

4. Moleküle und Festkörper

Prof. David Hunger

Physikalisches Institut, KIT Fakultät für Physik

4.5. Elektronen im Festkörper

Elektronen im Festkörper

Elektronen sind verantwortlich für die Bindung der Gitterbausteine

- Mechanische Eigenschaften (Festigkeit, Verformbarkeit)
- Optische Eigenschaften (Reflexion und Absorption von Licht)
- ... sind Ladungsträger, bestimmen elektrische Eigenschaften
- Elektrischer Leitwert σ / spezifischer Widerstand ρ
 - → Leiter, Halbleiter, Isolatoren
- Dichte der Ladungsträger n_e
- ...sind zahlreicher als Gitterbausteine
- Sollten die thermischen Eigenschaften mitbestimmen
- Spezifische Wärmekapazität *c*_v
- **Wärmeleitwert** *κ*
- Zusamenhang mit der el. Leitfähigkeit: $\kappa \propto \sigma T$

Elektronen im Festkörper

Eigenschaften

- Fermionen mit Spin ½, Pauli Prinzip
- Anordnung in Schalen
- Kovalente / ionische Bindung
- Statistisches Verhalten durch Fermi-Dirac-Verteilung beschrieben
- Zustandsdichte bestimmt durch Welleneigenschaften

Zentrale Modelle für Elektronen im Festkörper

- Fermi-Gas freier Elektronen
- Bändermodell

Vollständige Beschreibung

Stationäre Schrödingergleichung mit periodischen Randbedingungen

$$V(\vec{r}) = V\left(\vec{r} + \vec{R}\right) \rightarrow |\psi(\vec{r})|^2 = \left|\psi\left(\vec{r} + \vec{R}\right)\right|^2$$

Bloch Wellen als Lösung

Physikalisches Institut, KIT Fakultät für Physik

Elektronen im Festkörper: Experimente

- Bestimmung des Anteils von Elektronen die an der Leitung des elektrischen Stroms beteiligt sind
- Messung der Elektronendichte mit dem Hall Effekt

$$q |\vec{v}_d \times \vec{B}| = q |\vec{E}_H|, \ U_H = |\vec{E}_H|b$$
$$I = q \ n_e \ v_d \ A, \ A = bd$$
$$\rightarrow n_e = \frac{IB}{d \ e \ U_H}$$

Beispiel Silber

- Teilchendichte Silber $n_{Ag} = 5 \times 10^{28} / m^3$
- Ladungsträgerdichte $n_e = 5 \times 10^{28} / m^3$

\rightarrow 1 Elektron / Atom

Stromleitung: Geschwindigkeit der Ladungsträger

Aus Strom und Ladungsträgerdichte folgt mittlere Geschwindigkeit

$$I = j A = -e n_e v_d A \quad \rightarrow v_d = \frac{I}{e n_e A}$$

Beispiel Kupferdraht

Radius 0.8mm, Stromstärke 1A

 $n_e = 8.5 \times 10^{28} / m^3 \rightarrow v_d = 3.5 \times 10^{-5} m / s$ sehr langsam!

Spezifischer Widerstand ρ

$$\rho = R \frac{A}{L}$$
 R Widerstand, A Querschnitt, L Länge

Spezifischer Leitwert

 $\sigma=1/\rho$

Mikroskopisches Ohm'sches Gesetz

$$\vec{j} = \sigma \cdot \vec{E}$$
 aus $I = \frac{U}{R}, U = E L$

Elektronen im Festkörper: Experimente

Elektronenbeitrags zur Wärmekapazität

Klassische Erwartung

$$U_e = \frac{3}{2} N_e k_B T \rightarrow c_v^e = \frac{3}{2} N_e k_B$$

Viel zu groß, wird experimentell nicht beobachtet!

Besseres Bild aus Messung der Hall Konstanten:

nur 1 Elektron / Atom

$$\rightarrow c_{v}^{e} = \frac{3}{2} N_{Atom} k_{B}$$

auch noch zu groß

Korrekte Vorgehensweise:

freie Elektronen als Fermi-Gas

Fermi Gas (Wiederholung)

Zahl der Zustände

$$Z(k) = 2\frac{1}{8}\frac{4\pi}{3}\vec{n}^3 = \frac{1}{3\pi^2}k^3 V$$

Energie – k-Vektor Beziehung

$$E = \frac{\hbar^2 \vec{k}^2}{2m_e} \to k^2 = \frac{2m_e}{\hbar^2} E, \quad k^3 = \left(\frac{2m}{\hbar^2} E\right)^{3/2} \to Z_e(E) = \frac{V}{3\pi^2} \left(\frac{2m}{\hbar^2} E\right)^{3/2}$$

Zustandsdichte

$$D(E) = \frac{\partial Z_e(E)}{\partial E} = \frac{V}{3\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} \frac{3}{2} \sqrt{E}$$

Besetzung der Zustände durch Fermionen: Fermi-Dirac Verteilung:

$$n_e(E,T) = D_e(E) \frac{1}{\exp\left(\frac{E-E_F}{k_BT}\right) + 1}$$

Wärmekapazität

$$c_{v} = \frac{\partial \langle E \rangle}{\partial T} = \frac{\partial}{\partial T} \int dE \ E \ D(E) f_{FD}(T, E) = \frac{3}{2} N_{e} k_{B} \left(\frac{\pi^{2}}{3} \frac{k_{B}T}{E_{F}} \right)$$

Wärmekapazität Elektronengas

- Bei üblichen Temperaturen $T \sim 300K$ ist die thermische Energie $k_B T \ll E_F$
- Nur Elektronen mit $E \sim E_F$ tragen bei

→ Ursache f
ür die vergleichsweise geringe W
ärmekapazit
ät von Metallen ist das Pauli Prinzip!

