

Moderne Physik für Lehramt

1) Konzepte der klassischen Physik

Prof. David Hunger

Klassische Mechanik

Newton'sche Axiome

1) Trägheitsprinzip

Inertialsystem: Köper bewegen sich gleichförmig geradlinig oder ruhen, wenn keine äußere Kräfte auf sie einwirken (inertia: Trägheit)

2) Aktionsprinzip

Impulsänderung ist proportional zur einwirkenden Kraft

$$\vec{F} = \dot{\vec{p}} = m\ddot{\vec{x}}(t)$$

3) Wechselwirkungsprinzip ("actio est reactio"): Übt ein Körper A auf einen Körper B eine Kraft aus, so übt B auf A eine gleich große, entgegengesetzt gerichtete Kraft aus

$$\vec{F}_{A \to B} = -\vec{F}_{B \to A}$$

Galilei-Transformation

Zwei Beobachter in Koordinatensystemen S, S, die sich mit konstanter Relativgeschwindigkeit u zueinander bewegen, betrachten Punkt A.

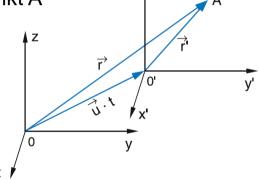
Galilei-Transformationen für Ort, Geschwindigkeit ... von Punkt A

$$r = r' + ut$$

$$v = v' + u$$

$$a = \frac{d}{dt}(v' + u) = a' \rightarrow F = F'$$

$$t = t'$$



Physik ändert sich nicht bei Wahl eines anderen Inertialsystems Achtung: Galilei-Transformationen gelten nur für $u \ll c$

21.04.2023 Prof. David Hunger Fakultät für Physik

Impulserhaltung

Aus dem 2. Newton'schen Axiom folgt: Bei Abwesenheit von Kräften ist der Impuls erhalten

$$\vec{F} = 0 \rightarrow \dot{\vec{p}} = 0$$
, $\vec{p} = const.$

System aus vielen Teilchen i hat Gesamtimpuls P

$$\vec{P} = \sum_i \vec{p}_i$$

In Abwesenheit äußerer Kräfte ist auch der Gesamtimpuls erhalten

$$\vec{P} = 0 \rightarrow \sum_{i} \vec{p}_{i} = const. = \vec{P}(t = t_{0})$$

Systeme ohne äußere Einwirkungen nennt man abgeschlossene Systeme In abgeschlossenen Systemen ist der Gesamtimpuls erhalten

Arbeit und potenzielle Energie

Definition der Arbeit entlang eines Weges

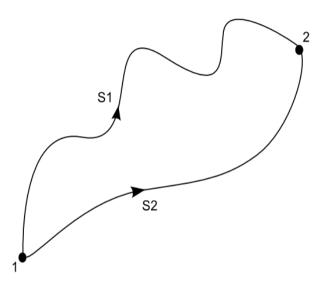
$$W = \int_{S} \vec{F}(\vec{r}) d\vec{r}$$

- Wenn die Arbeit unabhängig vom Weg ist nennt man die Kraft "konservativ"
- Bsp: Gravitationskraft, Coulombkraft
- Die Arbeit hängt dann nur noch von den Endpunkten ab

$$W = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F}(\vec{r}) d\vec{r}$$

Wenn man einen festen Bezugspunkt wählt, ergibt sich die potenzielle Energie (="Arbeitsfähigkeit")

$$E_{pot}(\vec{r}) = -W(\vec{r}_0, \vec{r}) = -\int_{\vec{r}_0}^{\vec{r}} \vec{F}(\vec{r}) d\vec{r}$$



- Es ist hilfreich, die potentielle Energie unabhängig von einem Körper zu definieren → dividiere durch Masse (Gravitation) / Ladung (Coulomb Kraft)
- Daraus folgt das zur Kraft gehörige Potential

$$V(\vec{r}) = E_{pot}/m$$
 bzw $V(\vec{r}) = E_{pot}/q$

Beispiele

$$F = -kx$$

$$V(x) = \frac{1}{2}k \ x^2$$

$$F_G(h)=mg,$$

$$V_G(h) = g h$$

Anmerkung: Bei der Coulomb & Gravitations-Kraft legt man den Bezugspunkt ins Unendliche: $\vec{r}_0 \rightarrow \infty$

