(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.2' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 139107, 2798] NotebookOptionsPosition[ 135011, 2724] NotebookOutlinePosition[ 135423, 2740] CellTagsIndexPosition[ 135380, 2737] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["Harmonic Oscillator and Waves", "Section", CellChangeTimes->{{3.717913449025558*^9, 3.7179134628010497`*^9}},ExpressionUUID->"e18c895d-cac8-4116-94d1-\ 608a7346f7cf"], Cell[BoxData[ RowBox[{"Damped", " ", "Harmonic", " ", "Oscillator"}]], "Input", CellChangeTimes->{{3.7179134646200438`*^9, 3.7179134702247105`*^9}},ExpressionUUID->"02b1d609-1284-4a66-88d3-\ 1ba85420520d"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"a", " ", "=", " ", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "\[Gamma]"}], " ", "t"}], "]"}], RowBox[{"Cos", "[", RowBox[{"\[Omega]", " ", "t"}], "]"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Env", " ", "=", " ", RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "\[Gamma]"}], " ", "t"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Env", "/.", RowBox[{"\[Gamma]", "\[Rule]", " ", "1"}]}], ",", RowBox[{ RowBox[{"-", "Env"}], "/.", RowBox[{"\[Gamma]", "\[Rule]", " ", "1"}]}], ",", RowBox[{ RowBox[{"a", "/.", RowBox[{"\[Gamma]", "\[Rule]", " ", "1"}]}], "/.", RowBox[{"\[Omega]", "\[Rule]", " ", RowBox[{"40", "/", "\[Pi]"}]}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "4"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", " ", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"Blue", ",", "Dashed"}], "}"}], ",", RowBox[{"{", RowBox[{"Blue", ",", "Dashed"}], "}"}], ",", "Red"}], "}"}]}], ",", RowBox[{"AxesLabel", "\[Rule]", " ", RowBox[{"{", RowBox[{"t", ",", "x"}], "}"}]}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"{", " ", RowBox[{"Medium", ",", "Black"}], "}"}]}]}], "]"}]}], "Input", CellChangeTimes->{{3.717912521123502*^9, 3.7179127151609154`*^9}, { 3.7179127515953436`*^9, 3.717912860595518*^9}, {3.7179129462120447`*^9, 3.71791299585056*^9}, {3.717913037747285*^9, 3.7179130647460585`*^9}}, CellLabel->"In[2]:=",ExpressionUUID->"34981a1a-bc48-4b7c-a6ed-43b09aebf553"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" 1:eJwVjnk41HkAh5Fb/BzFTjKeCZWjtCUlaz/fLora3SalHsLqQrXl2CcqaTwG JdLM1FrkHMpKEwa7jrbNLEvOEEq0kjAYFSZHM9v+8T7vn+/L8DvLPK6koKCw 9wv/2/X4cNvjkZ+/vXDZpkMul0B5+7Jz/TR3iG2t+VPTEmzISE4roR1DXYt1 6phYAremruI7tFDskDvNve2SwOOYtJpDi8a5iyo/ygQSvLKN3Z5A48HB23Ra 5CtB5tLvY67R+FjjFX8yWzQBlnrJqqs0ITJx8KP/rXEcOpwlmHwvwmazxowg azG05CwvF3oLwC800/hqBBb7JoZr4jvAeTbhfMn+Hc43OyB5qgcBhDj2uL+F kVCvT1GxH5WGx89ml71B2cD2xpZvBhCmWiMyow3gSeAd48Njg/CZpxNL/mtM r3SiCs+8Q5PVh6TK2j4ozRboGluMQrz/U0vkzl7Yy33L9j8Yg6qdsYSiv0Bj tF1zrZUExQurF5ytumGaJJ7Nn5hEuLZ+jo39c4il/X2d6z5gvePOCN24DvBH Kxt0Ej8iuFFtgfXiGXRM7koGB6cwKpX2fzrYhusBpScyzWfwvOFqZK5GK2ZI waB/pBTBL+JiS8OaELpeJDSs+QQnWwP/EMen6H8gim9jzCG3+kz7Ifk/mA/s SLW8MI+oHgbLc74W1lvVZCcqF6DSY1h3E3/DJZtxsshIBnpCxruV0TU4b+Kz 4l8vOeqitBKfqz6BzdgBra69CmTW3FTTpfAxDKhJddGcAonNZfmvu/sIyn+m CszSFEm5QchksnsVTtlV9mi4KRFf51S+RKkCBbv9Mh/NKJG8EzER/uJyTIuX 6Q7dXkTOD9UpNtHLULrfZRFvhzJZcs8gyZspROQudoZwSJl0cNli/9piMF65 duewVci4QrdWtE8RtmyK5tHWq5JQB9qh/EkBvOgts4rtqsTCCNrtMYWYbkgY OMdSI57VnNn7JgVIVvYOZZqrE9e8gLxZzXwY9JVmK4nUSUD6pqGlVnehEsFy dwjSIGmjF7dY7s6FQr63YEBfkyROXVmdVJCD4BRBgv4TTVL/km9doZONaus4 db2ftMjGoqwWz5RM6LkG20TpLCZh0xuS1grT0bumtT28ajFJOXhfT98uDQ/T YT7orU18Y01CU7RTcERgr2ci0yZuR2XZ5cuScYWdxer9TYe4miz3uLnqNgqH TVJ19lCk/MzpWZcLPMTdYfv2fUeRN7KyTsMQHo4xxy0e7KOIUX3W5uFTPCyv qnq414MijyafJnKO8HDthmftdT+KuDEFR1W28uBv/+t7zXCKvKpOG/VT52FF 9JJdankUucVku0uTuZBtvqTddY8i7NFm5lIOFz3jb57lFVDk8/h45cZ4LpI8 So44F1Hkh1UuTyMiuJBbMUPYVRQxziiptfLjorftRvqidopExnSFSK25+D1G erS9kyKtjk4VjhZc8Bx9LHO6KUIPU/WOonPhlrtWuK2PIl97BFUY6nFREdZU zxqhyOU/wgWeMxzcXrPxxr4xikzyG+qLJRwEDaS5MyQUYbgObFk8wsHqPaf7 H0996fUup9e+5EBZsYOfJKVICpWWuLKTg9eljoG+c1/+4lKYV5s5qArMsV33 mSK6DJeAiToOfjHVmpbLKSKTtbYd+IuD/wDtSEqR "]]}, Annotation[#, "Charting`Private`Tag$17431#1"]& ], TagBox[ {RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.], Dashing[{Small, Small}], LineBox[CompressedData[" 1:eJwB4QQe+yFib1JlAgAAAE0AAAACAAAASmXo0cDpdT56fizU///vvwRDGnDf GVQ/6y8rpPT1778zn5icsxlkP8fPK5vs6++/S83Xsp0ZdD9E/z365dfvv1dk 972SGYQ/cHsFYf6v77/dL4dDjRmUPzleH/XEYO+/oBVPhooZpD8tXItnosTu v4EIsyeJGbQ/oD9W82iV7b9YWaGv8PHEPzgjzJ9xK+u/C/+BXEcezz8/pK0j CRjpvyVR7ujDi9Q/ktLuRnw25793zjk/mPTZP2lAQDvZVOW/F7QR3gEB3z+7 FmVvorbjv7biQ8zPPOI/eAbDxCMZ4r/Cap0bWezkP1/7HkAppOC/9SY9D61t 5z/NKvKQu8bevwL5qxAbJeo/61P4z39F3L82/2C2U67sPwY0G+8PHtq/zIQ0 zsYq7z+y/Cj8RirYvx+Q6/mp7vA/eQ0Soyw21r/r99/e1TDyPzI7RX0QiNS/ pOq7yg6O8z9yzAf8gdrSvw4dp+/k5PQ/6vf33/hW0b+MabVmoCT2P9bKiX+l CdC/9kCr5Gh/9z9y2oiHtXjNv3QyxLQWw/g/PS8TaHM7y7/frsSL0SH6P6W9 bdNY/8i/+2rUmyl6+z+C2SGBW/vGvytBB/5mu/w/BdkWx5E/xb9HoiFnsRf+ Px6Nn+cmhMO/dx1fIuFc/z/HgguO1gbCvyzsVQvXTQBA+SQfCketwL8TD/AI xPoAQIelgWgwp76/BL+bryOcAUC3E3PwmFS8v2s0u9kJSwJAYEabpO8Cur+r SWKgvvYCQKZmhn1o67e/9esaEOaWA0B35scBzR62v7VTRwOURARAFKgTkF5S tL9/SIWftOYEQNSThetoxrK/Id1K2KOFBUDtANgLhF+xvzo3hJQZMgZAdDkZ WKnwr79cHs/5AdMGQCUXPw3Thq2/9cqN4nCBB0BbvZL5rB2rv5gEXnRSJAhA SqZppvkKqb8T3rWiAsQIQGmeN+YVKqe/BX2BVDlxCUCc6ns6KUmlvwCpXq/i EgpAjvSAKJCro79ymq+NEsIKQMnbpCu6DqK/vSuICBFuC0A1saHPW5qgvxFK ciyCDgxAePUzkC60nr/cLdDTebwMQJpWrBESNJy/sJ4/JOReDUBghx10mg2a v12vNhEd/g1AS2P+orcamL+AhaGB3KoOQEodHFeRJ5a/regdmw5MD0C3bWz5 R3qUv4idhWDeTg9A4/621RZzlL9kUu0lrlEPQBfJoTjoa5S/HLy8sE1XD0C+ 8MuOkl2Uv4qPW8aMYg9AS1KvYwVBlL9oNpnxCnkPQN29nOpiCJS/IoQUSAem D0CVUoVU95iTv/44fA3XqA9AherOUhWSk7/Z7ePSpqsPQP3t7bs1i5O/kFez XUaxD0BQJ0fLfX2Tv/8qUnOFvA9AG5+zxipik7/c0Y+eA9MPQH+G13P3K5O/ uIb3Y9PVD0DQOz26OyWTv5Q7Xymj2A9AHngGXoIek79LpS60Qt4PQDFXcboW EZO/unjNyYHpD0B+uXmvW/aSv5YtNY9R7A9A8KTKybLvkr9x4pxUIe8PQCFK 4joM6ZK/KExs38D0D0B/3BwextuSvwQB1KSQ9w9Amg+cjibVkr/gtTtqYPoP QBuImlKJzpK/vGqjLzD9D0AQIUdp7seSv5cfC/X//w9A/v7Q0VXBkr+JLHER "]]}, Annotation[#, "Charting`Private`Tag$17431#2"]& ], TagBox[ {RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwUV3c81e8Xx3WLSEYJoZJUkoQklfMpNIgoCkVC+CYRKsrMrEj23iOR7do8 9p7XXtee2Xv73d9f93Ve5zzn/T7vc577ec5pbePHr6koKCi68BQU//+VfT3Z Ujz1QdLSUKBtf38eqKU4TAbYlcGi98bx1ZV5EAkPCMlg14XLYwE18xPzMMrJ a/+J7x1EV97dWuyaB7mGzvRQdnNoTI7v2K2aB143rtj9k5bAmyGXcIwwDzuy Ov6v+GzgCVUK6UbEPEw7tpW/8rOHXtVD26bf5uGZ7nqhF7sj8BYwxxSazEO5 FEd2WYgzrNoVBnM/nQehM7dSV05+gwtRlCUB1+eBZvhr1FO+n3DJKSt8dGsO 8gaJDWXKv2BOgRhb0DUHJoq6si/8POEEQdk0L3MO+i+7SLmz+4CL6nP+q/pz 4BPOVnz2uS9o8exD7q05kD2ScLMoxA+aFDKM3zPPQdZc/dX5k4FwUl3d3z1r Ft5qaqa7vAqC+m03902nWeBpnBc8FR0MbLrJgX+ezMLPJObzSnxhoFj+nGZi agZkuGJipvTDofS7mIh1+gzYVAYxlihHgL3DIu4/yxkQFRNwV/OLhGt/uK8o U81AxLFHzt/ZY6DyvzJqCsp/8KXBv/xpXgyEc+7t1RRMw1OnQaozz2Phjhzp DNOnaaBffW+bHxIH/NNnFAQmpsCizcdi5uQf0ItuFxXKmgQl7543CnzJ8JT2 3ozV0XEQkDvzh6MqGbqPuBJK88aABvd2Ylw/BXSv7UaMvByDl7l7aUg5FRZz N4Ob40bh2IVfgqp+aaCevSrNcH4E7Gkyzn1jz4SfPCoSS9sDwH/P0zXdJBO2 xdBPPbYBIDoZT/VWZUJ4RpYZvwgJeHECiYIfCbCu6nlzSqcPKndjBNuIWRCU zxeIZXYB/bLf1ZNuuZBt49htdKoFAvo/SxH2isAwob063DEIbnOqxZBUENQ9 WTGPfOAM0+rX8DRJCCxsVaZNKkwQ94ylTtKlYvjJJOkvrBmJjP8TO0vRVwxH DQba4+uyEbNuSnyseCmQau8HJ3nVIj0HbjUJ3VKQHonMkX1ej/Kj3GmbPEpB URx6A081It0hwzcb46WwdPbfkEFzMyJonheQ8y0DgSleUX6JNqSqFpmysFgO 7pn8gty/e9B8r/KhKI4KMPgJp29o9CJnTZrXT6QqwPSq4vBppj6UoWPMkeVT ARpfFx/xmvYjhne3nL5cq4TAb84Oq3SDKHZhYUBAqxJssfPZkRqD6KZZjATJ tRIkN9L86ZMH0RsLugWspxJe3xRcp5cbQhVfu9UPWFdBv7O4l9SHYfQC707I jq0Cpd6HM8YFw2jJBWP8r7EKnptd9ZegGkGn3H9X1J2sBm6tUueQbyPIyv+D kGdpNVw9Xjov4jKKWDgu/LjzrxrCJcOkl0tHUUJI39gySw3wCvwiiu2Oos5I qeCnr2vgsqfHFzAaQ8J/mQ5w0tTCP1vnLYYb46hGsEKrQagWfGiuqf1+M460 