Definitionen

- Fermi Temperatur $T_F = E_F/k_B$
- Fermi Geschwindigkeit $v_f = \sqrt{2m_e E_F}/m_e$
- z.B. T = 300K, $E_F = 3eV \rightarrow v_f = 1000$ km/s
- Geschwindigkeit von Elektronen an der Fermi Kante

Materialkonstanten

	Element	$(n_{\rm e}/{\rm V})/{\rm cm}^3$	$E_{\rm F}/{ m eV}$
Al	Aluminium	$18,10 \cdot 10^{22}$	11,70
Ag	Silber	$5,86 \cdot 10^{22}$	5,50
Au	Gold	$5,90 \cdot 10^{22}$	5,53
Cu	Kupfer	$8,47 \cdot 10^{22}$	7,03
Fe	Eisen	$17,00 \cdot 10^{22}$	11,20
K	Kalium	$1,40 \cdot 10^{22}$	2,11
Li	Lithium	$4,70 \cdot 10^{22}$	4,75
Mg	Magnesium	$8,60 \cdot 10^{22}$	7,11
Mn	Mangan	$16,50 \cdot 10^{22}$	11,00
Na	Natrium	$2,65 \cdot 10^{22}$	3,24
Sn	Zinn	$14,80 \cdot 10^{22}$	10,20
Zn	Zink	$13,20 \cdot 10^{22}$	9,46

Bändermodell

Bändermodell

Atomare Niveaus spalten im Festkörper aus *N* Atomen zu Bändern erlaubter Zustände auf. Dabei spaltet jedes Niveau *N*-fach auf.

Abstand zwischen den Atomen

Beispiel Magnesium

aus 3s- und 3p- Niveaus entstehende Bänder

überlappen ->

- 8 · N Zustände, davon
- 2 · N Zustände mit Elektronen besetzt

In Bändern mit feien Zuständen sind Elektronen leicht beweglich. Elektronen aus vollständig besetzten Bändern benötigen zunächst Energie, um in ein Band mit freien Zuständen zu gelangen.

Gitterpotential

-4

-2

ò

Postion x

ż

4

Lösung: Stationäre Schrödinger Gleichung $\hat{H}\psi(\vec{r}_i) = E\psi(\vec{r}_i)$

 $\widehat{H} = \sum_{i} \frac{\widehat{p_i}^2}{2m} + \sum_{i} V(\vec{r_i}) + \sum_{i,j} V^{ee} (|\vec{r_i} - \vec{r_j}|) + \text{periodische Randbedingungen}$

Ansatz: $\psi(\vec{r}) = u_k(\vec{r}) \exp(i\vec{k}\vec{r})$ mit $u_k(\vec{r}) = u_k(\vec{r} + \vec{a})$ Bloch Theorem $\rightarrow |\psi(\vec{r})|^2 = |\psi(\vec{r}_i + \vec{a})|$ periodisch mit dem Gitter: **Bloch Funktionen**

Bändermodell – Beispiel für Bloch Funktion

https://www.spektrum.de/lexikon/physik/bandstruktur/

Bändermodell

Für kleines k ist $u(k) \approx$ konstant

ebene Welle

- Details des Potentials spielen keine große Rolle
- Elektronen sind quasi frei

Dispersionsrelation
$$\omega(k) = \frac{E(k)}{\hbar} = \frac{\hbar k^2}{2m_e}$$

Für $k \sim \frac{\pi}{a}$ an der Gernze der Brillouin Zone

Laue- bzw Bragg-Bedingung für die Elektronen erfüllt

■ → Reflexion am Gitter, stehende Wellen

$$\psi_{\pm} = \frac{A}{\sqrt{2}} \left(e^{i\pi x/a} \pm e^{-i\pi x/a} \right)$$

Bändermodell

Karlsruhe Institute of Technology

Bandstruktur

In realen (3D-) Gittern muss die Richtung angeben werden, entlang derer die Elektronen-Energie variiert

Erste Brillouin-Zone eines fcc-Gitters; die Struktur des reziproken Gitters ist bcc.

