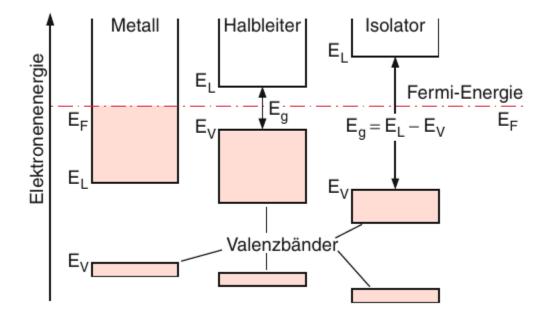
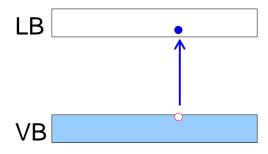


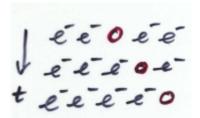
4. Moleküle und Festkörper

Prof. David Hunger


Physikalisches Institut, KIT Fakultät für Physik

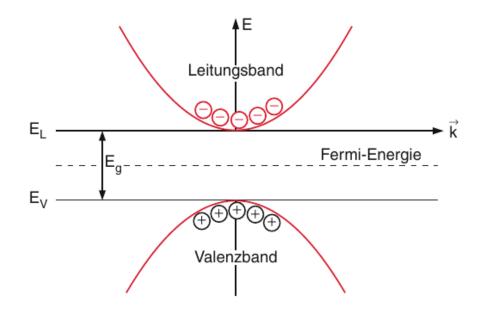
4.6. Halbleiter


- Bei Halbleitern ist die Bandlücke klein gegen k_BT
 - → thermische Anregungen ins Leitungsband möglich


Stoff	$E_{\rm g}/{\rm eV}$
Diamant	5,60
Si	1,11
Ge	0,66

thermische Anregung vom Valenzband (VB) ins Leitungsband (LB)

- → bewegliches Elektron im LB,
 Defektelektron ("Loch") im VB
- Lücke im VB wird durch andere Elektronen im VB besetzt
 - → Loch bewegt sich wie positive Ladung!


Analogie Luftblase im Wasser

Wassermoleküle bewegen sich um die Luftblase herum

→ Beschreibung als Bewegung der Luftblase

Lücke befindet sich an der Oberkante des Valenzbandes

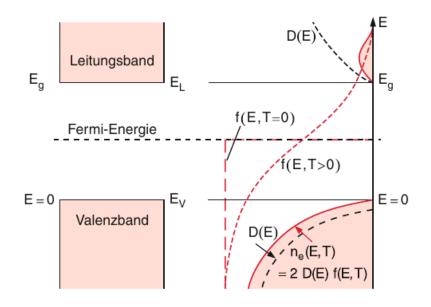
- → negative effektive Masse m* für Elektronen
 - → Loch bewegt sich wie positive Ladung mit m* > 0

→ Leitfähigkeit von Halbleitern bekommt einen zusätzlichen Term:

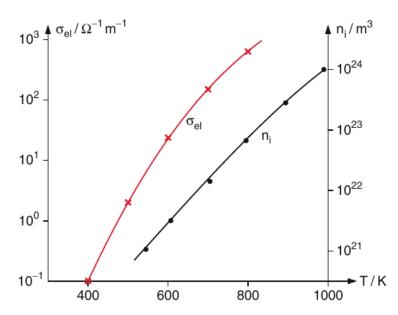
$$\sigma = \frac{n_e \, e^2 \, \tau_e}{m_e^*} + \frac{n_p \, e^2 \, \tau_p}{m_p^*}$$

durch Einführung der "Beweglichkeiten" $\mu_e=\frac{e\, \tau_e}{m_e^*}$ für Elektronen im LB und $\mu_p=\frac{e\, \tau_p}{m_p^*}$ für Löcher im VB

ergibt sich:
$$\sigma = n_e e \mu_e + n_p e \mu_p$$


Im reinen Halbleiter (auch "intrinsischer Halbleiter) entspricht jedem Elektron ein Loch, daher sind die Ladungsträgerdichten gleich.