0izybdRqwaBMzSA1YBy5Zw2YDCXUAvPOxxb6hXHEe927zqu1Ft5Pj/14wT6B 8vLv8knv1MLZSzXZx25PoMnipN44+TpI88x6VPRjAtlKvRJT/VgHYlNFqwnJ E4i18qgnbXgdXGSSst9umkBSdV/uvl2oA49nJZNlhydRj/zlSC72etAOXum6 zj+JTJqHtxtv14PqMnPnEZlJFNb+IO2Kdz1wbnxS6v4wia6q7tKN5NdDriVV Qd2PSVTfk6rnM1oPh0rmGDkjJpG2hm6JzOEG4GmQoatNn0SbA8c51682gMh3 Xvv2skn0S7vuY7xmA5xWStKRbJ1EfGM2LWouDeCQsV5EPTSJCvWFBehSG2DP dy/3/OwkUp4ecy7oaoAnwW5+CeuT6N/bwCEjykZ4PcyX9p1iCn2df3jzJH8j JLKv2dUcnELsphT+zY8bIWA6yV//8BRKXclYtP/SCH7INPI10xS690n/oUhM I6hOFOqWs0wh0ibH79H6RrjHhpU6Hp1C5laNlH6rjUD/rDTzN9lPt2//4h53 EwhL4ZUEyecD/numKXC3CQJ6ma4Kk/PztgloMb1rAl3Plyf/kvHTJKm013yb QCUs6kUomZ/kn06d3sImMDA5oHRwYxLVsSS9Lh5rAgFaWot/5PoEoCSDeKAZ 2qlUdOWGJ5HpSqJoBUcznJcMQufbJ1HuHz9CtmAzhN18LetUOYkoXtqLJdxp Bir+1V7trEl09+jb7JCnzbARwKhdFjOJ3Gqeinu8aYbF1a7BeM9J1GpzO9fe phkOZ4aYHrOeRByiAhLmXs3gdy3+Hp3+JNKaYs3Xi2uGGvtjcW6PJtHsk5kC ucZmeDD71OEG5yQSpe28JTncDEy04ZtGFJPoc1FJkdBaMzAWVU1cHZlABy/4 Fx/jboHnaVUUnjETSIFkf5tGuAWUnNVrLjhMIB/vt6VbMi3woZIoraM1gU7v 3S4fMGqBlvrnb8tZJ5BBhoAM0b4FCLmyKkvz4yjZ4HhluW8LqD3WetNQNY5u tM5U/SlsgTbuHN0As3GkEu9fZ3aYCCMfWDKH88dQiMbXh3qnicBRUejZ830M DTMbNaheJUJPsdShENUxZGx9p+mWBhHUj+EVfiyMom+PZ4kHk4igoDh/6wfz KCrcudMT/LAVJq8Eb5TxDCPq9EvPf2q1wtPggZW7g0NIVp+tz868FaZb+4y7 QoZQZ8ts/+uQVsj8mr18nWUILcYFDF2eaYXyo0TlvekBdFZpbrLsRxsMLdMm TJzvRRy29yT0I9ugpfxDxrBVD2JMivhxKLsNbEvC03WbutEWzRNBpeE2YDnp c1zUpAs1F2ebkcTbgU507q99VDv6LGS/tzHWDg6qFp+P/21CjUeOHhXEOqHM 6cHv26RkVHbL6HWLSifIm6/9mO2PRzmGlVnmhp3AVCs62jkQhaKrLNTy/TpB 7wdzt03qD2Rh2x92f7YTeBT2bIMaIoBnPu6CTlAXvBq7yGzuh+BT43UIWOmG xBrXhkvBRGAQJIzV0PTAovkTnXLBVohxF3Lb5uyBE+UpxMriVmh5eK5bU6YH foYWPJsbaIOLdUfNzvr1AM5YK3KSthNK+X+xP0vogcFAu7Zdj05Q/U5X7FrU A332m+rY0S5wekB1eGa8Byr5bAOEjnfDQNV8XPq1Xnj/TW1jG98LH88Zyo/K 9UKKnf12jlUv0LuMLx/T6gWmhWUVo8VeuH63H7N07YWzjpfLotv6wLu8tge6 e0HjdZZPrD0J+Hnv2r+f7YVYVzr9zxMkKHYoORdN2Qd+3q317HIDMHsnx/wA fx/cc+HVI+IH4V5JLEPD5z5gOYGvIuQMAunUacLezz74keU9/214EMztQp4L RfcBl1kf6QrdEESCd7x3XR8YcAs2rKoOgXg4w6OKgT5wt6x/wWAzBI1731bX lvtgbtyobTlyCLYL7e6oc/ZDYVeY9cnxIfDi2pn8IdQPE1fej2gfGIbz1p88 CqX7waZoINDo7DCo3HzXd8qoHxrDo6TaXg7DTPDU18f2/XCFwM0o+GUYvm7r XnD07QdzDY8BWd9hSMl7/nGisB9oQpm4aiuG4S5HJyc7sR9quwtpL/YNQ5/l 4zLZ8X74Leu1Jrc4DKbdDf9ZbfVDpbTHUwH8CNBef8CYzEACN3qNtLrjIxAR UJ41wEMCG5O70RcujIDYBmgwXSMBHbtwv8z1Eah/lo+TkiMB188g3lP3R0An WyzB/CUJGFccn+SojMAWa7pinBkJJOw/qjJoj8Cvj5fWO11IkJlkIMZjNAJ8 HfGhtCEkKOEuoF75OAKFV3mlb6SS4Ocj/nkH2xFQ9g2ffltOgt0NwlWi8whM r3B4hnWR80kECQy4jYCdst+15hkSrDiI30z0HIHjmUwkSsoBkLiPHxLzHYEX btvKo6wDgA4M6MT6j0CU7lhdpcAAfH51hzk0YAQmbjbd+XNnAJJelnZzk22B Y7m5P1QH4MHz02UX/UbAdDZK6N27AWAq5F8q9xqB7Aq334qOA7DW9D32n/sI 7IR+5BYJGoDBlBixSJcRuPNRy/dY6gB8UNVjnyDzd1WQpd+oGIC7XRx9ReT6 GvhEHXp6B0AkSeIc/9sRYN7n2ipYHIB4BYlCfq0R+PvPIacJNwjE6aefSx+P QGPnxnIxwyAkPX+lvCw1AotlRpfT2QeBT81FHYmQ+xHyLM7n8iBcFFaNvXJk BNRc64ecJAaBTfWCU9/WMFiZ3+b6JDMI0vipyotjw1Dy8KKP2vNB0DF5kl5C GIZR8YgmWb1BkN2JzjkcMgwHzh6ju/l+EFzx8d009sPwcHfPnttlELwVHM+y 3RuGd1NmhUe8BuHwRzY94fPD4Nk+uUEROggp29IzB2mGoSOJaDySPgg+2p2T i2VD8EozTiOeNAicF1UFeC4NgaPsicDAqUG44NTv/JF6COLEfrV9XxmEd90P XKN6BmGG4bOc0aEhELl677KnwyB8RPLXhcXI5wYZJz78GgC3U6tHC9yHgKJ+ 05b5dh8k079RTAoYAmdnCf7fjb3QskH6ERZNxuV49cxCvRdYW6qp7HOHgNvM OXf9bQ9E2ocsyIwNwclLZyIdbboga1iqvunmMDjW+7gvvmiDjvv2i+7kOq00 ZH1i21thLbmI9eHjYbh6OkPovnwrXPty/VW1/jBw+edecbhOhByWy2vFXsOQ x3dwYYP8Hc+V5jiVPjkMSWf5pF33KqEgbsHMx4c8d+d0K+dcI6GPXjDwcfgI PBB7eI2uKhB2TA2LGBNGQH/XvTDI7hfcgnEadzQCRlYubLerX6Kizt5Qp+kR iFaPFWl+HI0QTVXVR2wU1A6Y0pl+y0eD76hnReVGQfe/wgLn7EJE0X6beVll FBpWJ2NxwwhhkQUvjA1HQTNnxLX5WCkqvp6+qO83ClEzSRuEu5Wo9E3oCbWZ UTh9jva6klgjypgyNNRcGwXuM+7y3GxNKMZAIl+HYgyMRURfG603ISe9TvV3 R8eA57Uun1BnM7qvzRTkcHMMaLXsb521IaLrQwNTrnfHID3ZfM5wlIj4tZKv /1QcA4uwoHbpB62IXlOuO0B3DCIe71T5M7ShJjUntmS3MfiwZR9zxaUdFXc9 McjwGwPdqcs5FkPtKPUZT05OxBiYvrGquCDRgbxU0LOyzDEI0K8vzB7vQE+V Nv26+sag5ocHBZ1AF7rXXDXePz4G3w1n1s9bdiHxR35iIwtjcD2akOtR3oXY 5UU6ZqnHweg0n8iFp92o777RMdylcfjVYZZ8SbcHNVTdeE1zbRyssqN7hKN7 UNHdQ4TDt8fhmUvyEf3BHhQu/VuZTWUcdsI915VUetGvsg8xXC/H4dRtmT84 915kd0d6hee/ceiuzXjVU9qLtLEh70vW47B5efP63Pk+9ASljAi7jIOu/XOl c2p9SFrSRkTccxyUWf5oWrv0obM3T7TeiSXzCaSOsiT1Idb8KZ77KeOwtzBa w3mwHx2QyDGVzx2HwzOadR2X+tHkNRVm1QYyn6PZ/t8/9KPurDPaGp3jYOZ0 /9FXv35Ue3UpTXtoHOwPteW6EfpRXmYxpcE/cv0NtJx/iP0oUcRDyWh1HL7b jnR3zPajkHSNSNP9cVByDPp47CAJuV0RWPxEOwFNgiE+utwkZJ26hVmzTEAN i9VqmQgJvbtc8+srF9lvOmopco+EXib7D7qcmwD9HMfTGaokpHhJT8j9ygSk ntg7JGVAQrf/itp53ZiAP2qNZiMfSEj4Iq7ZX2YCBn+J5/jYk9CZhJaToY8m YBsEnjz7QUJHL0QYR6lNQO1//KSL3iREHf8O/dYh+4fOM7EEktAq360jSUYT cLjCrPRwKAlJDt+p+m4xAQwvo/8Jh5OQc+h9WwOHCaD1Vbc8TrYbVRWu3f05 AQ5OKSsFISTEelR5/kzgBKzOk46cDSAhzSa135QxE0AyZoxT8iShuO8vXw4k T8DAwPF8aVcSmpN5fbwwdwIU/ol8obAmITFKw6ag8glgb6+RcDEmIZsCExeL pgko/8z9sfclCVV++ghPeyYgNoi+ZV+ehBhErNZFxiYgSDeHdf06CT2bs09h WpiAjBfY9fIzJBTxx0V/fmsC3vobKr2hI6FJXfeTDfhJuP1MJWxmoR9Z9AZ4 uJ6YhI2F/355k/tZ7Bd2T49vEmwylE2QTz+ieRyzL3VlEvqEyzbb3/ejwOoU 4/27k1CXc4al9Ww/GnYgnOtXmoQAwkGq0p0+xA/5A3kvJkFOy+nZ35Y+lEeo fPTRdBJyzkh8cvrQh6je1x9Utp4E1fWsbGvpPiQrQERXXCdBPctC1pG8r/dG 9V+eDZ0E72C1subYXrTjsXJEt2YSBkzX/Heye5C03FbV7bZJOL6HHd351IPc DlDYnRyYhB9S+a1XxXoQlzXdQs/KJBQ/91QxSepGkm94mpVOTYE1+dWR5tKF bKUVf8GnKfAv/IfEFttR9b7Kfa6vU1D5Z6dj0r8dMeY/p9h2m4LMrDszt2+1 o4gr+iZZUVNwKjtF/6BjGyrmtlG81DgFS2dd+XKoWhHVZiLjibPTEHBM11HN vwmdaLizDJenIW/eL12+qRGJRna3616fhlzK/IvV+Eb0+sHB4GT5aSiUfPzU 5V09qg7UPnvn4zRwhmpPZwrVIA8Jdon/qqZhnqGfxONYijitnHWy//sHKvo9 FJMXo9FVRa67fWb/YMUuRCXDIhwp8Gaep7T5B/yPR9RngwOQbf3QrKzXP9Aw f7GIdTihYc5bFqS8f9DAfK7q871f8Kdw2Q1PPwO/zavPhuumgdi+VtaT5Bl4 eSXjmSF3BTyUL/4qkzMD1Sc69nFtFaATfPLRtdIZ8GAWsGlzqYRf10gTHB0z wFXlo7o6VQVTxs/Zh3dnoHGaovC8fy1QFOWNtR6chfL1SO33t+qAlZ4jvYJp FjgD9CXihurgTnyX7J+zs3B57/P7tDMNEDKoYmUiPwuR/Qq8r9ybIF2QcF/7 2Sxgs0oFDEzNUG119Jjyq1lINXdYvq3eDKtsrUnXPszCJ2V7J7apZlBQUhzY C5kFN79nRac3WkA3PCVxIW4WdHY67paJE+HLLIPFcOosFJs473NZECH+WwNj ZfksNDfSpS4tEYGyVPaO+8ws3K6UyqrqagU2xgQG27VZ4KvgbBpkaANBTdpe E4o5GHZxKAyRagP1rSoz5aNzoPXiadhyfBuY3D+H3eWeg9WM2/Tfu9vAxc+Z Xvz8HDwljNzNo2mHTGGZ2BM356DlrwH7oHY71NrFvD98dw7K3r+ZaHFvh8FG nOT+ozkQobKdU8luh8OGpR3DOnOwpIY/znCgA3hzT0e3Gc3B9xyui3CxAyQO 2htXfpoDnqJ4jR2FDtCLBpqEH3Ngan6EhtWrA6wWw9qCfefglI60kElaB3jD XoR7+BzUqsR2KjV1QHFvwfX3GXNgNU17KP5AJ3Rc4DygUzgHV8NccCdOdcLM py9E5ao5aIs5pcYs3gnsRyUMxXvnwDahbOuHTicIaQde4x+bg+D3J8wOf+qE u6kbOM75OfiRwR7B9K0TXuw9az68OQffLu88DgjsBNOH2SH7VPMgHOJhHhnf Ca5BrP8t0s9DhjkP/lJWJ4RPfrg6wjoPJ1585LxR2glZYu2U7afmgY09daqu vhPqHUUbK/nnwebi3YyB9k6QOFJH5Xl1HuhuiX4+ROqE+MBX155j88AacSL/ w2gnsPJuGJ6Vm4ekE/YCPFOd4JD8M2JeZR7KLEpiGGc6YUH8bHuu1jzsuc+w 3yHvrZpl+bSOhvOgxh4WmU3218s/llT4OA+dhm0mptNkvK5JUzb7eRj5V95r Nk7G07b9PfxjHhpMk1UKB8l4s8f6/vrNw7Xvf0wUuzvB8dNfxk+R86Dx82O/ YHMnLFJKydz+Ow+CeQ8M1SvIeG7dlnTZ8/Cax/dgew4Zj9Ukub1kHpZimgsj Esh4kQdGwuvn4QIRslEQGe9i6PE3nfNwqZ0gIUrWlzVL5KHo8DyYvnr2l+Ij GQ+rtdubmQeKRHX3c686YalWi1C9TtbLuOJLomwnpCZsmz+gXAB+1gvCHsKd MDF/1yP5wAJUz7xwaWfrBO6rXn9Y6BdgxUXsnf1uB/xA50n9rAtAI/juLmtp B5RSm2/c4VwAjoDmOHxUB2w8QMzxpxdgPVbmo74def7aVO6ZCizAr0/7r3+J d8Cdqa+pB+4sgK5Xyv0Bv3awFGysNby3AOcPZp6tedMOqWbsY80PF2As1YVB +lY7cO+lsAc/W4Dbj6PP7PW3wSZz/9fLRgugs/paiuJIGwipng/1MSXbTUGF c52toBdqlr35aQH63pMavMJboe3coZmyrwuwELXpfuRiK6TevKaiGrAAD9r6 5t6IEGHC/qtxYegCqLKbTPostQB3VcM3nugFqKlsOB+W2gJuSrpFM0kL8EOf KUX3QgsY6Hmesy9bgPpYqXwthmY4+evf5p+5BXh9vT7R8mkdFL2y/ZO+vABp Ldua88W1oCnCopa/sQDaFFYRLPy1ENIhkVNPtQg2zlmXPTeqgY3r+8d51kUw ryo47kT+/2ROOL8sCovAvn8mMPBjCeDLX88gj0XQCmipTvZJhBjfzeBqn0UY WP0zGToZD9L67nItgYswJn3s7p+bcfD1ECFhOHoRFCP844vHImBPkfo/fM4i OM8Vm1tQfYON/qgx2cFFmHlzNfGSYyj6tz5AahdaghiGicFr9/JRlr5HqazY EhyKadVrcStAdp2ScejGEjRat94yaSpErNmhRn/uLoHhsRDtjLPF6M7H5ztW