Richtungen:

- Γ: Zentrum der Brillouin-Zone
- L: Zentrum einer hexagonalen Fläche
- X: Zentrum einer quadratischen Fläche
- W: Eckpunkt
- K: Kantenmitte

Bewegung von Elektronen im Festkörper

 Dispersionsrelation ändert Elektronenbewegung im Gitter

11 —	∂ω _	$1 \partial E$	$a = \frac{\partial v}{\partial v}$	$1 \partial^2 E dk$
$\nu_g =$	∂k	ħ∂k	$u = \frac{1}{\partial t}$	$\hbar \partial k^2 dt$

Beschleunigung im elektrischen Feld &

$$dE = F \, ds = e \varepsilon \, v_g dt = \frac{e}{\hbar} \varepsilon \frac{dE}{dk} dt$$
$$\rightarrow \frac{dk}{dt} = e \varepsilon / \hbar$$
$$a = \frac{e \varepsilon}{\hbar^2} \frac{d^2 E}{dk^2} \coloneqq \frac{e \varepsilon}{m^*} \quad \text{mit } m^* = \hbar^2 / \frac{d^2 E}{dk^2}$$

effektive Masse

- Bestimmt durch Krümmung der Dispersionskurve
- Bei k = 0 ist $m^* = m = const$.
- In der Nähe von $k = \frac{\pi}{a}$: $m^* < m$, kann negativ werden
- \rightarrow Elektronenwelle wird zurückgestreut, v_g wird kleiner

Effektive Masse

Elektronen an der Bandoberkante (nahe des Brillouin-Zonen Randes) bewegen sich entgegengesetzt zur Kraftwirkung eines angelegten elektrischen Feldes scheinen positive Ladung zu haben !

→ Erklärung für den anomalen Hall-Effekt

Bändermodell: Isolatoren & Leiter

- Valenzband: das letzte besetzte Band
- Leitungsband: das erste Band mit freien Zuständen
- a) typischer Leiter: Valenzband = Leitungsband
 - → Elektronen können leicht in direkt darüber liegende Niveaus angeregt werden
- b) Leiter mit überlappendem Valenz- und Leitungsband
- c) Typischer Isolator: gefülltes Valenzband, große Bandlücke zum Leitungsband

d) **Halbleiter**: Kleine Energielücke zwischen Valenz- und Leitungsband; thermische Anregungen möglich

Elektrische Leitfähigkeit von Metallen

Beschrieben durch

klassisches "Drude-Modell" mit quantenphysikalischen Korrekturen

- Elektrische Spannung *U* an Leiter der Länge *l* erzeugt elektrische Feldstärke $\mathcal{E} = U/l$ Stromdichte $\vec{j} = \sigma \vec{\mathcal{E}}$
- Elektronen erfahren Beschleunigung $a = \frac{e\varepsilon}{m^*}$
- Streuung der Elektronen an Störstellen
 - Verunreinigungen
 - Gitterfehler
 - thermische Gitterschwingungen
- wirkt Beschleunigung entgegen

Elektrische Leitfähigkeit von Metallen

Es stellt sich eine mittlere Driftgeschwindigkeit v_D ein

- Alternativ: mittlere freie Weglänge $l = \bar{v} \tau$ \bar{v} mittlere Geschwindigkeit
- Stromdichte ergibt sich aus Ladungsträgerdichte *n_e* und Driftgeschwindigkeit

$$\vec{j} = -e \ n_e \ \vec{v}_D = n_e \ \frac{e^2 \tau}{m^*} \ \vec{E} = \sigma \ \vec{E} \quad \text{mit} \ \sigma = \frac{ne^2 \tau}{m^*}$$

Mit der Ersetzung $m^* \rightarrow m$ entspricht das der von Paul Drude 1906 angegebenen Formel

Elektrische Leitfähigkeit von Metallen

Problem: klassische Geschwindigkeit nach Boltzmannverteilung

 $\langle v \rangle \sim \sqrt{T}$ stimmt nicht mit Experiment überein

Lösung: quantenmechanisches Verhalten der Elektronen berücksichtigen

- Effektive Masse m*
- Elektronen bewegen sich mit Fermi Geschwindigkeit v_e

Beispiel Kupfer

- Leitfähigkeit $\sigma_{Cu} = 5.9 \times 10^7 / \Omega m$
- Fermi Energie $E_F = 7.1 \ eV$
- Ladungsträgerdichte $n_e = \frac{\rho N_A}{M} = 8.5 \times 10^{28} / m^3$
 - → mittlere Stoßzeit $\tau = \sigma \frac{m_e}{n e^2} = 25 fs$
 - → mittlere freie Weglänge $l = \bar{v}_e \tau = 39 nm$

Wärme- und elektrische Leitfähigkeit

- Stöße von Elektronen führen zu Wärmetransport
- empirisches Wiedemann-Franz Gesetz (1853)

$$\frac{\kappa}{\sigma} = LT \quad \text{mit } L = 2.44 \times 10^{-8} W \Omega K^{-2}$$

Beitrag der Elektronen zur Wärmeleitfähigkeit (aus Thermodynamik) bestimmt durch mittlere Geschwindigkeit und freie Weglänge (+...)

$$\kappa = \frac{1}{3} c_v^e m_e n_e l \bar{v}$$
$$\sigma = \frac{n_e e^2 \tau}{m^*}$$

$$\rightarrow \frac{\kappa}{\sigma} = \frac{c_v^e m^{*2} \bar{v}}{3e^2} \propto \frac{k_B^2 T}{e^2}$$