Die skalare Größe V ist sehr viel einfacher als das Vektorfeld der Kraft. Daher charakterisiert man konservative Kraftfelder über ihr Potential V

Die Umkehrung der Weg-Integration ist die Gradientenbildung: man erhält damit die Kraft aus dem Potential

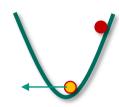
$$\vec{F}_C(\vec{r}) = -q \vec{\nabla} V(\vec{r}) = -q \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} V(\vec{r})$$

Kinetische Energie

Wenn eine Masse beschleunigt wird, ist nach dem zweiten Newton'schen Axiom eine Kraft nötig. Da die Kraft entlang des Weges der Masse wirkt, ist dazu "Beschleunigungs"- Arbeit nötig, die als kinetische Energie gespeichert wird:

$$E_{kin} = \int F dx = \int m \frac{dv}{dt} \ v \ dt = m \int v \ dv = \frac{1}{2} m v^2 = \frac{p^2}{2m}$$

Bei vielen mechanischen Prozessen wird periodisch potentielle Energie in kinetische verwandelt und umgekehrt Beispiele: Pendel, Schaukel, Federpendel, Achterbahn

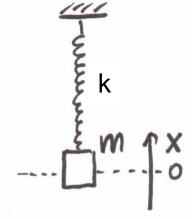


$$E = E_{pot} + E_{kin} = const.$$

Die mechanische Energie ist erhalten wenn nur konservative Kräfte wirken Achtung: Die Reibungskraft ist keine konservative Kraft

Schwingungen

Wenn eine Kraft auf eine Masse entgegengesetzt zum Weg wirkt, im einfachsten Fall proportional zum Weg, F = -kx, entsteht eine Schwingung.



Wirkt zusätzlich eine Dämpfung (z.B. durch Reibung), ergibt sich eine gedämpfte Schwingung.

Häufig ist der Reibungsterm proportional zur Geschwindigkeit:

$$F_r = -b\dot{x}$$

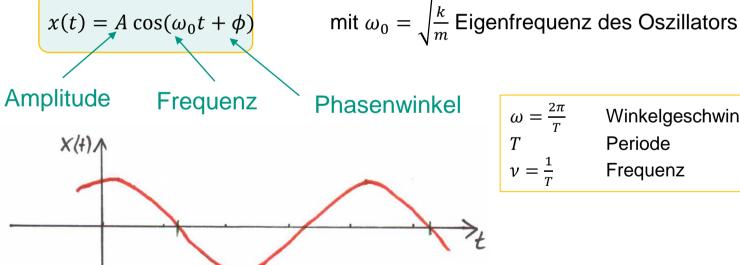
Einsetzen in die Gleichung des 2. Newtonschen Axioms: $F + F_r = m\ddot{x}$

Bewegungsgleichung der harmonischen Schwingung $m\ddot{x} + h\dot{x} + kx = 0$

Ungedämpfte Schwingung

- Keine Reibung: $b = 0 \rightarrow \ddot{x}(t) = -\frac{k}{m}x(t)$
- Suche Lösung deren zweite Ableitung das Negative von sich selbst ergibt: sin(), cos()

Lösung:



$$\omega = \frac{2\pi}{T}$$
 Winkelgeschwindigkeit
 T Periode
 $v = \frac{1}{T}$ Frequenz

Gedämpfte Schwingung

Für
$$b > 0$$

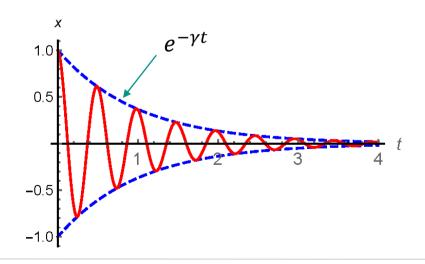
Für
$$b > 0$$
: $\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$

$$mit \gamma = b/2m$$

$$x(t) = A e^{-\gamma t} \cos(\omega t + \phi)$$
 mit $\omega^2 = \omega_0^2 - \gamma^2 > 0$

$$t \quad \omega^2 = \omega_0^2 - \gamma^2 > 0$$

Bei starker Dämpfung ($\gamma > \omega_0$) ergibt sich Keine Oszillation, sondern nach Auslenkung langsam zu Null abfallende Bewegung