L5ZAji1sZMm9FB0ePzS4+GoJYm+RbiSeKUNdKnllevpLMNVlsOuVXYbeXWX/ oWi6BMxHNY/UdpejoJUOdl7XJaiTqV1pPlCFXus67wa4L0GRgxLlnlsVEmq7 OnTYewma8ByfmZiqUWWGT/x66BKUM4NNLXMNWjR9fK0uYwkk/vVGxG3XooJh yhNY7hKIYRejz5nUIefHaXuZRUtA+cXug9JwHeIUZqwMq1mCXpZmRUdUj+4v NiibDiyBRcqieMaLRsTyylp8YnQJ6MvVCyoKGxGpWYDzxfQSWAkHZj/ibELm qT9GZFaXwNv9liihpQnBqRtVeVtLkHPUS0fqaDM69Gs64TLFMhx+lrilIdmM wo0fmLLTLYOz/7Hy8J/N6M3AhspPxmW4XhrfUprZjEQfxV/HsS5DcMovHY/u ZlQreJBy9tQyCMw5z3OdbEG+YVmjr/iWIe0bRVAftCAtBr3qjovLQFGNLki+ bEFrs+UexWLLIONLbT8a2IJKNMzNrt5cBoUnZU18hBbk1nDmWcLtZaC8Lc18 sKkFPbvVKnHy3jKYdH545DjRgniSvnL7PFwGemmxP6F7LWiWU5iK9jE53k7p xeOjRJTjNjRm/WwZPr2xLo48T0Tyb7Ekfe1leHVQzp5BnojY+uZ/9ekvg9eV RJaLGkQ0LBdurmS0DH5aDqWDhkSUlK+gWmm6DFuvgw0vWxKRxcW9GzcslgEP ugePOxGRVHDSyVTrZdj7PB7v70FEDHQauLMOy6BPSLZOCyCi7s/0E4GuyyB9 LqdBN4KIYqbzaxl+LsOVxyrbaXFE9M7/0Zk33svg8Cy+1CmRiK5Jj3ypCFgG 5WoJA8oUIqJY/Nh2Koysx1Ffr7NpRFQbeuiSVfQyWLEoUiyTbR/ZMKfOeLL9 dN3lDdnWXL9CEk5eBvH2qePu5PPnYyrEfmYsg8e+eNbzv0S0qKjmMZVDzifi bNf5m4jydmcmpIvI9QSTEimjiMgxwQ6LKFsGNUtfx94gIlJ4djRwu3oZokc5 3+l5kfWijl982kju91rfcLQrWa/UG7LprcvAbE5r7mtNRIkaTVGHu5ehYOFD zc33RGR+SGfbgESeFzODyGAdIpLMXntSPkLWO/RNc4YyEdHofv97cmoZfmiy 33aRJiIiIzf+y9wyHBdaXj4uQkSv38hkXdlchkBOlZ+W9EQkeLybwX1vGU7x vxtWWG9BG2Vv9SdxK2DRrKc0PUieFy4ftnCGFegWygPr1Bb0tPbc+y2WFci6 coNo6deCTn7Kr1FhX4GuByaxd7+0oPTm4c/0vCtwKymH8cXtFtTtcKXf8voK 1MzXyFWhZhQlVHG1XXIFlrrqf/uFNKO3/ao/haRX4JLfQwkFi2ZEcc0OJhRW 4OZcirqDQDPim26MVNZdgXnRCIMGxia04Ke9lfLfCuSOlA6l5jaiPKm1x3TG K+Bf0+UTqtWI5EO5qEstV+DLUu37tPgGZK74Vu+yxwo0naTdieCpR5K7+0Xf fVbgJ2u8RmJBHTqY4H18PHAFPPO2Pu0r16EgXH51SMwKrNqvHP9tV4tKsmgv HspbgeEPYpxT5dWIgev3/OjoCpyXjL91gbYCYU8d+kemVqD9A8uepU85MvV4 WTc8twIaqjW/67nLUQcl2+/BjRX4E21p7C9UhsLGXTX76FeBLV+cIvpBCRJM fdPQKroK70rOVr5Iy0PyUoKJpY6rUOs6KzbmGYNsrA4FlnxbBYmbAz6WtlEo lTDuXPxzFSybdLaFjSLQ0fPh2kUBq/DeuJFOyDsA9dEzcuT9XQXBwTulM3x2 6G3Homta2yr5XTfnd8gyANz+I+hF8K7B1n9ODQ1OBJjGklzp+NdgZnmIc80+ C+6xxSZ8vLwGFh1PXzZ9yQaqKp+5hxJr4LOZLvPYIBcsec0/bj5agzueg1lt PIXQsW0YoKuyBlWf7e8WHSoC0VadvCb1NVhrt8vtni+CBfsne7Gv14DbICOc oFoMegPCzo+/rMFiRUe9KE0plGfxxxfarUHIgGTaeZNS4PnJU3veeQ3SR882 WXeUQv9NZob9X2tQoh+jIRxWBspBi76JcWvg4ip55AR7BaS/n8pm/bsGE5Oz bO/MKuDIg6Fu+7Q1yJQQkFuuq4Da9WYu1YI1UPscrmb7qRJuq6TGUhPXwH0w IO9oThWECcRXGXeuAQsVfeQ7XDXs4CKmevrW4Lq96WLbw2rISfe4lDaxBh5H HhKzuquB9bvLI87ZNbgnnF/Jz1UDZq9s37ssrYGI5bvZYM0aEGQ0JmjsrsFn TEHRoLcG3Cb0Oqup1sGvQ1qokLUWpos0N0Vo1qFeUPk7lWItxBop3DrEsg4P TEZTnxTUApXM3Zcf2NYh1on6tfp8LWhxStoPcq1D0Xy09r1TdcBZd6ki6/w6 +BzYqan7Ugefo85OnBZch5n0v69extVBpyUXrbvIOqRX94W1NNaBqNKxixvi 6xDq1bJ3arUOvM4flteRXAd3k6JzD9nrYWGf2rhRah1u6pZOKt2oB4XOnV/X H6zDStTw9SvP64HWeabtiPI6HLHqELf0qQc9jdG1z2rr8I67O2owqR7KRfvY xjXXQdpd7NjJinrgoW+TUNJdB5q13CeiPfVgN1L3ouC/dfh8Lkv21Gw9kPLK bM4Zr8NZ/38MI7v1cMMrP8LLfB16HA37regbIOC/jNJdy3VoxSxOzLE1wBqW OGpguw6SAdpPr5H3v4KYf8GfHNdhJPht8gB/A3ylEXji/G0d7pZg7+KFGuD+ 27eHfH+uA7/Rdz0v0QZgaP5bEu29Dhwaw05hYg3QJjJrkR6wDkp+f7sayHaQ /yWhklDyeacV19NXG0Br22iiKYocr3SPFHSlAfheJoeRfq+Dl57brRsCDTBT Oqcy+3cdxCT7zlOfbYB0vsuHd9LW4dErFVg/0QAW343LD2WvQ3Da/E1WpgaQ nEv5wl6wDqnr8lva1A1A/XhB+HzJOtAXuL8dWK2HWoLQtFjlOlAaH4t1H6uH X+zvI2Xq1iF7RKvFuLUenlqnqSo3r8M3nnoJV1QPnEOLR3Ta1+GF/4u73X/q YVhauOp9zzqciXA1f+1VD/HxpjZ2A+tgZ7erddmyHt7RZ1z1GF2Hk0in9Lpm PYiaLM+ETq2DyuLpNy6362GrVSTm79w6KGxxSZ84Uw/OwZnMtRvroP1Wq+Q0 ef9+uL9S07W7DvN0sUVBhXXArHPVfoJqA9zGgiP1AuogjD9rnvrwBizHuo5Q P6gDQm52PZzegNyLondL/GrhM9eGgwLfBnw6YpAkplcLmL34DY2LG/DwmfRB LtFaqL+f++fz1Q2IJlx7Jl9XA6Odec6EBxtw6Tw+LGuiGhJubN8qV9gAsT1T wUuJ1WASfmOV+GQDwpIajMWNyPdVr0BnQWMDfnGbmpyarYKja4XYRdMNoA/+ 7VPaVwk9anvr1z9tAN22yv03vpUQUSiZct+KzPfGvnHTw0oQcEJces7k/Jv1 LRPZFSB9tGQrImgDeqsOv5+xLQdz4fJM1rINaIj7w/+krwT0RE9FeFZvQEEH n/wBqxJQFbP6Qd+4AaE/cSJJHCVwQ0JUm6p7A0wJXTJrysVAdSfmyNzcBoS/ VctLtSoEDyXHNxUcmyDJm7RwuTMLEkykT5mbbkJRvUzpl6RICDGNoJv/tAlu DEJK6Q3h4G6+s/af9SYcWQs0+IKFgIlFZsNL101Y9F/0vXfOF67Z8X6RC9sE EZq9HB9qKyj3oO7gqd2Ebl73sCODPmggufxHy+ktoND/5F6vkI6aZ6lnhM9t Qe3Ow/xJhgxULCDz0EdgC2Yed7bwNmSgiIQK+mfXyH757Ut1UgSkHVfp3vdw C7T007xt2XLQ47EDc7ceb4GqjVDz/eocJMV7TyH82Racex7/pfVDLuKNqmLQ 1t4CNq2V15S1eWg8tNpj4tMWSORKGgWoFKKOPpqF+9Zb0JxJzJReKkRVJx4o Jnzdgt/aTjxabkUoPrCG0ch9C4wpLIRQDkJvfGs9l6K24G3Rj3ivjWKk3nZo 6Un8FnQ6xN87f7MEybHIPSYkbYFadxfNE5sSJOBZx2yRswUdTHRE1b0SNOtW 773bsAXmjHtUpTOliFRHv6LZugVhgy1GIbxlqPGQvHJx1xZYlhplLaiXoWTX hqMOI1vQNqJsvl1K/l5XHf4wOrkFIyGrNn9XypDHAYV2mbktePNB2quetxyZ ODb60mxuwbf1iYeKduVIq4xh7b+9LZA+PGOdkliOlKgePa3DbcMgC1+deXs5 ErZrYv3JsA2Jgqmn+HkrEA868mmeZRvmRAL/sD6oQCx7jzoV2bdBdIxCUftt BVr50uzPwrsNq/E1ckzJFWg0j3HD/MI2ZPdzcJjWV6D2TUXVDsFtECQ2rQtM VaBKcc+ca6LbELjANo9RV6KsTy1sgde3QTfh+oUkrkoUl8VkuSW5De/pHeZM rlYi/1Wl7ufS2yBz4mHcD7lK5Crqdb3wwTbEbEx07LysRBZmxEDuR9vA1B54 tty0EhmkM2/ZKm9DcYrz0yGHSqS2+Fh9SG0bKCZiHip7VyJZIe+8Oy+3gTnk Dy1XZCWSMG7liNHdBsXZ5aQbSZWIP5nlC/7NNojRfrRIza5EHLNPevWMt4HI FVL5pbgSHRLwuVFtvg3O564cDauqRNtv2oIvfN6Ggqjb28cbKpGymIanoO02 +FK3NBGaK9FfynFnEcdt2H6g7ztCrET4hndW4t+24clS3pGo1kqkGbD+/tZP sj5+NOxLZH+2jp3+He9tmOZej2wjn2e8TKtxL2AbPsd/TpMl5zfY8nz8MHQb 2o9k6apUV6KSCo77SlHb0CLUO7daQubrGX3r6e9tkO6gDbyUV4lMXwiIPP+7 DRIvL5XuplaiunOE81pp23Cfs5ukH1eJeJdvcb/O2oYjBmcsjYIqkXVRJcub /G1osrYVYnSvRB3fHtEaF29DMJNfrpJNJRJU6dozq9gG2iROksi7SuRy6tWK RS2Zb2uiVc6LSjT4b2rKumkbXqx4uw49qETi2aYDX9u2of5sGm0auZ/T8o61 biQyv5joBTnaSiTFfrjYc4Qcn/ew7sRiBQoZ9SX4TW4DJ/E9dXBnBZL/8jsi YmkbTCUXldMiKlDcXSG/2HXyvGRQ2Mg7VKA9ptwfCTvk+VtwOx+tW4FS42s/ Zh7YgcVDyatOZ8jz2jH7sJpjB87+zuL87FWO3kZ+vNNwcgeC0QlLYcNyVP52 /xqRdwduRBkeLbhTjj7imM70Ce5Aj4yssOJcGeoWEt2cv7MDbralDb3XypDw TsHcyr0dmLLJMbQ+WIa+V8mMbj7cAcw66jZ9Rym6qfmsCfdsB/7j+pxNYVKK wn98jj1uuAPoM74/zb8EbTzFBXOa7ID+EZHhCy9LkCKP26/TH3Zg4ONUU/LZ EkSVG/rlou0OnP43Jb6QUoxejxcrgfcOxN9i1fQ2Q+ji7YN7evk75H19utda Ph+lJiSe6yregWN2xEdaWXlI9Kii0oPKHRAPv3EonSsP3ZwIiLnYsgO7lt4h bRM5SMGdX25hfAe+ZJuYmxlmIdNu+QBL5l1wajQkid1IQ7nvfYTd/tuFxCwr 3k8vA5Fkr/iL3Xe70KwTt7ER6odKpfud3pnvgma3ACmlzxvVHufrVrTdBfHG M8HHs91QX2G27THfXbiZ3L7XxmuIKA711ocV74Lp78j47MtecC/qtH7a8T0I q35+XV8xCUQDGPgqOffgwGjMgMqbZDj1c3u05/QeFDyP3A21T4Ety3ZtaoE9 +OXKuLDTmgpJSt80n2F7wK8g688ylQ5B9z5yvZXZg2XBZmfvNxngfEunz052 D9quBj35Op0BWhduqSco78GloDeVHmOZwEK5qLJrsAcyotOJv6uygGK9/yjz uz14zsSs0HsjG2Zmalv5zPagsELd6V5yNlR2xSgpWu8BVe6xzVT3HLBMVZWP 9tyDR/Kad3nE8kAvToY+x28POKprt82C8+BxiHBdffAeSPGKyTXv5YGAK/2D tdg9WDC2feyD8mHgZbH0g7w9mP3ieaLsfCHUqyThNNEe6LXKlQ5ZF0KOXFCp afkeqK6eGB9rLgSva+ZYSOMeiCY+aPlpUgS2l17tp7buAX3bE3qBwiJ4e0ah qKJrD/Is2P+GH0Qgc+T8zfnhPWjebQnf8UUgjD+2jZvcgwzlGN+BbgTc25R5 bLN7cL/sKEfl4WLYGO+9dmd9D7SC9P6ceFgMY33Va0939qDE786TgP+KgUgk EAwp94Hpz5nYFadiSCzyEPGl24dkQ57Je/nFEJBptfSHcR8mY+n7b7YVg2PC f2lFx/bh8eVQ+8MzxaDpJ3V58uQ+nHifSZBkKwE5N6G5HV5y/PS3kVCBEhD/ ypXExL8PBL3I3XYoAaZ36/w3RPdBlTbwYJN2CezpjE49ur4PcP+SkIdpCUyr tcTrSu7DNwatLD77Euh8VKRvKbUPxNpIPd+fJVAuk8j38/4+UD36dao3qATS bgSMRcnvw5O8mY712BIIu+IUk/14H4YEf3n8SymB7+dMdeqfketTeamTlVMC n7he8gy92IeupJs2qsUloK0o9LTv1T7kLXQbZlaWgIID5fdOvX3g2svMWK4r AYksYiHRcB84UjcyWJtLgG8qerHBZB9Iwtx9XK0lwMz54WzNh33gftX7l7a9 BHYV7qqVf96HwBOMOT1ke9L+uDuy3YeZkPQIT7LdljlZnOe4D5t1eRyX20qg eCJ3hfBtH3x/0v/LaCmBRI4f59N+7oMV96uJU40l4Cf/4sVf731w07689rGm BL7aXfr1O2AfDBW8GbLLSuBdxl5ZVOg+hMiKig8XlIDaeNN6aNQ+3P/N/2Mz swSk2SMvBv7eh+ETo5f3EktA6KHpS5+/+3Dw6cGXi5ElwGkr5e2Rtg9zgU9f tfmVwMH0o1Xfs/Yh8aOnR/z3ElgaHdtyyt+Hjl8qj42tS4B0PFvQvngfTjnv neY3LoFaWVdtq4p9uDHj6NzzsgQI1mp+n2r3odjoxfGvj0rAbWR716htH8ze 6BgUXiwBC9aGK/9174OTXUy0MnledB6EvdYl7YMmNyPlNI6sdwrWoD65Dx7n DhawdhXD5GenkHs75H4d8vJINS+G6acXDSIpKDBxp7RmE7Vi0FpgoTqJo8BK V1R74FYxyJ0Zu8pBQ4GF81+JZKEqBp5vLqGMzBSY/lXLyL+UCAJ4TK79PEqB ZQgZ+UQWFAFDgWoL3XEKzKi7i7vvQxFszl3AH+SkwArMxduujRRCs3L9292z FNik64eacwkFcHcu88CX8xTYO1li+/izAihwCY3Y4KfAqN1YrdipC+B33ru2 