der Erdoberfläche	Größe (nT) des zeitlich konstanten Anteils	Perioden der Variationen	Anteil der Variationen am Magnetfeld
Primärer innerer Anteil	Normal- feld	Haupt- feld	Dipolfeld	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von der geoma- gnetischen Breite	$3 \times 10^4 - 5 \times 10^4$	Sākularvariatio- nen; einige 10 ³ a	10% des Hauptfelds in den letzten 100 a; 100 % in geologischen Zeiten
			Nicht-Dipol- Anteil, planetarische Anomalien	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von λ, φ; kein Zusammenhang Land- Meer	2 × 10 ⁴	10 ² -10 ³ a	Bis 10 % des Dipolfelds in den letzten 50 Jahren
		Krusten- feld	Regionaler Anteil	Gesteinsmægnetismus; induzierte und remanente Anteile	Bis Tiefe der Curie- Temperatur:	Abhängig von Krusten- struktur	Einige 100	In geologischen Zeiträumen	100% des Krustenfelds
					25 km-30 km				
			Lokaler Anteil	Gesteinsmagnetismus; induzierte und remanente Americ	Nahe der Erdoberfläche	Abhängig von der Struktur der oberen Kruste	2×10^4	In geologischen Zeiträumen	100 % des Krustenfelds
Primärer äu	Berer Antei	1		Stromwirbel in der hohen Atmosphäre, Ionisierung durch Strahlung der Sonne	Ionosphäre, E-Schicht in 100 km Höhe	Lineare Dimension eines Erdquadranten, λ, φ, Orts- zeit, Jahreszeit	?	Mittlerer Son- nentag	10 nT- 100 nT
				Durch Gezeiten (Mond, Sonne) erzeugte ionos phä- rische Winde	ca. 100 km Höhe	Lineare Dimension eines Erdquadranten, Ortszeit, Jahreszeit	?	Solare und luna- re Ortszeit	1nT-10nT
				Stromwirbel, Partikelstrahlung der Son- ne	Ionosphäre (E- und F-Schicht) 300km	λ, φ, Polarlichtzonen	7	Periode der Son- nenaktivität 27 d	10 nT-1000 nT in mittleren Breiten; 5000nT in Polarlichtzonen
				Ringströme um die Erde	Einige Erdradien Höhe	Homogen	?	d	Bis 100nT
Sekundärer innerer Ant				Induktion in leitenden Schicht en des Erdinnern	Bis 600 km Tiefe	Regional verschieden	?	d; min; s.	Bis ca. 100 nT

Tab. 5.8 Die Quellen des Erd magnetfelds (Schmucker 1985)

Bezeichnung				Ursache	Entstehungsort	Verteilung an der Erdoberfläche	Größe (nT) des zeitlich konstanten Anteils	Perioden der Variationen	Anteil der Variationen am Magnetfeld
	Normal- feld	Haupt- feld	Dipolfeld	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von der geoma- gnetischen Breite	$3 \times 10^4 - 5 \times 10^4$	Säkularvariatio- nen; einige 10 ³ a	10% des Hauptfelds in den letzten 100 a; 100 % in geologischen Zeiten
			Nicht-Dipol- Anteil, planetarische Anomalien	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von λ, φ; kein Zusammenhang Land- Meer	2 × 10 ⁴	10 ² -10 ³ a	Bis 10 % des Dipolfelds in den letzten 50 Jahren
		Krusten- feld	Regionaler Anteil	Gesteinsmægnetismus; induzierte und remanente Anteile	Bis Tiefe der Curie- Temperatur: 25 km-30 km	Abhängig von Krusten- struktur	Einige 100	In geologischen Zeiträumen	100% des Krustenfelds
			Lokaler Anteil	Gesteinsmagnetismus; induzierte und remanente Anteile	Nahe der Erdoberfläche	Abhängig von der Struktur der oberen Kruste	2×10^4	In geologischen Zeiträumen	100 % des Krustenfelds
nmärer äu	Berer Antei	l		Stromwirbel in der hohen Atmosphäre, Ionisierung durch Strahlung der Sonne	Iono sphäre, E-Schicht in 100 km Höhe	Lineare Dimension eines Erdquadranten, λ, φ, Orts- zeit, Jahreszeit	?	Mittlerer Son- nentag	10 nT-100 n1
				Durch Gezeiten (Mond, Sonne) erzeugte ionos phä- rische Winde	ca. 100 km Höhe	Lineare Dimension eines Erdquadranten, Ortszeit, Jahreszeit	7	Solare und luna- re Ortszeit	1nT-10nT
				Stromwirbel, Partikelstrahlung der Son- ne	Ionosphäre (E- und F-Schicht) 300km	λ, φ, Polarlichtzonen	?	Periode der Son- nenaktivität 27 d	10 nT-1000 nT in mittleren Breiten; 5000nT in Polarlichtzonen
				Ringströme um die Erde	Einige Erdradien Höhe	Homogen	?	d	Bis 100nT
Sekundärer innerer Ante	induzierter eil			Induktion in leitenden Schicht en des Erdinnern	Bis 600 km Tiefe	Regional verschieden	?	d; min; s.	Bis ca. 100 nT