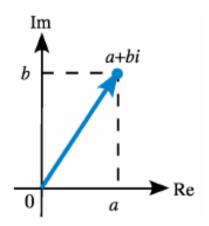


Komplexe Zahlen

- Schwingungen werden oft mit komplexen Zahlen beschrieben
 → einfachere Rechnungen
- Komplexe Zahlen bestehen aus einem Real- und einem Imaginärteil. Sie lassen sich in der komplexen Ebene veranschaulichen

$$z = a + ib$$

 i komplexe Einheit, $i = \sqrt{-1}$
 a Realteil von z : $a = Re(z)$
 b Imaginärteil von z $b = Im(z)$



Addition komplexer Zahlen

$$a, b, c, d \in \Re : (a + ib) + (c + id) = (a + c) + i(b + d)$$

Multiplikation komplexer Zahlen

$$(a + ib) \cdot (c + id) = ac + i ad + i bc + i^2bd = (ac - bd) + i(bc + bd)$$

21.04.2023

Komplexe Zahlen: Polardarstellung

- Darstellung von Zeiger mit Betrag und Phase
- Trigonometrische Funktionen und komplexe Exponentialfunktion

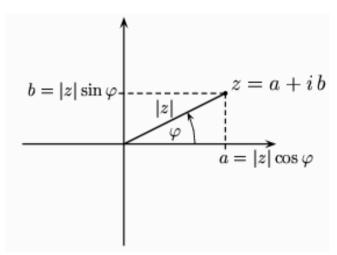
$$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$$

Damit lässt sich jede komplexe Zahl schreiben als

$$z = a + ib = |z|(\cos \varphi + i \sin \varphi) = z e^{i\varphi}$$

Euler'sche Formel

$$e^{-i\varphi} = \cos(-\varphi) + i\sin(-\varphi) = \cos(\varphi) - i\sin(\varphi)$$
$$e^{i\varphi} + e^{-i\varphi} = 2\cos\varphi$$



Komplex konjugierte Zahl $z = a + ib \rightarrow z^* = a - ib$ $z z^* = |z|^2$

• Gedämpfte Schwingung $\ddot{x} + 2\gamma\dot{x} + \omega_0^2 x = 0$

Die Lösung vieler Differentialgleichungen wird einfacher wenn man komplexwertige Lösungsfunktionen zulässt. Da Messgrößen oder Beobachtungsgrößen (="Observable") immer reellwertig sind, ist (in der klass. Physik) nur der Realteil der Lösung interessant

komplexwertiger Lösungsansatz:

$$X(t) = \exp(-i\omega t)$$

- Einsetzen: $-\omega^2 i2\gamma\omega + \omega_0^2 = 0$
- hat die beiden Lösungen $\omega_{1,2} = -i\gamma \pm \sqrt{\omega_0^2 \gamma^2}$

Die Theorie zur Lösung von Differentialgleichungen besagt, dass sich die allgemeine Lösung einer linearen Differentialgleichung der Ordnung n durch Linearkombination von n linear unabhängigen speziellen Lösungen ergibt.