5csUmAcTurL0LB9sTjHdnL5Ogb1nC+s8PZcLAjMqdJ3yZH4bh87d6MmCHOWH 6LsiBcYZsPf+xX9ZIFV4x0zyCQXWT9h6d2GdAOo/L/fGqlJgRatSj/4xEOCb EG2iuQ4F1nngMvtRoQwYNy+QZbakwPYrBgsSvyZDxC7Pd/kYCqyPQ+2Folcw COixS1L+psDMSoPDEo0DIbvxyFLmHwrsJn/QXthDf2gM31HjTKHAVPQ052bx 3rB7u+PCv1wKLPb5fCvdqiOoO3+rcW2iwBq2ZRBHtSViObJAU75Fgf16dieD +DAaEQu/uzzYpcC8T8fUq1+OQV5vzx5o2qfAhjjaQw4zxiLmWnVcDzUl5sz6 QxnVxSFmp4rdeQZK7Er37dfz/AmIcTto6cQZSkyiUP/VmmQqav5z9X3kWUqs NdNhIiksFf1SbZ7nO0+JzR9uFObcTUVHsvCzVy5RYu2X3NxpstIQw3uTiXvX KDF9Go5J3+MZiH5Cps9MjhLz+rJ808GXgOp9B9U35SmxqUvNm6YkAnKT/tJt o0iJSQv6DhLPZiG6qNSObyqUmLD1af72lCx0SONES/hLSowYXpjrkpqNaumy Hp3VJvM1uMAcMpONvucpNiboUmIrdgH/HTyXg2jZnOsI/1FiN+bqg7r8chBN 60JFnRklZsJQvn5aOxdV2/+QVvpIic2sRL1P+JWLXIX4yjosKLHP1IMjnwpz 0cGfz4uHrCkxNvvTHT1Meajy5pqkvh0l9s3a/YrR9Tzk/O9X4cxXSuxfs+hN yZd56MCDyrx1F0qMleGAqn8sOX5d67r1d0qs8We7IFclOT5uO5vKnRLbK+LH +kfz0F0VPzFXD0rsdjBjTgdlPsJTXyEc9iL3w7dtgIYrH5Wn14l4+1Bi7Fn7 XGZi+cjxlV46mz+5ngn5taMK+UiakfJKWCAlJv8umnZOJx9Ro+CUMyGUmL03 Bevep3zUc1P6/kAYJVZg5aOe8yMfpeTNDAZFUmKXrXW91ELJ+cR9LZ/GUGJ3 k0v6hv7mI/WsW8zMvykxKUKFnVJePhISHU9o+EOJDT8Vno2vyEcH0n9KfftL iRldVsiZbMxHfZev9UmnUGLR3kXhTB35KC1pwJwinaxfuKYrb28+cr7oergg k1zfJxYbHlI+evFHKO5TNiUWVxyaQT+Qj4TPdUuK5FFim6oGX0f78xFNrH3n XAFZH3nlN4k9+YjEw2+SgMh8T35l0mnPRxkRRBq9UkrsvTyb9GEyviv3l8jT FZTYETi4kliejzRDzkj0V1Firja14rdz85EoRz0xoJYSC1Q/96gpMR/RBpgb KjdQYtRzkwGqIeT8x7ioGZspsTXfwJCB7/ko07sipI5IiYmQruP1yfp9Z3p3 1aWdEtuaWolcfJWPtDxYG+90UWK4V8TXX2XzEd0P/f3cfkpM4ZLVYOmxfDRI wxjwYZASU/1ZcclyIw9lOecIXRmhxM7p2DTe6c5D2l9pteMnKTE+roY0bt88 JE6RvqXzjxK7VPgqRNwkDx22Ufc+OUfuX1v0hQ8P8lCOZWK53zJZ7/Kf43pr uejn+hONx2uUWPP10jLe2lyk82Fn9fAmJRYZNhHKGpJLvm/y55z2yHocrN2J l8hFrw3mv5nRUmHXDnyfZtLJQRLj/jyX6amw2h0u1Y3zOYhRF8ufZqDCLCKm L92YzUYFLz1nXh2lwmS/qOjOmGQj5mcijxRPUmHKkRfw4a+z0GRb7wQdDxXG zWO7SXsyCxU+drSr4qXC7grxBVN0EpCBQnuaJD8V5jz4ST3hDgEVyXw6eukq FTaISjriaDORoWh+N60cFUafcDsYXqSh4ub2vznyVJjOlkW0GC4NHTNasNVX pMJwyfERV/6kIhR7lq9ChQp7zTrRHz6agliO/zK106LChlNJH+aX/6L8TV26 9Q9UWHLwwfra2jhEhxhujUZQYUrdcV4tzt5I6/kFRu9oKmwo9XGIGskTEdal Rm7HUWFCs+0hWVd/oZdClt/CE6mwsbOEIWL1N5QROdKunkWFPS5oIdAftUTP HXPetdRRYTJQxg9yXyDxgXZE0RoVxlzVFhgbGg6iAqclYZMK+zAkQrdnFQFF DIO9aJsK+2d1JZpwIRKaWzWOl1DgsPjbcUFRNlGwoqH2s+wQDsOvvTbQPxYL kqaKVtXcOGzc9mVh9NwfqFI+wvHgNA57Pea6fcM+ARSvNWbXnMFhbFlCvESm RNDekVuuPY/DlPY1X3QL/AUX53tvGoRx2N9nOfkOD5KhOUhSlXgXh3Xdr+WN pUsDNevd1ccPcJhwlW3Ldak0GH5Z4N0qh8MyaKQCAyzTYIVXoqlNEYetnlo6 lDCcBuwpV+92qpP5llgzdcWmQ5TnysgzDRyWe6MxzKI1HQTMM+y7XuIwXVUT 7+b9dJC8fqWwWxeHcWfpL4UpZ4B2mYBo3zsc9ujo6GHHuQz4F/uv5cV7HMZH GVSexJQJ5q4Jxv1mOGxFBguxF8kEF/nziSQLHHZD62wyj1kmMApN3H/5BYc9 6M8In/2VCUHMceMD1jhsPrPnlGZSJvztPMMz9BWHmXTligoMZ8LVvGH0ygmH 1d5RF3LdyoSikEiNYRccVt2v5e7MRIB7tlrb2t/J+VoLs/nOEaD51cnAETcc NrP644rBDQKoSZPEdD1wGHXRIW9ZBQIM84W2jXriMJ0pv+8NLwnwlvaF6Wsf HKaNIvsWjAmw+o+DcdwPh9Ftxelk2hDAJ3SiKiQQh5278MrogjsBRB5l2j4J wWHR6Q0EiiACECnsrx0KJ+NreepKxBLgfbr8fHEkDrsVZ4M6kgnAqMvx+1MM DvNhseLvyCJAyrEJTcHfOGwowuDc9UICKFRlsI79wWHGA7sqFKUEmLWwawz+ i8MUDqeaCVQQwI1f3vlxCg6LYnJ7XlRJgIt97JK06WT9X7McyCbbte7jqygT h83+O/btODn+P8hI+piNw16WfDs+VEIAmkXb15fycNgZileUx8h4v6Meco0W 4LAjThoZmWQ+d5XZ24MQDlvPHM4qIfMdw4+7KZXisIX7FWm3yPU4ZqdL01Tg MAE+dj1+cr1n/rPdKaoiz+fd3bRvZD1KOR5mfqjFYdaE1x4atgR4Vc/2VqAB h51MHGGJJ+tJYTN2ZqSJrEeZoYmhJgHCL6f3BhJx2HMNjsU/cgTo95KTO9hF 1rMj9VjUaQJYSbPhinpw2L2Tep1ahwhwYm00z7yfrBdJdSNmMRPU1Gz4h4dx WDr9hfTq/EzYOCQ3HDCGw1R/kK4lh2WCf8HxoEeTOMyZYWGV1y4T2k+m0RbO 4rBD/ScOtkqS57PFusRsAYfxJ1EcZuIk76sOspb8yzgskEk8dXY9A5TGRyb9 N3DYsewD1z0TM6DhL2u1KY4aY7YrvPmPKgPeao7YXjhAjaV6FLxzaU8HOsbU a4M01NjfOy3qQ3Hp8MDswW95BmqMZcTTdUAmHSquWzmfZ6fGto+WJtt/SAPd f/clB05QYzmyCZ4ukmmACz225stNjYk3PftsfCANblOkvMbxUmOSHw+PbHil QmHlkDRJkBqLdS3p2ZFMAcKTezgfaWqM0eHQt7ZjieAql+PEeY8aiwlt03rl lQAvpC7QxD6gxvK3dJQ8DicAlQjd4SwFauwW6/708n48KDA3sXapUmMrTqxq U+1xMNn8lJ/TiBpLOWl3YVshCjgU9JRifKmxa/3TdH4fPWFWprNVIIAaa46i Guu59QuKb91/Sgiixnydim1yaH+C3iX+55Xh1NgRpY31Gt5vkEE/pzv5hxqL H6/k38+ygYd1HywEiqgxkvXBEd37Wsj2vlN45jg1Nvnt9J5tnA8iahq8EJqi xr7o9kpbF/gi3g9y7H//UWM0j04vWTT7odpIJu/oBfL5fI8lgaUAdHQ71Nlr ixoT4Bhj6eUIRfFJWUYmDHgsK+XWLPY5Cm2VBfLPMOIxBfwF2uzFKCTfYzWh z4LHRjl0knL1o9HSAalXL9nwmAzrnqLcoxh0U6tJWYEHj+X5qT1ZpYtDzcyT NwTE8NhdDsdKQ7E/iOdC3cZvcTy2UUejM+/9B32AZMKZG3jMICn2y+/5P4jj rfnlExgeGw5vF42OTEC6FRRnDsniMRcz1yuP5xNRVu/IgNNDcnwrxW0qyb+I dqkyhPIROd6vmL/y+1+UzO3OuvmEzE/qQNgX7iS08Yn90KQGHosZ1o68I5iM ZH/uVOpo4bFXCy8kxYySUWjMgMOANh4rfs5y6WxCMrrTErvboY/HytuMhf5x pSCfCde8x2/w2FTESmqhcgqa2DX81PgWjwXlMD3/+i0FufELL1a8x2MfPEzM e2ZSEAk7lnzbHI/NP5m7RDiciq4823hT+BGP4Ysjk5fOpKIOh6LRzC94jK5I 0FVOPhVdCIqMFLLBY4tv0qJfa6Uiq1RHzb92eGxB+muLqWkqOt0v2xXthMd8 NbSjdL1T0ffSGykqrnhMrtDb0i46FS39FnA++AOPcXyuWNNIT0Xq7lwaue54 zAL917+DUlGpKYOo4S88hv06QaNRn4r4VfcPcXnjMYExTwObzlTkfWthqNGX rM95z4OvhlLRDs9Qjl0AHrvF3EuNn05FujRED+Fgcv9HOf3fLKai+tlSvdFQ PDZyuI/Oaz0VXW3NuOUXgcfui7yq+rKTisJyYo7ej8ZjIhGR0ucp0tCBMN9/ m7Hk+vnOHQugSkPvHJxLE+Px2IDB2mAd+f3SafApUCORrGeYmV452cYUDEyO JOMxr1KZz1/J8fEiavdKUvGY6m3xgwfJ+RjZZbnNMvBY7MkTDE/IeJZ7Equ8 WXgsJzwyVp/MZ3jkYn1HDh4jGMCWDJmvbA1ntGs+HnspQq0wP5WK0pMPf5Yo wmN9+x82dMn1cvjsKc4U47HnXf/pxZP1+Go5fy6sDI9d4u1lzyfr9U9zcO9R JXlePEr+hBWnImXplnbKGjy28n2sRDkjFRVcKP2bUUf2/5fBMxCTiniPZDi8 bsRjOM7DkeCbitxWotWPt+AxB18OPgvHVLTS7XOlphWPfW9nS/lO7q8GcqL5 0kHuT9Q5ecuXqUjwu34WqReP+bBdMl6+mor8jFXdf5Hw2NtfWx8dTqaifeUH uneG8NjNZLbgjYPk/fLkRfIXH4/RlIidFk9MQeJ4zqlnU3jMX314I+xDCoqY pi+mncFjhoV409FbKeg9Yc7IaJF8vy3c4XR1MuoJGpA+uYLHJE14J858J8+/ XfOJljU89mLZv/2EbDJilkuvEd3BY7T/a7i646l6w3ga97ruOBkVmhShFPoh kfdRkqJQoqxQJAlZhczszHuNa4tr3aykNOS1opIykmhLQ4lIUcTv/Pl8zvM+ 3/W8n3PObBNvUUs5rnnnLTNLoQBv5bYlJ/LK8KpWx9lyGgUO5iiP1B8qw+FX zXuOMyhQY6zN3b2oDJv5aIQ0C1MgW9pa94PNVTxF//cqZhUFWB7lmnoCfLxD PSxZQoUCitr7nXf/KcLP7SXUsv+jgHLXi8kibhH2jK/oW6dOgYvBGkkv1Ypw 2ccXknJaFJgWZWf1uBXiNcmKV9T0KJBr3Xew+VkBXjj+vPywBQVeWS/48809 D7fz5dviQikgHPdFGQ6wsdPzeifhcAoUyweczrNKwosXmgqlRFLAp6nQNPhM ItY+FnggK5YC/of5+n+JOFxF7enhp1LAy67/u6p/OE4+efFdG58CDfbU43l6 p7HVmqd/BHoo0GNtFda7NRKxJDxu3O2lQJjxrTd4VTRqFF12zvsFBVbOpS4M plxGsjTLL19eU2Cpx4+vf57Go7Gfn54//UIBp+NrirgrOSj04dz17DkKWD9f 3OC4OgP913LFzVyACqWK33x/T2Sgz/W6m4QXU2Gx1huLqfuZyLAmJj+MRoUL Wa5nl53MRstylyedEaPCQrd/P4pQHirx2uKqoUCFe6++g7NoAbJw65L/uZkK XafER7BjAWI6e30s20qF5zIaS11vFSCP43es1qlSQf18/54GMx7S3K9nQAUq MMKky+8GFqJR3WFK4y4qzEsIeB9uKSQRYpv89lDhurWI2TrBIrRYtVtjdD8V 8ibo9vtjitCTtTZyvUeo8L7+SEnghWIULCkwFH+UCgliWTrWlcVo2zJerr4l FaKy39eYDRUjrtDX5XW2VNhkdborQb8E7V8S1+19ggolEnrlj86XoH/zW+O3 OlLhnX3gg+WFJcj+l/eSgjNUEI1d2DLwpwSJ/RBvtHKlgrADhWokRf4ffL17 cfk5KkhofjrYoVeK/D7abO/0pILrtSObTZ1L0eZ3ApPRPlQ45qRkNni5FL0Z 4FXu9iXrIxdKfa6WosTevWf++VNho4GJ/NKHpejXo7hB9xAqaAU3+BrNlaJX 9F6n2UtUyDz8+5eHGB81Ga4ai4wg9awKdhiQ46PSuBPeotFUyJHcwA7X5KPE J/yZnMtUwCmn7L0M+ciHmAhRiKfCyM7A/iJLPrI21hC8mUiFxDr1FatP85Fu UnC8DocK077fzPu8+Eihu02sI4UK0un2k72BfLRUlMg8yqXCnc0NdhKRfDR1 2ExqKIMKRcWnlPPj+OhNcnaxWzYVJi6/X3qO/J5p6R1SnMmlwhnL+ocRKXzE X765JiKfCtsfn9cZSuWjJHPPHSKFVPima+wbQ9YXuHcasoupoFqgFO+XzEc2 /QJ75flUCDIOu3UjkeQnua+jpowK/GJRw52X+WiTZeJhqKRCdeWrWpEwPhLJ 6utvv0b6s+VruLo/H02/WmNrXkMFF3F5y3J3kt9qx0+DN8n9sNaa8j7JR/dt yl1cb1Nh0Vqj/zhmfFSWOznx5y65j3s+Uqh7+Yj9TtM3vJ4KBtH8gB5Vkp/U pfmljVT4+QU1/pXmo+P2j8KzmqkgkEQVC2LxkV6BMEOuleSHxrrsp8m8h46y rz+gwt/1Gu4l70qRiEyeOGqngpH27oBDbaXoj8PnnEcdVFi790DeibJS1PrZ ++r7biose2EHredKUZncPeWzvVSI0VCNWH2oFHFOL7413UfmPb/S87NSKbL9 xm4hXpP363ZL/9vhEqS3eWB/5lsqqCmn9Iu1lCDFs1JdsoNU+DrOiH2YVYL+ jla+3vmZCsl1/kTDvhL0buvUiYfDVPhRprqStqYEtblrfzUdoYLmkeiD734U o+SJx7/PjFMhLfF0gj67GG39PUxkzJD95nUN7i1FaLm6cqrMHBVqP3JqM+KK 0Oz5C6uuLRAEw/Yt1zyPFKFHfyjyD5YIQsqUQILu+0J08t/6Xb8JQXDfrbX+ wzAPcRfbeB3aIAivhvYeO9Kcj+ZOrFDtkhWEqr4MxXX++ehkc+cvI3lBMJFx WvNTOR8phe4+f2CLIEQ38IbvZ11BD+bl/PS3C0L79Jub107loam/P4O0DQVh 3U4JnWsVmchsPPqygheJt3mMHRKTiOqMdxuW+gjCzqYAbmd+ApKummXI+QpC Z+LgkYSt8WjU1S1eJlAQDBJHdZDeZRQ+Ypq0LkoQ9LTPFsw5h6Oaz2vTlmcJ wrKbapNbDngi0Tc38he2CMI/R9brpjE/HM8ICKhtFYSzc/neVn8DsJCm7lGX h4JgXDsTZhUcjBdyu5nPnwhC4djP+omgS3jCZOxCab8gnD/Y5bjRLhp33pcz Mh4TBOxJf/J4PxsbTo7JL5kQhJkno+eDf7PxA+naxXcmBUGl0phtk8fBOGjP nfV/BcG/waPu7GgyrtCwl5laTIOpYmYv3yMNx5ZnzmRL0qCNH7v+sUgWFnxl //zQahqsEMu5ZZyVhcOEFK5R19HAUWjtH/v12dj/1C3HczI00N6xdZJQyMHO Ur1duko02Ohs0niMkYc/GWWV/VGhwU5Zj7cf9fKwfeCJyApVGhwsipmSDM7D x16Oa4lr0iB31ZyM52ge1k9hlXzbQwN30cLfEXeu4Jbm3tA8fRq8nd95ZcnX KxgmsqyPGNDgSclt9eXi+VjdaJMoNqbBB+MFtR/c8nF1wMR3z8M0kJg23ZKV no+3lN1+IGdG8hd4XPG6MR/L0vQD2ZY06Ks3Wj/JLMD56sSxvTY0yA4+ffm+ cgFe4/h826wtDf77NTAkblqAlzefHHZwpAFlNDYJJRdg9vimFsnTNKg7JQxL qwswa93PnKdnaHC0OCjV+kkBXhIQYqpxjgbMU85Kzgt5uGZ85A/2pMH3/i2X c8R5+KTj0Vw9Hxo8hOyQQEUeFnvZrNtxgQbpR63TaDo83GK09ethfxr4JC9x RId52KslI2EggAbhbaLZa0/y8AYNiqpdMA3WuQ8J8D15+Fn5uYHPoTQY45W4 vQnh4TDp10Gu4aQ/hRZ9dfE8/F+avsyvSBqcEbmG9mTw8BC95pF/DA2y2pbe P8/j4eTgte4L42iQ5xCQblrOw7q/YpZFJ9Dga3DU4lc1PDx5+vcdgk2DsiB0 gnWXh3lv7GxTk2lQLiMuN4J52PRwx5LVaTSo7Hw54N3Mw4sfbL9akE4j399J 4mX3Sf1aPGOFLNLfeQdOQiup/xrxuyqHBv6qySJSZC0m65+pfoWcp7vfw66F 1J/xCeoLaODWF19g0kjqJw590i2iwZXUDWUTdaT+sHuX20toUOTnUrSnltQ/ Lad86CoNxN/pNRpU8fCls8nPX5TTYOWJn4hSwsMqg/P+x6toIBw25uuTw8OD ZmekPlXTgCP+bCCbw8Ps9uetLjdocO+y8mBAJA/vgl0uP2tpUPLDeb24Hw9P 1JQL+92hwfavCXtcz/BwvrxE7YJ7NPA+o7oo1JKHF4r+EGA1kXkPz2YOq/Nw daRlcXILDUbUPAx1NvCw/Wyr4co2Gvw0urXLhuDhpo/ZaXKPaaBnKOv3430B 9rCg7ax8QgPDilWyzg8LsPRTr0HVLhr0v5X6fq2yAIfeMlDc/Zy8L/TrTjcu FGAVxdruhy9osKs6fYWPZQEevCJ9wfglDSYcXveydhbgXZf/NFm/o4FXzJZt PbP5WMCm+OiFrzS4Udo988s1H1d1i8zNjdDghcVbtfv6+dh2b2BB+BgNqsrT 2Zek8nGD0pFR9iSpT/Kb3cDTKzh40aKw8jkadIhXpRuuu4IXlNpUDooIQVuG cU+RbC5uHelzzV0mBJFRPzJNqnNwrJLJFitxITgQXBG4UCsHr7i1u7x3tRAI 9poezd2Xjbe0yV19ICcEvvWhG4YPZmKrjxNFFdpCcDvu0pgyPQ3florM8XMW AjFnaQ+W6mUc6LDARv2sEHzXFXN/Px2NdUt9V0+6CcHxqMlt2XejcKeSS9ZZ byHwOzCZrKQdgb8gkwzbYCHY/h1iz+0IwcttVqbqpQrBU4WosXC2C/bIqIwT aRKCzws3X/2g4otqZzMim1qEIOGJW9/KaH80axMR4tEmBA31a30evAxAkeut vbsfC8Ez30libEcIyioTsmb3CcHOyduMI3Xh6H69w2aR70IgZ/a3tt0gHglJ mcg2jQnBvWHZFdEmCcj4ktY6jwkhmBRsTdqkkIgG9oqKdU+R+BYJUefkktBo Z8NM0kI6HJzyfDgrzEHiH1a2C4vTweb8wx0h7FRkvYd6v1GSDrahmWaGf1NR fvFE/bnVdMB1e1w22aahzS4Pq7uk6VD1ZYbNlOUinV8+GUmKdHBLPvWrKT0d RZjbJ+so0WHvi+HJuPF09Pj2gfhxFTo8e9Ilo7M3A5kFbgg12U4HYWkPvQMj GciZ2n1aeDcdAnVNh0NWZaHK0/dONO6hw6StRK3IiSw02V5ifU6fDtV/Ji2c i7NQUGKQSdcBOmy2ai2ylc9GLRPOBiHGdLj+b9/stGM2Ejpitkf5MB0iyzUu GeRno2QJRY2ko3RIhhZbMZEc1O8vvk3Hkg7/qkubwvVy0Jo3ixTHremgklLl UnwhB5XkD6wzOUEHXpE052dvDvq+uFVSwJGcdyndT1IgF6mcuiZ2zYkOj34Y BX+Vz0X3NkUJCrvSYfjNt7xgr1yk9mxFB9udDi4J8EIkORdVXSxOEvOkg1H5 WinutVwkL6NulupNh4x1b78RHbkov6NVUvwCHZaoLnnk+ykXrfIxe5vuRwed uztce//lopQ1nwpWBtDhU8JqsyRaHmK1eTtlB9FBUtuuTkk0D0W5LVFcG0oH Rlfd5IOVeUhAPGU8L4z0U8Rd0mJ9HvJr2HBTOpIOf5Uljw3J56FJpxo/XjQd /NrLRk5tzUNnhXWRbCwdOn5YS33cloc+3e5ZVBJPh5vq6Yet1POQrf2JB/JJ pF8dY2MdGnmoX+hn7FUOHTRTqJ47NPPQoeuhJoqpdHi5N/p0Plm3W4osr+TS waSU6U4ha93F+QNKmWSeTbRtp8jz9WXKudXZdCjZesf1vloeUj/SeOK/PDoM nmeOSZH4Vf+M5W7m08E8OC4hYEseUih6N6JeSIcJhr5mv1weKjjofu12Mblv FjdHVKXz0KqpeW9NPh08OwvKkyXzUGpuwo57ZXRwfyKa9ls4DxH6a+e1K+kQ kyLbZSVI+vWjornhGulH/l+ZpJlctDBdO2pXDR0uROzY4zOUi/x1nhi23KSD /xpe6Zn2XDQ5bC2sd5sOsifXSHpV5aLPOwIy9tXTIWvhr/aHZN62HxjH2xvo 4Brivmm1aS4auJy1/kAzHSpVbnQnKOeix6/ulhk/IP3ZPun87lMO0gs3ONf9 iJx3dqvF/fochBVfqpp20EFVZn1cX3IOqg78W2/eTQcrE6chtmYO2rQx5lL/ Mzq8svv9ejcjB/GeSuhb9tGhtX3FfeWX2ShtnUaXzSs6DEV2SPd6ZqOLTec/ OHyiw1053YU3ErPQL2dqyecvdPD1u8FtO5yFXEXTXE5/I/2V48lrLstCdidv /nL5QYetlhKLjnEykR7lF9XrLx28by75PHcxAwnv99gcymKAgtWhjmohLspr JOg7hBnk95JCjGxlGlLSKB8eF2XAGoWyeclDaeig3JciOwkGDGypYBdyUlEM xUZKZwMDPkxnhElTUtDi5n3LF+xgwOcHKgJLqpLQb02pBYEODJh2Rrfvloah 8Ov1b1SdGBD7oZ06eP0SEttkde+7MwNuDIYVa90LRdsk0/ys3Rlg16gc2N8R jNynGb+0/BkQ17+/53yXLxqumR6eSWRA+7M+wawjJ9Erxc4e3zoGtL7SLrng 4oVzvwkHLMIMsMiJFh/a4IPtSw/LxjUyoLIkzKtj4Dwe3tB3Ia+VAeK6zy2r tP3x75VvVrd1MsA7iZP9YzwYCwuNnBL7yICQ7otfGXsj8bM2ReGczwxQrkve t4cWhbnhbnc2fmXArSVziRceRuE1Aj8ZmmMM0OfrfCzYHYM3T/+5ZveHAV+F l9E+rI7Dep+osxVMJvS+CxPNUUrCNN6+wu1LmSCqlhmiEJSEH9tdPtgkwgSx 9bLmjo+T8OHXrCu9K5jAnmx//dKejW2fLdOblWLCuVFtMAni4A1s87HwDUxY l31R7lsTB382SucSG5kgFSulv3xJMnZtX/VNejMT+iiGv0XCk7F/0/rEfWpM OLpgSt3IMwVrBzto9Gxngu6Mw6GVV1PwQu3iQStNJryu3vDK9n0KjrqtoOoO TPgom2B0cF8qNjzv8ubPLiZwy9XCx/1SMaFaEXlpDxM+Fxo3Lb6ailOrlAdS 9zNBPNxY1JOSho+5el5ad4AJGo6bDR4pp+FVm29s5hsxITvzUne0ZRouKN4e dM+UCVrid3dp8tOwo4Of3F5zJoyctJBXeJqGFdbXdXUeI/k+FbD0n0jDVTlo w5ANEw6qR7Wh/7j4p99Pqp0dEwRPLC1feYiL1cyLv70+wYSGQ20vHFy5+MI2 y6cWjkx4FhYesTqai+8SxPU+JyYoFtnTd+Vz8dy3plTTM0xQc6rq7b7NxfDA x6/rLBOm23+6PH3Kxa3Bb3TaPZjwSGxnjtAUFwtas2X0vZnAwjMt+oLp2EBD j3b/PBM2XqR1j69Ix/HL/o7o+DHhVqvJoyWy6bhzvLyz/iI5T/5qe5hKOhZ9 YlejGUTyHb/PcNuZjs34y7i3QsjnRyVet+ilY27EQ3/VMCbc1X/KiziYjl/a BxyvjmCCe2LFUI1pOl6DlHdvjSbPVy9SMz6Wjm1XfpQtu8yEeLWo/ces0nHB FFdIPp5J7q/+SKd1Ov7UYzhamMiEtSlR/2rJWq5qQbc0hwlU/6ILBNl/Jrbm Rm4KE4ZCZt1eHE3HFU5O6au4ZL9MI1OMxPuhuyogPYMJb8c+cpoPpONtUp22 y7OZMDA6afllTzr2+XdJl5PLhPnmkeeXtNLxrX51uaX5TGi2WRmXppyOZ258 o8fxmKBnNbVaRiYda7Nzx2jFTPJlOY22kH4Fux7uiSgl/TJwaaihpuPm/dTa RWVMOFthdOnOby6mbLybEVxB5vd+zSWdIS7et8gt8F8VE/Y58DsNOrk49q20 vd91JiTIfmG/vMPFwtwYea9bTMigjAYmX+ZiUy9t5vgdMi8B/ommc1ycajzx 4+w9JigHZKgEmXHxKprFrVNNTDDJ1B2rXMnFxz8ys4ZamHBVZZeO/Gwazm9s DLJrI++TVdwerZdpeKOf/F7Lx0y4v8eDpZmShlW+TfcefM6EwmMHM8anU7F3 W9nt9hdMqFha+TnuSSq+VWCbrf+S3K+BLrXX+al4p9WDk7veMSFycN9w/t5U rN+R9lP1KxNKh+NHlUJTcEypQV/1CBMyhRataD+QgjvC5+9sHWPCmEC3rJp4 Cj6kfSpUfpIJF/8c2JJQmoytK9WEV88xoSXjVEFjPQfftJhmdS5gQUSjx2HR ixzMotxhXFrEgvVLw/PltnNwg9VOwWFBFggzh1RulLGxtJDufI0oCxijAqUz kUn400mT74byLHjz7P0VHYl47Crp8vCiKQuCOpttDk+H4tb7im1bzVnAixhS PacViteeG2sZPMaCxO3iIXeDQnBnm0eD/nEWfImQsGUtDsYq3r61Ys4sUKmP EfQV8sNTTyMKy4JYsDRaPfT5izM4OPxKyCs+C/4p5YyIbTqJmOep++3KWaDJ mz679KMjynA6K/KpkgWRfnJ6HzJPo+sGGgVjNSyIaUv9fmreFX0S7mpZiFnQ oVX59uZjL2SQs0BQvocF7F9VHQYzgehFgmNneS/J77RD1yPJYHQy5DFX5QUL Clf09EfdDEaBJ7nyWq9ZML/vUFbZcAiqUlAyMPrMAsrYmtu5O8PQ8trj8d4z LJDMN/gwnxyFCkrum/39x4LRwDvTbSuikVLGprVBCwh4rG2UVcKNRvsCpiqj lhAwt2TfVFpyDLq4O6ErkyAgpvZorbdXLKKp/kpfJ0KA/suwxfqfY1GqrKV9 oRgBLxWk7ebN41AlbePPCgkCjNxG91G2xaPBp/ViTesJsIFeePUkAbk1bnit J0vAHZnZmjXiiWi2OqawXY6ABNuAtrK9iWhZqplaryIBHD+bI0cLElF+ZN3c MSUCVppL+Z17moi2+Eq3vVEh4PKLVrfjfxORvtWo+Rd1Ah421Py7ZpiEnh0w XXd2BwFiirx3Il5JyA7d+TKuRQCt7JO8TkYS8pOO8J3RIeC7k4DD/GASKv+y OpNlSOIZpqn0O7BRVHa47ZuDBET+O7W6P4KNTh76LlNhQkBvNXvtgSI2WlVX V3XAnACXwtC5y+/YaNp9g89qCwK8x1k+pjNs1CMTq/ndigAZq4gdsWIcFJNg 2RprT+Kbz+vo7eIgR93my1YOBPzINpFqM+OgXX8UTDY7EXBaa21EzWkOWlPB Xj7rTEDJwy4Wy5+D/tj/fdl+lgC5ume+PTEc9GyF/ZVMdwKuSYQVLk7noKrH Dx3PeBIwViWeeKWQg2JDlDdr+pD9b5PM+VUc5KSWPi7kS4DU5yyNtXc4SPfb gtoBfwKiX/pyFjRx0No8p4v8QAK0pN68P/iAg/6adur4hRCwLu5Zg1AHBz2n bafuDyPAUDrz23+dHFRdn/tYIpIAHa9ArSddHBTvSWUPRxPwX3V1WR9ZO8u5 md+OJYB/XMH0ENm/5/XzVdEJBLRh59OInLeOrT14lE3uy5S1Th6JN6tXVCyX QkDzqLSRD8nnxQzz7HQaAdajA+ubSb41Vd4qDzII8GN4u0Zd46BEh9dTadkE rLc7P9NWxEFnJPfcO5VHgOjS1ppLGRyk97QsVL2AANlNTlfuxXKQdJiYPrWI AA2v/R/PB3DQ3PaLzL4SAvIWL2isceGg/u8fuouuElD0LjjJx4LEyzfg+lQQ kBvw6SnWI/HMr1vrXSPAQEdWmKPMQS6MleuX1xAgsPDRkp+SHKTfGPrl400C YuOKfAcXctC8wiHP8DpyH0uYKf5P2Gjg7e3tRzABjccFLTZVs9HNZKm5DU0E dHz0f+GTzEaucz+iWtoIcHslZTFqykavuhJyFvUQIO3z3qzpfhK6FTF1oqeX gAuTe1dU5yShZM3j8gUvSH3hms0WPknIoHBLza43BGCuusZnqSR050LHw5Bh AvaeN/t1wjkRpSqqJpiMEPDkVUlrkkYiOjeYZSo1RsDXo0zXTGoikjN0edsw ScC9l6M+fEhAiwWe8RKnCNj55cOaNc/j0bsbms62f8l8XiyTdz8dj+qcC7Yq /SOguJvI5f+NQ2lr6b/m58n9ancq74uOQ/8DHKqNeA== "]]}, Annotation[#, "Charting`Private`Tag$17431#3"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{ FormBox[ TagBox[ TagBox["t", HoldForm], HoldForm], TraditionalForm], FormBox[ TagBox["x", HoldForm], TraditionalForm]}, AxesOrigin->{0, 0}, AxesStyle->{Medium, GrayLevel[0]}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->{264., Automatic}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.717912567906431*^9, 3.717912580439736*^9}, { 3.71791262026997*^9, 3.71791266085874*^9}, {3.717912696520192*^9, 3.717912716674669*^9}, {3.717912753419797*^9, 3.7179128608662815`*^9}, { 3.7179129527932076`*^9, 3.717912996201495*^9}, {3.717913040342842*^9, 3.71791306517385*^9}, 3.7179133614203806`*^9, 3.7179507261981955`*^9, 3.7493881883855443`*^9, 3.7503534483495207`*^9, 3.7811927533477497`*^9, 3.890838086729701*^9}, CellLabel->"Out[4]=",ExpressionUUID->"58e32957-3cde-4ba4-b2e1-eec33d9972eb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "\[Gamma]"}], " ", "t"}], "]"}], RowBox[{"Cos", "[", RowBox[{"\[Omega]", " ", "t"}], "]"}]}], "/.", RowBox[{"\[Omega]", "\[Rule]", " ", RowBox[{"40", "/", "\[Pi]"}]}]}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", "4"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", " ", "All"}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", RowBox[{"{", RowBox[{"Red", ",", "Thick"}], "}"}]}], ",", RowBox[{"AxesLabel", "\[Rule]", " ", RowBox[{"{", RowBox[{"t", ",", "x"}], "}"}]}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"{", " ", RowBox[{"Medium", ",", "Black"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"\[Gamma]", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.7179132330102*^9, 3.7179133179295015`*^9}, { 3.7179133687859106`*^9, 3.7179133975617886`*^9}}, CellLabel->"In[5]:=",ExpressionUUID->"a56da652-b483-4aca-bf1c-40991ba60d47"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`\[Gamma]$$ = 2., Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`\[Gamma]$$], 0, 10}}, Typeset`size$$ = { 360., {109., 113.88647986879403`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`\[Gamma]$$ = 0}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ ReplaceAll[ Exp[(-$CellContext`\[Gamma]$$) $CellContext`t] Cos[$CellContext`\[Omega] $CellContext`t], $CellContext`\[Omega] -> 40/Pi], {$CellContext`t, 0, 4}, PlotRange -> All, PlotStyle -> {Red, Thick}, AxesLabel -> {$CellContext`t, $CellContext`x}, AxesStyle -> {Medium, Black}], "Specifications" :> {{$CellContext`\[Gamma]$$, 0, 10}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{409., {153.13403328722342`, 158.86596671277658`}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.717913318742016*^9, {3.717913364221121*^9, 3.7179133978656073`*^9}, 3.7179507256676025`*^9, 3.74938819471609*^9, 3.781192756333205*^9, 3.890838094654601*^9}, CellLabel->"Out[5]=",ExpressionUUID->"01bbf604-ce7a-489e-8469-0604fbd7d31a"] }, Open ]], Cell["Driven Damped Harmonic oscillator", "Text", CellChangeTimes->{{3.717917584988388*^9, 3.717917593763909*^9}},ExpressionUUID->"64cbc6ec-f9c0-4ab3-b6d3-\ 260111922dd4"], Cell["Complex amplitude, i.e. contains Amplitude and Phase", "Text", CellChangeTimes->{{3.7179177046131363`*^9, 3.71791771676309*^9}},ExpressionUUID->"ebcc050d-7f2b-4af9-b27f-\ 8ef1198b5834"], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"AA", "[", RowBox[{"k_", ",", "\[Omega]0_", ",", "\[Omega]_", ",", "\[Gamma]_"}], "]"}], " ", ":=", " ", FractionBox["k", RowBox[{ RowBox[{"\[Omega]0", "^", "2"}], "-", RowBox[{"\[Omega]", "^", "2"}], "+", RowBox[{"2", "\[ImaginaryI]", " ", "\[Gamma]", " ", "\[Omega]"}]}]]}], ";"}]], "Input", CellChangeTimes->{{3.71791766538457*^9, 3.7179177005725145`*^9}, 3.717917817228197*^9, {3.718558093728171*^9, 3.718558111456261*^9}, { 3.718558149538423*^9, 3.718558153065538*^9}, {3.718558224066182*^9, 3.718558226008972*^9}}, CellLabel->"In[6]:=",ExpressionUUID->"9615f98a-f4e1-455e-baf5-16ca38fe47fb"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"Abs", "[", RowBox[{"AA", "[", RowBox[{"1", ",", "1", ",", "\[Omega]", ",", "\[Gamma]"}], "]"}], "]"}], ",", RowBox[{"{", RowBox[{"\[Omega]", ",", "0.1", ",", "2"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", " ", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", " ", "All"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]", "/", "\[Omega]0"}], ",", "A"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"\[Gamma]", ",", "0.01", ",", "1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.717917720869819*^9, 3.7179177757803087`*^9}, { 3.717917820061164*^9, 3.7179178934039555`*^9}, {3.7179179420203547`*^9, 3.717917982876376*^9}, {3.7179180151663914`*^9, 3.717918016691614*^9}, { 3.7179211776074543`*^9, 3.7179211796717815`*^9}, {3.717985204355633*^9, 3.717985216732855*^9}, {3.718558119276134*^9, 3.7185581354443274`*^9}, { 3.7185581698636928`*^9, 3.718558214827841*^9}}, CellLabel->"In[1]:=",ExpressionUUID->"391e5071-9083-46dc-97da-972a90fa6961"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`\[Gamma]$$ = 0.169, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`\[Gamma]$$], 0.01, 1}}, Typeset`size$$ = { 360., {123., 127.28079361007843`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`\[Gamma]$$ = 0.01}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ Abs[ $CellContext`AA[ 1, 1, $CellContext`\[Omega], $CellContext`\[Gamma]$$]], \ {$CellContext`\[Omega], 0.1, 2}, Frame -> True, PlotRange -> All, FrameLabel -> {$CellContext`\[Omega]/$CellContext`\[Omega]0, \ $CellContext`A}], "Specifications" :> {{$CellContext`\[Gamma]$$, 0.01, 1}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{409., {167.13403328722342`, 172.86596671277658`}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.7179179684000683`*^9, 3.71791798368143*^9}, 3.7179180186373405`*^9, {3.717921095544569*^9, 3.717921114161414*^9}, 3.7179211803543577`*^9, 3.717950739441377*^9, {3.7179852004892836`*^9, 3.717985212193583*^9}, 3.7185580884874315`*^9, 3.71855813616687*^9, { 3.718558170350152*^9, 3.7185581825877686`*^9}, 3.7185582152918053`*^9, 3.749388213129458*^9, 3.750353457869953*^9, 3.890838078010765*^9}, CellLabel->"Out[1]=",ExpressionUUID->"ce25e341-cfd1-4817-861a-95a9bc6bed40"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"Abs", "[", RowBox[{"AA", "[", RowBox[{"1", ",", "1", ",", "\[Omega]", ",", "0.1"}], "]"}], "]"}], ",", RowBox[{"Abs", "[", RowBox[{"AA", "[", RowBox[{"1", ",", "1", ",", "\[Omega]", ",", "0.2"}], "]"}], "]"}], ",", RowBox[{"Abs", "[", RowBox[{"AA", "[", RowBox[{"1", ",", "1", ",", "\[Omega]", ",", "0.5"}], "]"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Omega]", ",", "0.1", ",", "2"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", " ", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]", "/", "\[Omega]0"}], ",", "A"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", " ", "All"}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"{", " ", RowBox[{"Medium", ",", "Black"}], "}"}]}]}], "]"}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.71792114360036*^9, 3.717921273200492*^9}, { 3.7179507478027654`*^9, 3.717950757169438*^9}, {3.717951267568936*^9, 3.7179512676876707`*^9}, {3.7179513705680428`*^9, 3.717951372999465*^9}, { 3.718558234780532*^9, 3.7185583355272627`*^9}},ExpressionUUID->"4dd5bf8f-d1b4-4df7-9794-\ 7a51d5fa08f3"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV0nlYjV0XBvBmmodzSuFtQCmSJkRyb8ObjKVCIhFSqJCiSZqU5I0kMkeK