Tab. 5.8 Die Quellen des Erd magnetfelds (Schmucker 1985)

Bezeichnun	g			Ursache	Entstehungsort	Verteilung an der Erdoberfläche	Größe (nT) des zeitlich konstanten Anteils	Perioden der Variationen	Anteil der Variationen am Magnetfeld
Primärer innerer Anteil	Normal- feld	Haupt- feld	Dipolfeld	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von der geoma- gnetischen Breite	$3 \times 10^4 - 5 \times 10^4$	Säkularvariatio- nen; einige 10 ³ a	10% des Hauptfelds in den letzten 100 a; 100 % in geologischen Zeiten
			Nicht-Dipol- Anteil, planetarische Anomalien	Elektrische Stromwirbel	Äußerer Erdkern	Abhängig von λ, φ; kein Zusammenhang Land- Meer	2 × 10 ⁴	10 ² -10 ³ a	Bis 10 % des Dipolfelds in den letzten 50 Jahren
		Krusten- feld	Regionaler Anteil	Gesteinsmægnetismus; induzierte und remanente Anteile	Bis Tiefe der Curie- Temperatur: 25 km-30 km	Abhängig von Krusten- struktur	Einige 100	In geologischen Zeiträumen	100% des Krustenfelds
			Lokaler Anteil	Gesteinsmagnetismus; induzierte und remanente Anteile	Nahe der Erdoberfläche	Abhängig von der Struktur der oberen Kruste	2×10 ⁴	In geologischen Zeiträumen	100 % des Krustenfelds
Primärer äu	Berer Antei	1		Stromwirbel in der hohen Atmosphäre, Ionisierung durch Strahlung der Songe	Ionosphäre, E-Schicht in 100 km Höhe	Lineare Dimension eines Erdquadranten, λ, φ, Orts- zeit, Jameszeit	?	Mittlerer Son- nentag	10 nT-100 nT
				Durch Gezeiten (Mond, Sonne) erzeugte ionos phä- rische Winde	ca. 100 km Höhe	Lineare Dimension eines Erdquadranten, Ortszeit, Jahreszeit	?	Solare und luna- re Ortszeit	1nT-10nT
				Somwirbel, Partikelstrahlung der Son-	Ionosphäre (E- and F Schicht)	λ, φ, Polarlichtzonen	?	Periode der Son- neraktivität 2/ d	in mittleren Breiten;
				ne Ringströme um die Erde	300km Einige Erdradien Höhe	Homogen	?	d	5000nT in Polarlichtzonen Bis 100nT
Sekundärer innerer Ant				Induktion in leitenden Schichten des Erdinnern	Bis 600 km Tiefe	Regional verschieden	?	d; min; s.	Bis ca. 100 nT

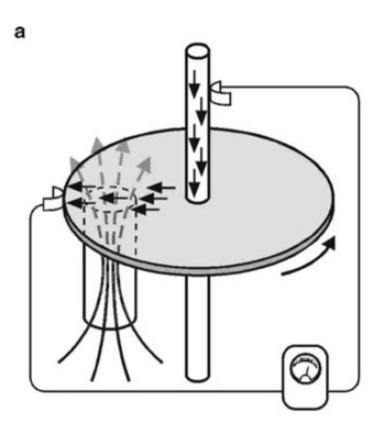


Abb. 5.8 a Prinzip des selbsterregten Geodynamos (nach © Elsasser 1958): Ein Dynamo erzeugt Strom, wenn sich die Kupferscheibe im Feld des Stabmagneten bewegt (*links*)