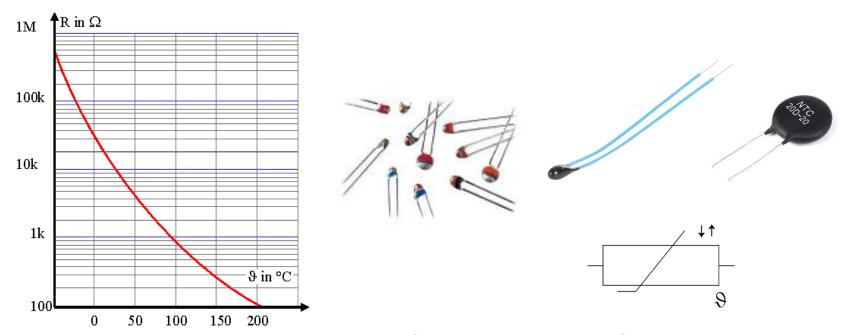
Beispiel: Silizium (Si) bei T = 300 K


Ladungsträgerdichte (in reinstem Si): $n_e=n_p=1.45\times 10^{16}$ / m³ $\mu_p=1450$ cm² / Vs $\mu_p=450$ cm² / Vs Spezifischer Widerstand: $\rho=230$ k Ω cm

Charakteristisch für Halbleiter ist, dass sie "Heißleiter" sind: ihr spezifische Leitwert steigt exponentiell mit der Temperatur,

Bandlücke mit Verteilung der temperaturabhängigen Besetzung der Zustände

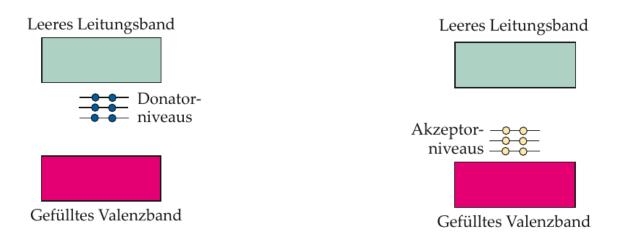
Temperaturabhängigkeit der elektrischen Leitfähigkeit und der Ladungsträgerdichte in reinem Silizium


Halbleiter: Anwendung

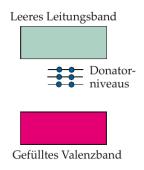
Der spezifische Widerstand von Halbleitern sinkt mit der Temperatur, sie sind sog. "Heißleiter"

Daher der Name für ein elektrisches Bauteil:

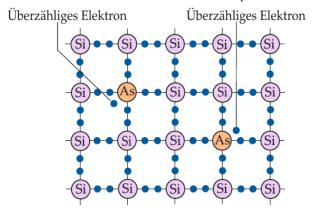
NTC = **N**egative **T**emperature **C**oefficient


Anwendung als (nicht-linearer) Temperatursensor

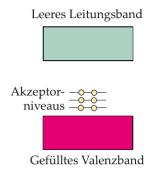
typ. Kennlinie, Bauformen und Schaltzeichen von NTC-Widerständen



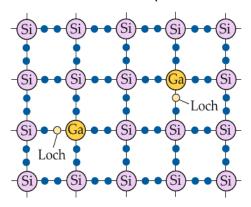
- Dotieren = gezieltes Einbringen von Fremdatomen ins Gitter
 - → Beeinflussung elektrischer Eigenschaften
- Grundlage der Halbleiterelektronik
- Dotieren erzeugt zusätzliche Niveaus in der Nähe der Bandkanten



Konzentration der Fremdatome typ. 10¹⁶ bis 10¹⁹ / cm³ sehr gering i. Vgl. zur Zahl der Si-Atome von 10²³ / cm³

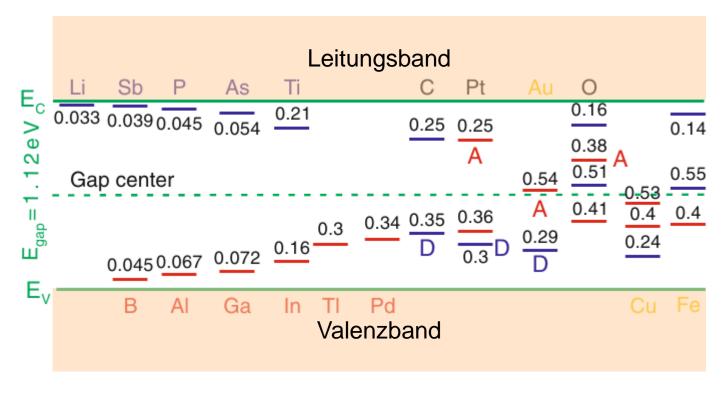


n-Dotierung mit Atomen mit 5 Valenz-Elektronen (P, As, Sb, ...)