SqSEigYpzaMmxWk6nabzPAnN9Z3vj33t6/fP2vdaa6s5uFkeE+Dj42vinf/f bh8WkruxH+CnV/EgVJPGpTK1gtLcDyjO82YKaNG43qayaaL7AywoLzM/nt/w zzc7oJ8F/x0Ux2MJjb9bmBbKZVmou24hfVqbhm+L0KEnk9mQs3aTDtOlET7R 7Z9k/wknNLXrN6+mcU+yi/97yCfM0RcxauE5RaUjSDzlEwTnvLBzWUOjcuOP 0FOjnxASx+beMqYhG9EQqXMjF4YGsctoExrb/+s033c4D5kKNijZQKNWud6+ LSofHyc/fpfawcs/d23F9cR8sMzS9b/yvFwhfs2mnHzsfZHuHriTRoTkOfnk 7nxEPy3IGDOnYTrJKLtgVIDr1gmrhy1pZDVbrWT+KMDlC+NBcvtoxEXXSWzT KkRjeEajoCMNi+vG3tMmhfh37QSnhefpq0970iwL4frAeuDNcRq2Qe4Fir6F OMHaU3rMmQbzLOMCu7IQn1gW/Q2naISZW3UGnPuCmQMTM2x3GqfF6j68zy1C enaxX14gr9/AeaMSdUXYo2chkRDEm/fYkZWH2UVwWyTvGRFM4w/n9xtRyWJ8 3WnXuv8yDe9ihRRb22KsMjOcEAqnERxs+3DydzGEIvZ/vHSDxp3p9kCypAS9 JWwT1Tgaub/obV+jy2CntSRA+jON/97f98pOLIPiGU9PzUIaBy+aJaZmlWGD 9TOLDV94/Yk+FrjFKsNFVyrjQjGNdWrmHw5rl6NCXcOULqORY/5SY+JzOb5d eVMn9o3G+xRnfp3hCrSG/qKpHho2Bme+l2hWY3eh1OQ1mSHcjPSZLWtQDceq 6ooZ2SFU9oessDGpxilWR/FZxhA2xd+NZO+qxrZikVUHFIagK1+4UdCnGtFW zdIm84cwa0QhZW1FNTinS9VWaQ4hMyvH99WZGl7u/GiZ9UNgbJitfCurFtwF JqJenkMwaw1M1y6shYN4vMO8C0Pw9ZwyK6yoRbJFxo9PXkPoSvrlPsyqxauY MSLqx6vHaCvZNasO0QstPiYHDcGmO81DyroONVsTZTRvDOF+2P6K0ME66N0N UhJ4OQSNqlRfb9VvqDtrTew4Q5h47e705UMjXMR2h6v7/EKczRPCNW1BVLOO eZzGMB5dZBnqPW9FTbGJqlXnMOzH1mY2r/2Jo0YsS5tvv2HsVa9VWcvCsRil pnftf/B+EedEaCMLq04eD9Nj/8HK6olk0sqCjvtik9S+P9BfvFAnvZuFny97 P74e/oMl387o3xllYfv+EIcW4b9Q1JM2dlBuR17C0JmCJX95/2fL9r/O7RDC Xcao51+8ssl1VebvgOTuNJnbSiNoIIPe60Q6YEQdmrdfZQTTmvNCD4p3YA/T 7epC9RFsH/N89FC+A48cY1LydUfQF6tTrbykAy+Ua04YmI1g0fcHeipWPDfa JdLnR3DXzve3yrMOUGG534ZaRhDssNpbbUsnllZJ7FB7PYrnzo+yend0woH7 MyI5cxTlp4Un0iw78U7BNXPNx1Ew/Wt8NhzoRIgAu/l46Sji7zn7HXHrRGlW Ue9U1ygK62MvPbvVCf73I37/zBuD8Obxy1odndCKNLPaeXUMl5dm39Tz6UIX y+Vaiu84rN2MHx261IUMQ4/xf0PGoZaenRQZ0gXGSpkG9rVx5KzJyR+M7ELj SM/4ukfj+LXlI/UivgsnaY3+LQXjsHfK3bagsgsbwzuka0UnYPTssyBDrRsJ Nv1n+h9OoFe53P13UTditOIlznZOYsNKdWPx8m40Xdksy8edxP0dFwUW1HSD 4XPs7e3RSez01b1h/r0bpxsSxLokp/CmOTo1iepG3Cldg19GU/CNtus9pMiG Q/1XEer6FKTEqIMVzmww46J/FphN47iamUaXKxtmB3d9um89jTyjuMFxdzZC lYrqAw5Nw/24la/mRTacFBTbXS5Mo6nwXWxQFBtdSg3CVc+nEed/qX51Nhu3 F7sZF4jPwPCP7NYEiR5Ib3zMamiZQfjSp/8ek+2BWLHj3R09M2AdNly/SKEH Lu7CBVXDM4io3GP0RKUHJ9eMmPmI8JHOxHsaD/V7UM7Y19ajwkeibNUFY2x6 sDmmadcPKz5C5xrlhMT3IFPGZc+5PD5i+rfk3aYXPViieCT5XDEfua+9P10w tQdZ4l6JPpV8xCzWLyngXQ/eRXW+fdDKRx6dLbjjV9qDxZfNmQZjfGSn+nYP D7oHn4XTNiQZ8JPkcHudY2s5cFSoN5idyk+SpsT+hK/nQCOn4llsJs+nM7Nf m3JwzcpprWEuP3m+R3LLpAUH8UamoiHV/CRhQfaRm8c4GK6aCIgZ5idxWQqx +f9xoKLlvyzYWIDc7qsQVG7nwPBv3UJOrQCJsfMq3cjm4PCvyw/ftfJcveiG cz8Hbe381A22AInO9FF++4eDvXbW24+PC5CoQK3V28V60WfyJDZmgSC5NjfE 1dugF4rGXl+YHoIkaOva5oaQXmirKFpOLRAil1pV6uPDe+FfTMUHLxMivq6C VWcjexGo+1Z1jpEQORdVWigV24uGo4tK7XYIkaMtNq9NU3rhN/XNyf2CENl0 wiM0s7YXeeT8vPJqISIcnroiRqUPpuHaF2+HCxOB+VG6Rxf1YfFYwKFHMcJk +qXHUn2tPlB5X1dmPBEmf2vWqlXq9+Eod+O4ULYwYSuVSYiY9oHz8h+fTQPC pOhFT6fHqT58USrZa7ZLhISWqEbt/tAHm+Wb/EvVZxHtO8o24Z/6cKw1wS/D cBapdZyvnPuZV19dpPHVxllEWUgxSbOyDz4M1/aWw7NIxjrpgomOPqQo2ZgI PZpFWOlTQ3ES/aBtnnS8mT+brHnYsotr3482OqNoQF2UDJyNlg0VGYDLbsuo VWfFyT/yJ28+FR8ARx2Nl0LEyc536+XzZAZg8HlneesdcZI2wVUcmzsAjXk2 98pzxYln8BbVk8sH8O6UrWO4lAThi5nWMbcZQPCPSdHTryQI44PT9jlJAxDP +BupMy1J1sysDU3cMYgwz+wwMwcZ4pS3zeSU5SBuNpUndp+SITEBtsO6ewfR wfnqFnxehvwSvGCfdWgQ77NdVYsiZMiL2emrKtwHcUL1QLnVOxmiKKfF+RU7 iHlF6+45SMiSkUXyW9axB6FsXPr+YIYsWcReOCPQP4imuVrarz/JEstE/bfF 1CCu5vcrjX+VJalaFmq7xgaht22K49EmSxx1ro4dkeBi2Fs6VUBEjjSs4k+6 os9F+4OtT+fsliMZWwfFvl3kwoe9JlSbI0cizBQi+IK52CfrVHV+SI4cMYWk 9hUuDgou+/5iXI7IbbghHXSTi2IHqS+5EgxyevUKpt5zLs4aSgTHLWcQs1UH bx14yYXxs+H/ZI0YRGVFqELYGy6CVFc7HiEMUqnbrPgzh4shP5HpFxYMslTT 759rNVw0OAQGp7kxiIBGwsP3DVy4yyQ/VT7PIC0Lq1S6vnPhajo/3ukig4Sp qC0wZnMh7P+y/XoEg7AVvmj0jnOxxmJ5nloig3xichOZfBS6fJdbH3vJILfk 5mgRYQoKr1z+CUhnkE1SzktvS1M4mLRdEbkM8kRYUvffRRRE3Pwef6lnEG/B lWmntShAauHn7GYG2cVvr39fh8LRcyndIT8YhG/qteGwEYXftaaI7mGQxvHm t8rrKHi8mQ5t7GeQ1FGBVVs3UmAvU/49QDGI3W/r1XE7KBT79/tEjDCI4S+/ rHJLCo64XCA/wSASdILx6F4KLa3RgW7TDNI5WJWz0I7CwFnYxvIzSVb/qIm5 A4V9H636o4SYJKpXLdf7OAUxvQPf989iEueerSThFIW2Q5l1w6JMQrrd82vO UCiJfx5gK8Ekip33N0x5UnAe84yJlGISmvXls6YvBSWp88VRMkxS/IO7yTqA wt4LCyuPyDHJw9Y5Rf6XKSwV1HESYDKJZwvZnHyVQp3sjb2u8kyys8n5a8N1 CqaSjx0SFZhEvSFqi0AMhRv1CtYv5zDJZF126bJ7FHZrak74KzJJfU3Xtn2P efnFri5VUWKSlCrJiuBnFJzEQj+G8xxUsXLn6yQKy7xnrhXwbFtmX/X9Fa9e oN/FIp71S8IsZr2loCi/2iOGZ9HitBr9LArVGap2+jyzClssD+ZSuCPHUr/L e+99gWD9lULe/ry6P1fw8kTmae9+W0LhgoijbgUv79G2a2JXKim05jQHpvL6 MRrn5h6oo2B8WXSPA69fiTkWHrpNvPkty33F4c2DZZC2RKiNgr2Xc+x6WSbJ sJBjNbbz9j8+V9VFmknCXNxvJbMpyDDCrE9KMolu4go+K5oCmfKbx5rNJEKF MW81/lCwcvFp3yPCJE2skRPjYxSezmPmPBZkkm9dZ46LTlC4e6k0WIDn/wGX rYvW "]], LineBox[CompressedData[" 1:eJwVlXs41PkXx8e4xhjMVKIUlQopSUqq9yfKSlcqRdJVqwi7dBVSconE7kqU dVltkktJ2VxK1K6UrmZYXUyl2iK+850bY5rvz++P85znPM/7PO/XOc95nmO1 M9wniM1isXJH4v85y/CHVdFsCvle3RueqPhktO2SgmIdCjVP+96MUvDJfx75 Gw8bUNCO6xh9c4BPfARrHd4bUtAwPsp52Msn9btYBquMKTwfTE2//plPMo7v aJw0hkLnxCMzNbr5RMnlXUgxpVARkNIW3MUnu/OaDkjMKExx3qz5p4BPFtRO sftnIoXxe+L9ih7xSZFnu/YcKwrLh0NNd/7NJ5yOBFHuFApzA80vDTbyiUjy MStsBoU7WpNPX73JJyn2JayxjhRWaVilOObxibRu86s4Jwp2cXPuVp3jk0Cv Ube+OFMwN+A1cDL4xPHHfSENrhS0ztfeXnuCT7oKZgp3Lx+ZRzCrzSKIT2xH X796YzOFqnE79ZdO5ZPfinYkWmyhsGg4L/bX8XyiduDtSNpKYVNSg/0/PD55 sTpy7JadFPzZzp7tLD45mjQvnh1KYegkp/fXVzzSqrzt6x1HgbkRnD0xjUeU tK9RZTyFWNOkC4p4HrHtlfzDSaCgFJZNrDvEI6df2bu0JFOYRD0s0NzFIyvq C8fjl5H+KY5HSxbwSEtMimjmJQrtGbCuFJmQv1l++/QeUfj9+Jwc+TQT0qQz GHN3rBhHp5w6behhRDwsJl9cZyaG48r6kAY7I/Jo7qrad+PFaHJ58UOUiRFp 314g17QSIyWmymHoNZd8rvUM97QTYxI7pCUsiks44Tnbn0OMrpV//nTwkiHx 7Vjo/iFYjDfiA773eRzS9W33jqgQMUTtQxGzlQZkm9bZOO0wMUyizR6UvzMg wXM+1E2PFGO86JSs55oBiU5NdQqNESOgSl/TfZ0BKcBra1mmGNcK/Do+/KJP vl6O0dOtG9FXFK48O2MU+dbWTEIbxLDs0V8/afQoQklGHXl+VwzVHT/nZkaP yHHuy4X7Ykj7zhd7dOgRdmdFq8MTMS5oz4pflKRHzPVEaf7vxGjmcDQ+ftUl K4LdTCp0abxPz3A2vqdDVqUnr+Dr01jSG0/MKnXImuon8Yc5NCbOyC+Yl6dD NrC20G4mNAL2ZzmVHNEh289Hvuwwp5Go0FwfOVeHHG4pztKYRUPUWHIvq1Sb lMzQNd+4gUZmaFlO0Z9ahLW/q+abLw2/HbUaZVlaZPP18o2JfjQ+cL0+PUzQ IroLN2TWBNJIc1v+yG2XFtmzslDPfC8N67HuqdOstMjUMFfF2xgaRoVLXhYW aJKCG+HtwZdpRJhvzbhfziaDCrefNUppvPDwee+QzybrFo01zi2jYSLtaq3I YBPmfv3KR9dppMzvZndHskmgcFSzfT2N7zrFSVxXNpkw9Md1+hkNu3cuwqzH GiR7SWf6MSWN8HK30JJhFqnuy9Yf9Z1GtfXW+b4DLPIid1NiFkOj3sjWk/eB RbgKYUyFlgQ+3Jze6lYWSagUhIq4EnxKuscvymWRCMuXXsumSBC6WKxhsJhF PNlPdDirJMgxDsixMWWw59qZE+fXSFC09+fpbRoMTgauVk/1lmDZrBN/JPep caf2sWyxrwQfd5q99WhSwynyUU/4dgled7neeB2mhlVPS9PLKAlYoYHTvR9/ h/JBc+yFPAl6fXPUx7NVOHcyf7QqXwId1yTDqYkqOC6NLg0oGuGtcT3TGaXC vnpHocVlCfZ5B5884KPCv1WF9gXXJLiZrnh2jKvCX/lxr4ubJdDKX5xanjKM g0dcF1Z8kWD8xfHV7DQlePNNn3H7JHBYlSu8ckyJCikdFN4vgWhMV8u2/Up8 Ci/NdJBIYGbo/kyxRomNe8y+VKkkuL9yl7+Qp4TTekV2jZEUTydun7s4bwiS mTdkjfOkmJbJt3GuH0SP3gTxhgVSWKimWIaVD6K9J6Hvv4VSmOW59Vf/Pohb F30/GBMpVK+Ed8LiB3GYo3y23UuK17OK2Zk/DELdS8pY26QIy9TXjRMqoHf1 yU6SLEU21/ZlrFqOCTZfn97tkuJ543X7zZEypI4O/zj9zUj9xul1bLAMSkai PNstRcgZX0HFVhk6hd+tt/dIEXHHJ9rWU4bfEkyOsfqlWN5dv/ushQwc0YIZ SzVkePw+aKNO6wjXuaTjTdNlYKd56+2wGeHSsp7zIEqGDE1uaO3IHZn4n5tq dUiGXdd8k3kKGh6VuuNijsigPbXQ96d+GpV+X9VOsTJEONr0ub2hcaKi8nFx kgy6pHLOvDoaNpsXBifkyjAu7uLw2sM0Dl5dm+/eKEPKY88JsxViGPscNWwy kKO5fNdBJx0xch8c3uPNleOw94zle9Ujf8jl0F2RsRy3kjMmF8spOFtG/cSM kaOuraLf7jOFgP79gkWWcqwvfcs/2ULhyukdeTVOcpgNXvm2Io2CW7OnfflW OSafWnOKO45ClJPp6vOVcpSpu18ExfYjTF7DP+CpQObTP0LP3OxFzuqCxXb9 CnAN7oyztv4C/4S0/s/Jg2jNSfvtnOlnnJ35q/lFyyE8bXPQbPT9CNned1ds HgxhzprJceqyDxAnzm1sCFTi2M1C+zVr38PCpc3FTnsYt43PyhsYERoC4mdl lAzD039j8++3uiHZ5lI6TFS4db/r6bK2N/AfXJBCPqkwbeHlXDLwCpsiFg2k Hv8O/oRJrXVbutDi5//siaka7eadNUaSTuzrvDu6t06NMYlW1drpHShythEZ bmSwoWH/rnlbhSADsSW3NzEYaP0r0mKzEG8ut0cE+TPYdmRGkO56IcaZHddo 2Mbg7c+nP4s8hUgfFk4O3cfAeprR2lInIY42JgS1xjH4Fih/lsURwsdL9DWx