Für unsere Bewegungsgleichung 2. Ordnung haben wir diese soeben gefunden:

$$X_{1,2}(t) = \exp(-i\omega_{1,2}t)$$

Allgemeine Lösung:

$$X(t) = A \exp(-i\omega_1 t) + B \exp(-i\omega_2 t)$$

Für $\omega_0 > \gamma$ ist der Wurzelausdruck reell, definiere $\omega = \sqrt{\omega_0^2 - \gamma^2}$

$$X(t) = \exp(-\gamma t)[A \exp(-i\omega t) + B \exp(i\omega t)]$$

Betrachte Realteil:
$$x(t) = Re(X(t)) = \exp(-\gamma t) (A'\cos(\omega t) + B'\sin(\omega t)) = A_0 e^{-\gamma t}\cos(\omega t + \varphi_0)$$

Wellen

- Eine Welle resultiert von der Propagation einer Schwingung im Raum durch die Kopplung benachbarter Oszillatoren
- Nach einer Periode $T = \frac{2\pi}{\omega}$ ist die Welle eine Wellenlänge $\lambda = \frac{2\pi}{k}$ gelaufen

$$k = 2\pi/\lambda$$
 Wellenzahl (= Ortsfrequenz)

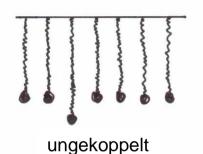
$$y(x,t) = A\cos(\omega t - kx) = Re(Ae^{i(\omega t - kx)})$$

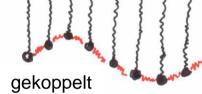
Phasengeschwindigkeit

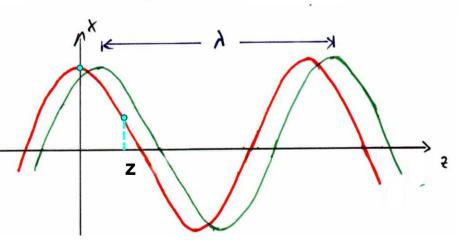
$$v_p = \frac{\lambda}{T} = \frac{\omega}{k}$$

Wellengleichung

$$\frac{\partial^2 y(x,t)}{\partial t^2} + v_p^2 \frac{\partial^2 y(x,t)}{\partial x^2} = 0$$







Wellenpakete und Dispersion

Durch Überlagerung von Wellen verschiedener Frequenzen (Fourier-Integral)

entsteht ein Wellenpaket:

$$A(t,x) = \int_0^\infty \hat{A}(\omega) \cos(\omega t - kx) \ d\omega$$

■ Die Geschwindigkeit des Wellenpakets ist die Gruppengeschwindigkeit
$$v_g = \frac{\partial \omega}{\partial k}$$

i.A. $v_g \neq v_p$

Oft hängt die Phasengeschwindigkeit von der Frequenz

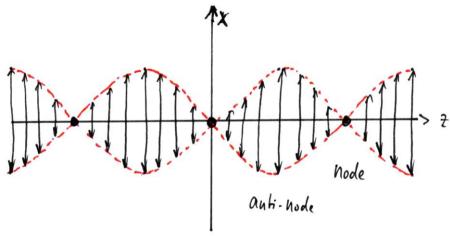
Oft hängt die Phasengeschwindigkeit von der Frequenz ab. Dann läuft das Wellenpaket auseinander → **Dispersion**

Stehende Wellen

Zwei gegenläufige Wellen mit gleicher Wellenzahl, Frequenz und Amplitude erzeugen eine stehende Welle

$$\sin(kz - \omega t) + \sin(-kz - \omega t)$$

$$= 2\cos(kz)\sin(\omega t)$$

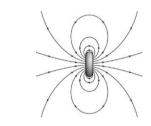


Positionen von Knoten (node) und Bauch (anti-node) bleiben fest

Grundgleichungen der Elektrodynamik: **Maxwell Gleichungen** in Vakuum:

$$\nabla E = 0$$
$$\nabla \times E = -\dot{B}$$

$$\nabla \mathbf{B} = 0$$
$$\nabla \times \mathbf{B} = \epsilon_0 \mu_0 \dot{\mathbf{E}}$$



Wellengleichung

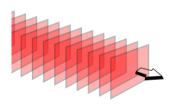
$$\nabla^2 \mathbf{E} - \frac{1}{c^2} \ddot{\mathbf{E}} = 0$$
 mit $\frac{1}{c} = \sqrt{\epsilon_0 \mu_0}$

Phasengeschwindigkeit c

19

Einfachste Lösung: Ebene Welle

$$E(\mathbf{r},t) = A e^{-i(\mathbf{k}\mathbf{r} - \omega t + \phi)}$$



Wikipedia