... geben lose gebundenes Elektronen ab

→ Elektron im LB ohne Loch im VB


p-Dotierung mit Atomen mit3 Valenz-Elektronen (B, Al, Ga, ...)

... binden Valenzelektronen

→ Loch im VB ohne Elektron im LB

Zusätzliche Niveaus in dotiertem Silizium für verschiedene Fremdatome (Quelle: Hartmann)

Konzentration n_D der Donatoren oder n_A der Akzeptoren bestimmt Art der (dominierenden) Stromleitung:

 $n_{\rm D}=n_{\rm A}=0$: Intrinsischer Halbleiter, $n_{\rm e}=n_{\rm p}=:n$, Elektronen- und Löcherleitung

 $n_D \neq 0$, $n_A = 0$: n-Halbleiter, $n_e >> n_p$, Elektronenleitung

 $n_{\rm D}=0,\ n_{\rm A}\neq 0$: p-Halbleiter, $n_{\rm p}>>n_{\rm e}$, Löcherleitung

 $n_D \neq 0$, $n_A \neq 0$: gemischte Halbleiter, Elektron- und Löcherleitung

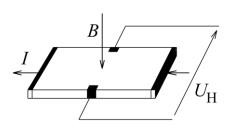
Unter Vernachlässigung der Eigenleitung ist die

Leitfähigkeit eines dotierten Halbleiters gegeben durch:

$$\sigma = e \left(\mu_e \, n_D + \mu_p n_A \right)$$

 μ_e , μ_p : Mobilität der Elektronen bzw. Löcher

 n_D , n_A : Donator-bzw. Akzeptor-Konzentration


Halbleiter: Anwendung



- i. Vgl. zu Metallen **geringe Dichte an Ladungsträgern**
 - \rightarrow bei gleicher Stromdichte j = n e v_D ist die Geschwindigkeit der Ladungsträger höher
 - → großer Hall-Effekt

Anwendung als

- "Hall-Sensor" zur Messung von Magnetfeldern
- kostengünstige Magnetsensoren für Schalter,

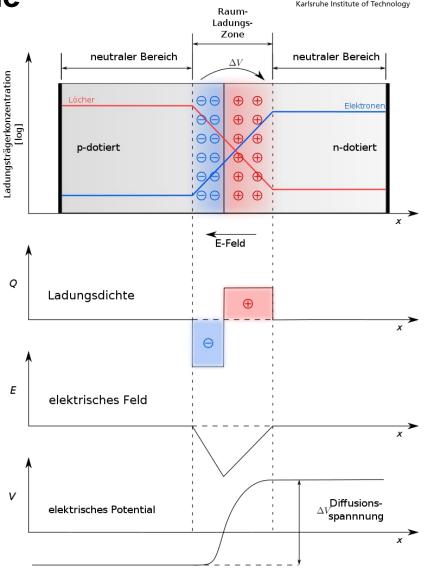
Karlsruhe Institute of Technology

Dotierte Halbleiter: der p-n-Übergang

Direkter Kontakt eines p-Halbleiters und eines n-Halbleiters

- Elektronen

 Löcher

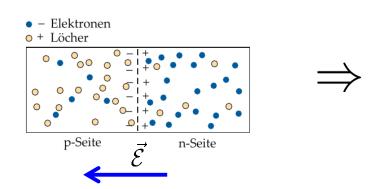

 Löcher

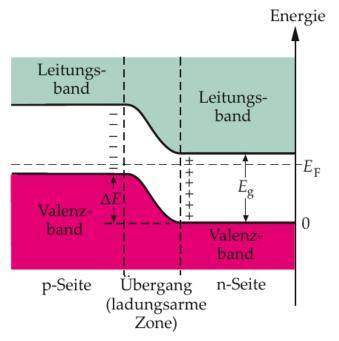
 -
- Löcher diffundieren von der p-Seite zur n-Seite Elektronen diffundieren von der n-Seite zur p-Seite Elektronen und Löcher "rekombinieren"
 - → ladungsträgerverarmte Zone am Übergang
 - effektive negative Ladung auf p-Seite und
 - positive Ladung auf n-Seite
 - → elektrisches Feld von von n→p wirkt Diffusion entgegen