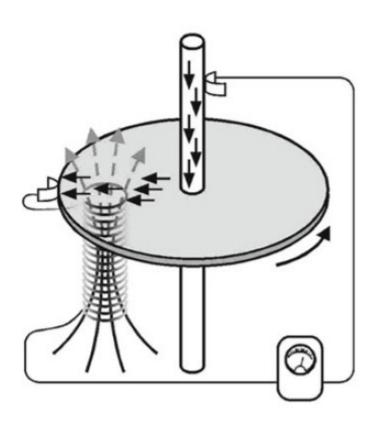
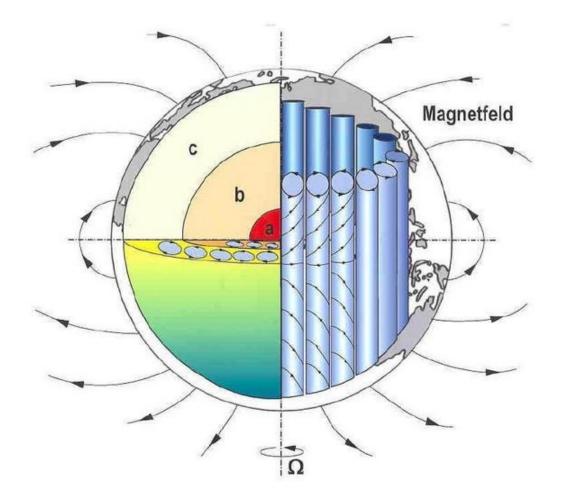
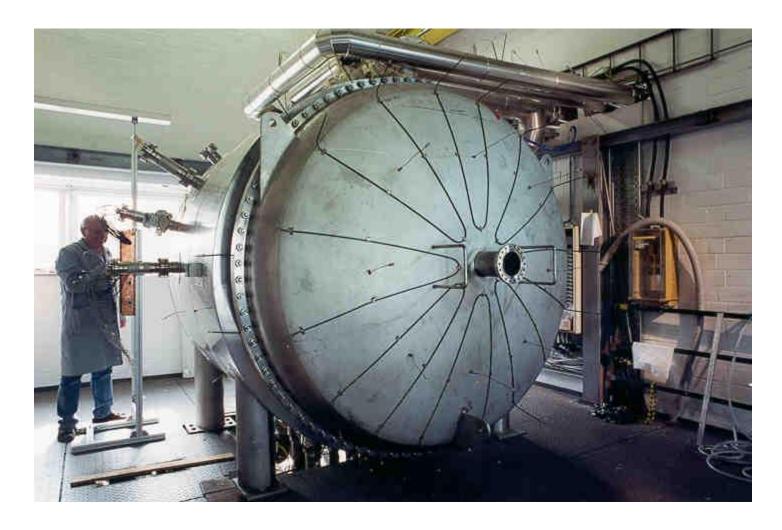



Abb. 5.8 a Prinzip des selbsterregten Geodynamos (nach © Elsasser 1958): Ein Dynamo erzeugt Strom, wenn sich die Kupferscheibe im Feld des Stabmagneten bewegt (*links*). Wird dieser durch eine Magnetspule ersetzt und der erzeugte Strom in die Spule eingespeist, so bleibt das selbsterregte Magnetfeld erhalten, solange sich die Scheibe dreht



In der linken Bildhälfte ist der innere Aufbau der Erde vereinfacht dargestellt. Über dem festen Kern (a) liegt ein flüssiger Kern (b), darüber der zähflüssige Erdmantel (c), der bis zur festen Erdkruste reicht. Sowohl im flüssigen Erdkern als auch im Erdmantel können sich aufgrund von Temperaturunterschieden walzenförmige Bewegungen ausbilden, die sich durch die zusätzlich wirkende Corioliskraft aufgrund der Drehbewegung der Erde (Ω) zu der im rechten Bildteil dargestellten schraubenförmigen Bewegung ausprägen. Diese schraubenförmige Bewegung wird im Dynamomodul, dem zentralen Baustein des Karlsruher Experiments, simuliert. Das Experiment hat gezeigt, dass sich darin ein stabiles Magnetfeld ausbildet. So funktioniert der Geodynamo, der das Magnetfeld der Erde antreibt.

Dieses Experiment im Forschungszentrum Karlsruhe dient zum Nachweis des Dynamoeffekts im Labor: Flüssiges Natrium durchströmt die insgesamt 52 Rohre innerhalb des großen Zylinders und erzeugt so ein selbsterregtes Magnetfeld.

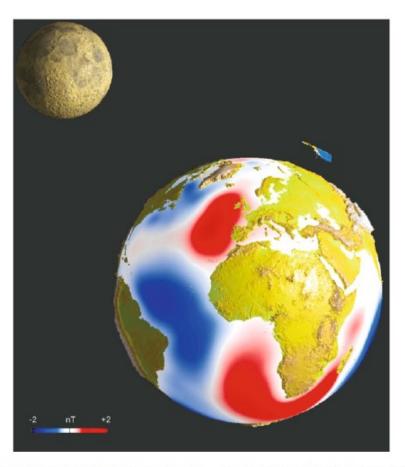


Abb. 5.18 Unten: Magnetische Signatur mariner Gezeitenströmungen in den Daten des Satelliten CHAMP; Oben: a Realteil der vom Modell TPXO.5.2c für die halbtägige lunare Haupttide M2 (Periode: 12,42 h) vorhergesagten Variation der Meeresspiegelhöhe; b Realteil der für die Haupttide M2 vorhergesagten Anomalie der magnetischen Feldstärke. Ein Vergleich mit Messdaten bedarf allerdings einer die-

sen Messdaten entsprechenden vorherigen Filterung; c Vergleich des vorhergesagten (links) mit dem beobachteten (rechts) Realteil des harmonischen Beitrags von M2 zu den Residuen der Magnetfeldstärke; d Das Leistungsspektrum der magnetischen Feldstärkeresiduen weist im Ozean eine klare Spitze für M2 auf im Gegensatz zum Kontinent (nach © Tyler et al. 2003, © Maus & Manoj 2007)

Zusammenfassung – Take-home-message

- Wie kann das Erdmagnetfeld mathematisch beschrieben werden?
- Welche zeitlichen und räumlichen Änderungen treten auf?
- Wo liegt sein Ursprung?