p-n-Übergang: Verarmungszone

Karlsruhe Institute of Technology

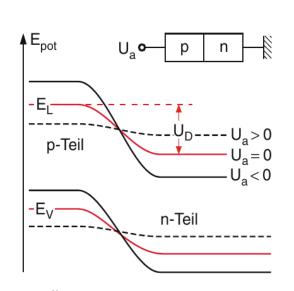
- Diffusion von Löchern (p → n) und
 Elektronen (n → p) erzeugt Verarmungszone
 → Raumladungen
- resultierendes elektrisches Feld führt zu entgegengesetztem Strom
- Breite der Raumladungsdichte hängt von Ladungsträgerdichte, also der Dotierung, ab
- Raumladungsdichte führt zu elektrischem Feld
- Durch Anlegen einer elektrischen Spannung kann die Potentialstufe verringert oder vergrößert werden.

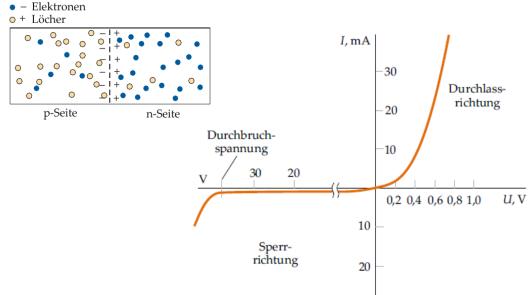



p-n-Übergang: Bandverbiegung

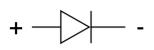
- Diffusion und Rekombination erzeugen ein elektrisches Feld
- elektrisches Potenzial der positiv geladen n-Seite höher,

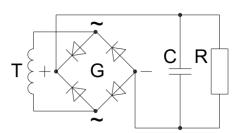
d.h. **potentielle Energie der** (negativ geladenen) **Elektronen wird abgesenkt**


Potentielle Energie von Elektronen, "Verbiegung der Bandkanten" am p-n-Übergang


Die Verarmungszone ($n_e = n_p = 0$) hat einen sehr hohen Widerstand! Bei kleinen Spannungen ist der p-n-Übergang nicht-leitend!

Anwendung p-n-Übergang: Diode


Angelegte Spannung kann Potentialdifferenz erhöhen oder erniedrigen

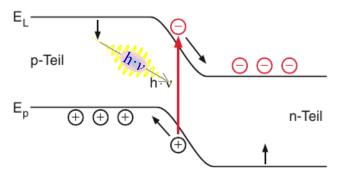


p-n-Übergang mit äußerer Spannung

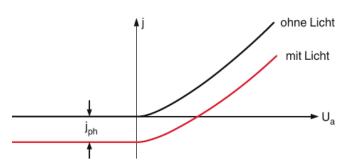
Diode

Gleichrichter

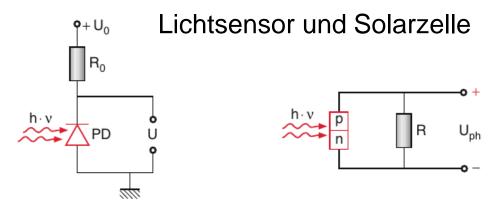
μΑ

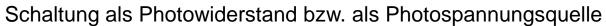

30

Anwendung p-n-Übergang: Photodiode



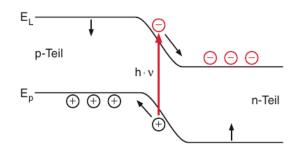
Erzeugung von Elektron-Loch-Paaren durch Anregung von Elektronen ins VB

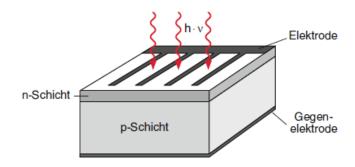

→ Photostrom durch "inneren Photoeffekt"



Erzeugung von Elektronen-Loch-Paaren durch Absorption von Photonen.

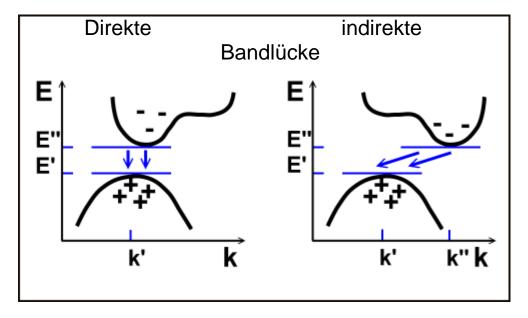
Strom-Spannungs-Charakteristik mit und ohne Beleuchtung

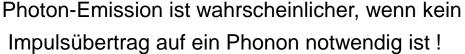



Anwendung p-n-Übergang: Solarzelle

Großflächige Anwendung des inneren Photoeffekts:

Solarzelle

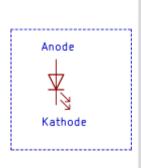


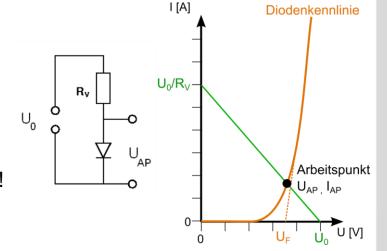


Durch Wahl eines optimalen Verbraucher-Widerstands kann die abgegebene Leistung maximiert werden.

Anwendung p-n-Übergang: Leuchtdiode

Verwendung von Halbleitern mit direkter Bandlücke für Leuchtdioden (Light Emitting Diode = LED)! Material und Dotierung bestimmen Farbe!




Si hat eine indirekte Bandlücke, ist daher ungeeignet!

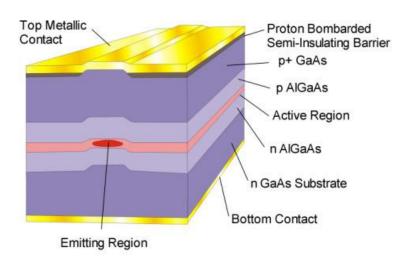
Anwendung p-n-Übergang: Leuchtdiode

Durchlassspannung der Diode steigt mit Lichtfrequenz!

Kennlinie verläuft sehr steil

→ Vorwiderstand zur Strombegrenzung

Halbleiter-Laser



Prinzip:

Leuchtdiode mit

- ladungsträgerverarmter Zone
- verspiegelten Endflächen

Struktur eines Halbeiter-Lasers

Vorteile:

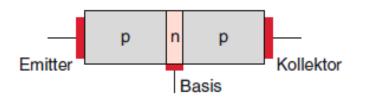
- sehr kostengünstig (~1€)
- Betrieb mit Niederspannung
- Leistungen von 10⁻⁴ 10 W pro Emitterschicht
- hohe (~50%) Energieeffizienz

Achtung: trotzdem gefährlich!

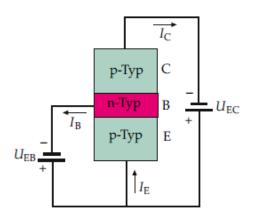
Laserschutzverordnung!

Leistungsangaben der Hersteller nicht immer vertrauenswürdig!

Transistor

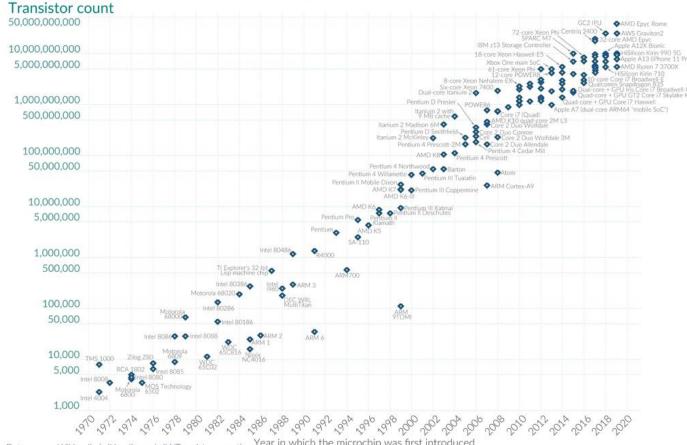


- Zwei p-n-Übergänge
- Emitter-Basis in Durchlassrichtung
- Basis-Kollektor in Sperrrichtung
- Negative Spannung an Basis erzeugt Reduktion der Ladungsdichte und kleinen Basis Strom I_B
- Dieser steuert größeren Strom vom Emitter zum Kollektor


$$I_C = \beta I_B$$
, $\beta \sim 10^1 - 10^2$

Anwendungen

- Verstärkerschaltung (Spannungsverstärkung, Stromverstärkung → Transistorradio)
- Elektronischer Schalter
 - → integrierte Halbleiterelektronik


Moor'sches Gesetz

Moore's Law: The number of transistors on microchips doubles every two years Our World

Year in which the microchip was first introduced Data source: Wikipedia (wikipedia.org/wiki/Transistor count)

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.