lEGV/n+shw0CUGznG47lDG7mTAjo/UuAM3Wp0W8rGYQE+x41qhagZeZ8jvNN BrXZUAWUCrDEKN3+410Gi06/UHGyBbBtd41wFzBwUS+xbYwY0adlLhjoYBBr LfZShwgQtPwz60IXg+YDCZZLfhSg4NYvmXQ3g7KP/35q2irA2JwvVYVfGcy2 n90i8hKg2hvRq78xCL0nODTTQwBv/Sz3oQEGOj0nBEeWCpAWTdrXyUb245Se bbZgxN/p3EWVgsGVA4uUIXNH/Pt6d5coGdSEZOo2zhJgz6Wl9hu+M+iOv3Vn jK0AmoHZMoZhYHtNMHG/tQD/A2v6ugE= "]]}, Annotation[#, "Charting`Private`Tag$11152#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1Hk4VesXB/Az7ApxEU4qHSkJSSLzYb2VhBRCdBpM6WpSaJCkydykSJJE cmUsGnQk83jJTOgmRZRzzt7blOGkfvv3x3728/njfZ53rfVdr4rniV3eDBqN lkN9//+f4K1Cifd5MGw2pUdTI+FSg0rFv6U8uPRT7os/5ZhPyhaibzxI2Rtv PkS5gK5ktU+3CPSj9Bc2ryHhp7W8PbuhCBasrRM+1SAhuBdzf/zrLfRasckL 60iIFn27mOVWArE4Jz9Xn4QHUoP0j2El0M0xSDUwICFH+evVhTklsFOgs7WM ctOWvohj0yWwZHVmZqchCbLXu25p3y4F7ejV38VMSLC9OWC3x6MMniZ8dblt TkIbu8Pt051yyNNTJzWtqPsv5byPySiHNwV0xW7K61lPTCyKyyFlwznFcGsS rkudUsj+Vg48M9qTQRsSLH/JNQQaVcDqrryR7B0kFPU4Gsj3VUBnrIeHlyMJ qXHtkts1qqD4yYTLWTcS7GNMg36bVYFt5J4JcCfh97W04fxdVaDcUXtC3IME 7tWACsXgKgDrR9gjTxLk/eUCh5qqIGTwQE6HNwmRdo4Dl09Vw05MQ+3IMRJO SrTz3pTWAOuIqQcEUfVeWTYt2V4D5ucalRTOU/2e8TLwGKoBI65DKp/y5PeJ AnGpWkgfWzD/wQUSgmpZOVxuLXSw8C3MyySEhnKTf03UAnPPxbKZCBISfn+5 gjTrob9NAy7Fk1A6Rm6vi2uARO+XKrTXJNx8k3TubUYD8N7vScUKSTgQYpWR V9QAi955kuJvqPrEUxh3+xtgh+eDOVYRCeYqdjwPrUYQVd7/aFJCQrFdrpqo shEujy/py6wh4U3OYbr2+Hvgjb5rUOsmwVXP72O9eguEm78My54jIfbWeTFZ vRZIuLYynfaHmjc/TN/VrAVixLjvd9NGweJJ4q0hhxZ4PvXKeD5zFHQUqrYw z7dAWP36G35io7BgipXDed8CMNkcGCQ3Cq+LioOf+bVC4/4zW1w1R0Fusxj7 blEb6F4LI/buHQW15rzgoBWd4MxOfry1chREzwN8qnkfQFdSTHZ02xikuj5G uGUvHN08lq74ZQwehfRv3PD0P9Ba/VBzU8Q4uM1wXvdwPsO+urTMJNcJMD3X odHU1g9tB1TKMkwn4ZlrqS+b/hVUdyY+usr5CaGexkEq1gPAY4LLi4tTEL72 beyG84MQ3//2U8CnafjBbgyYqPkGrP78uty4Wdg4KWvzj+QwvMzoaXSI+AXZ 0W7a3pzv0FjRqDMR/xuu2nB6usJ+QOwO38Y1kTQUUb/ijjNvBM6mzbrNlNKR VgLbNbpkBIrMgwY3VdNR2yEldmnlCKi+bs+M+peO2JhilnrTCAQcMaxnddLR S3PpCtHXEXB8fltObYSO+l/MjaZK8qFQaIz+kmcgk+ReB9yND+8Gc3yzDjFQ /7Huxau8+RB/OKa04igDhZl2fXI5wgeruyin+yQDtXS3Hi4/xQcJNK00F8RA h+TqL8dF8UF/lW2+2i0Gio0szDd5wQcTr+Ep/DUDCfzjZCPmC+D+HuXVX5hM tFzhaGzaQgE8qutfHijGRDsLNymUyQhgfQG3XkKKifJFuOLMUgGstS8bX8li ojOh1iuOrhdA6nl2vpI6E9Hif2vbuQogTtP3sNp2JpLj+dguzhLAiNXyc/I3 mMhiLzTpPRPAwMEfFn9iqPNzCvb2LwVw/C+lSwNxTNS9qdIxqkQAp7suzdxL YqKkf5fvFbUJ4Gku8T0vm4nU/ms7/FkkgCkZrlFoHRO5hGTyRTQhRHQOqs41 MFHkikvHFecLYYm2gaNvMxPxD67zc5ARwmQpTdO4i4meCyMCK1WFwPt45IXv ABOZ/OFEZOwQwtkNigKrX0zkU7bd7NguIWgcvFgq8YeJ4i9zx3VchLByZ11H FR1DY8xAtyJ3IejZWEarLMBQptgLw/cBQngcNhV5XhZDXfXlwtuBQghIX9o+ J4ch7FpL2u4LQvjgqsU/y8KQuxQu3R8uhK/yLraOyzCkuEjj+9h9IfSlXrZO V8WQZbthcmGyEEwfcs8NqmHoVJylU3CaEBb1xSxYpoGhFtbBsnm5Qui91Cvm uw5DkcseJSiWCcG11Vs9Sx9DU6oK1uZDVD+q/YNOWGBIdWjVHwZfCElLsnzY lhjalaH7qpag6pkdH67chqE8DXsVhxkhLN6978iYDYYOaV+b8ZLE4TQ5bvyf PYbiiPvP1GVxsGziHjXfhaGK50+9hQo43L/g3xbviCG2Xk3rGWUcEnMTWZq7 qfoN6VlRujh0TJk59HCp+mek3Xca4iD4kSou2Ish3SI2S46DQ2cSN31iH4Zu cjhXkrbioPcuzH34AIaK52yMPGxwiL7HOd7qhqGRkj34ajscpiXbDPPdMbR1 01nuM1ccpE3Jrw6eGPJnhMuc2o9DiI1MwSIvDKVUxtUYeeJwLN5cqZ5yU2ha 8NwhHN5FbVxy+iCGfm0t0K04isOsTXcKyxtDmgvKv4efxIGlY5adS9m1rjl5 +2kcvHWe6JgcwlB4VJ+TTBAOyU7BGsWUX9oIJTpDcCBUvW7q/Y2h61as67RQ HOoDVedlUvayBCmtKByUIm1Fsj4YMrHwuelyE4eBNG0fX8qLNt+WvhqLgzHP fUsJZeqliMlLwEFm6G0o/TCGys0GZHsf4uAksV/ViHKCqWTsvDQcnJ3Tl3pS PmmsL7/hKQ53m03cL1K2Mjxwd18uDq/6xfBblJX1I1iRBThEtaJ3sZR/6j6/ 96IQBwcbbm005SadHsXPxTgMN8rNP005XZuRKFGBww/NgIBdlIO11i4zqMWh dqpafBVlJ02nJI9GHLJ+plYOUfddq35h+Y1WHNaFfnvwkDJD7Z/kN104lIgK b2yj3LuqWXnwIw5litFxg1Q/8lWmU6S/4GDtyMo5RTlSWWWl6RAO/kYeLVNU P92X26Qd4uOwsYQ3d5yy4bIA1TskDnV3eDofqHkMsarVfsxS9RnceHCFml+J PJ4hTyNgOkyyqYqa791FizXQPAKOPI4WzVB5sPjr8Np70gTYZSshMw8MKUne yamQJyBVZOq0ncrPuPjbdfgSAuKN/fbbUvl6PE9KZ6sqAXfaQ2zX7MdQENMg /6QGAeqMug10Kp8OdDfdJG0CkifFFjZReabNPd84bkTAM720B8gVQx9me16x zQmo7+90GqLynzfNMLTZQkDhyhfzLjpjaP+Ek3HqDgKkxfyco6j92Th2oahx FwH6O+KmZ6n9kiT/MZ12IQDtHH7gZoehIv60mZ0ndb6ExOm21PswkLR57gwB 8p/VNLOpfSb7qyvVgwloPrBJ59VmDNX24RZOlwk42jHjXIAwdKYXbcu+RoCM V4pCOAdDHa2D2/ekEMBfkb8wTg9Dt8q0nF/VE+BsrzFpp4yhg59uSEQ1EdBe nbOxRAlDRrN46b52AtpCc1JVlmKoXy9fE/tEgLuWlmqdPIZ0MvRpjiQBi7f1 vI4Tx1DnoN/f4iICfGSU7sozMfQ/spYFCg== "]], LineBox[CompressedData[" 1:eJwVjXlQlGUAh9f9IpdrYIRQoMRjLI7FJlo3VsHfS8ogBHkiRwxqsoIblZV4 AYKNOaDEZQrKUmI5rCDtcCfrBkHIamGOfR9ypasDEqDwsexyLCtv9Mczzz/P zLPy4893yIUCgQAL/O8L9iHhqUIe7gdpjN7CkFv7BbbhjjyKGtz31I0wJD9z X4vHazwcvhoctB1giH/Tap+O5TxC42zd3u9iSLavSuDix0OaLirnfmGIURPd lyHhIXRVN1nqGBIfZt0wLOUh6vaMcqtmiF+i4hPtBh6qxTb7ZNcZ0ntF3JUQ zONPU3yg6BJDvJ2rK2ujeWSYaitNRxhy13xz9/YMHjeqvx47LmaI2bDbQX2K x05pYGH5Wwv96GSH3WkeKUdZY+cqhpzt85Xpsng4SYbWWbkyJPRWmTsKeZRe viz3sGKILj1bL77GI8jnfp5jv5DcFsQoRH/wSOMbgqO/EZLWV2fSm10mkK/I ylxyZxEZKU8XLdZMYP2234TZdgKi8lzsFrnLgCUBUU13eiwo2tidm2Y2QME7 ldQXz8Lc3naypHQSjpfDj+XcnsKkuNbUss6Ig0UPvMfSjHjda+Sv5l4jXPdv CW2MMaD/lTXvtB824ceS48kdV3k47jhh32o7BXWZTFf80RgOS5ZGFKun0Bon SQj9fhSfTTU6pWyZhnJvoa2ffBiXIq4E+oxNoyphr9kSOoTY0zljQ1kzcIp8 7sznDSJPfN5NuWIWBwJq/w12GIDp4JPrXu2zsO78qfJT5VNMnHm3RRtvhuTD opqLiU/whqxT5mM1h7CuYzU1G/TQxp1am6+aww2tdY9f4iNM7pFVzBELlJvn kxKv9yN2xj+bPLPgfkhjU6mhF1GHAsbPZb5EW6twZUN6D3QxsffvLZ3HXabb lLm2G4ruZudRzTx2xjW94PVduCr10ttHUrAqKxHXyoGMn1TdjKIgtaKjNr9y +KecPSSPpZjbl/9d0E0Oy1wzF2n3UPy969nDOjWH3LmuVckKisBmLkmt5HCi 5bT8bgZFSkfd/OQRDjvC9CNnKijWVzkn14s58EJprV8Vxf5755d7eHL4VnMu 9ZGaYuvWrQfOruagE79nJ62nuFr5ZY3cjcNGh1zfwWYKzRchnm+LOHizGw5t 4igeCQqe2g2w0OUU+I8/pFBcbMvNe8xCHjwkKOmlqLy9+XenPhZXGgoLDI8p 1sSF6FY8YOFyabimbITC32j0iGhhUbcdqREvKAa6iLBfw2K7zYVNs+MLP6VD UnIji5xUwm4zUZg/iNYU/MzCW3JRaZmmiMlKKH+zYuH/fDRBZabwiljmrL3G 4sC1IN9dLyniu7WCyDIWTHyRiVIKI/dD8piSxX9Ka/+E "]]}, Annotation[#, "Charting`Private`Tag$11152#2"]& ], TagBox[ {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwV1nlUTe0XB/BSQoX6NZiaJ0MDGYvyLU0aUIj0ptso0SCE0luRIRFKRSQi SiWKSsPbPCgqKkNSuMO596bh3qNQkd/jj7PO+qxnrXP2M+291b2Ct/pOERER eUuev+/gUk2z66mlGDuR7RgoL0D0C/XalqpSBKjEW+UQX+5VtZzglGLLR8Uk LnGhqNJGt+VlqDGTWO+tIMB3W3lHlRdlGFrdUu+uKEDEB3GPO7/KEZh8KHXP XAHiJjhROYxKeD3PMS5VEuDGTLZoz+lKDBhI7RJVFiBPlRkjlVcJmSler22J 2yz6zgb8rESl54eXPcSyF95eMkiowpqXNkNiqgI4XGRt2eVZjQHVqDc+6gJ0 qHQxehNrMKrvIuGvQ+Kfb9J6OasGmmlYV0e8VDFzrWVFDZZ1P32nvFCACzMP K+RyavDjt7pNF7H1L7kXx4xqMaPz26TVYgHKuretlu+rRU/knWYTPQEykjql 7RfXw+nb6+ijywU4INlZ+qyqEUP7algqZiS+kwt+Snc24vKsNaNxxIVj3qs9 qUY8+eXs/oN4lDdSOGNmE5YmMta8NhcgvEkxz9W1Ca+uOYidsxDg1CnX9F8j TYhUePBjuo0A1ya/nDRb0gxZdbcftpsFqKIF9s+TXuC8sohR624BXFaE9DQv eoX/+lL2/4kSQG7DdJXksg40pDr5huQIoNOeHxGu9gYutenuN98KMPH40N6G 0neYofuSqpAUIsPljtmQ9QfkhU+Ym5gLcSvy80rD7I94naowzgoVgjFmUtxt 8gmHvVuLXB8JsS6sa3Fbx2f4tIVuPMYS4pFLVZCKKBNs7XlKk/+j8dZsMHy9 BBN1O73n1sjRmFy04Ky7FBNeDi6ZMfI0HMaO3EpXYGLDuu9+0xRp9KcavFJZ wsT+qs4zM+bR0Oq5aai6jQlnsVV7f6jQuL47YkT1HhOTmltfHlpCo8YqR8Qs h4m0BQNKC3Vp8PTfS3s8YuLaXBFmN/GayRXat0uZ6JJWaDTVp9GV/tVZrY2J 37o7eieX0pj92bVE7QcTbnnzTvquonHKyzhc3ZaFJA1Tz0rQyPa/VcbfxMK5 xoQ328xovDwwdaJgKwvtXcdLeMTyUa+Pb3Aj427yNTIbaGTe8P/XO5iFyFl7 3+6ypFHflRp9L5mF7AUHPNs30phqM35mMZOFRFHvhxucaCzZ7NEkpFg45ZTo Xk+82blxWtlXFmr3zfW12kojxTsx1m6UhT2NCsFW22joRC+J2z+djdvyNp6m zjSsS13jHxqwwdybLSu9i8YZ3fIrhsfZMHrWtkrVg8b24HW3PKLZsNizZ8oV YvUn5TmXTrPxZel6/lRPGhVrK2oGL7ERc+ipKJ+Ytv1v+EEmG9kJHPNMbxqM vVX2Gm1sSPTHqw3toaGXh51OnWw8W9M5b5sfjfHhKq/o92zUNgQplxCnHK0O 62Oykaabj4i9ZL3O1GRd/8GG2rcjXeP+NIzu1YnJqXOwoviex/MAGhJ8i9kb dDj4ukwmVjmQRqde/fwQXQ7ODww+CCEOelpv2L6KA5WLM7sVg8j61jUwzttx 8CZdv3l7MI2D06z3l23hoOL4iewMYtg3HuFv50D8l0f4IPGHjsZ4GwYHZ8U7 hCcO0JBhNpWLHeZAV14glx5Co097Y9PyMA6qWuQCmMS5/s87PCM5iF1H5Wsf JOsrfM6viuVgqChPkE0cIdIyJ+ImB8/ee9neOUTDztJOM/cOB70FN3t6iefE thh8yOKAtn7mOPcwjcLZL6yMCjmQn3zw6RwxX+XloZFGDuJ73UIZoTQ2rNZe J/WSg/917p2XQJy2KXKKxmsO6kfX3K0h3hyxLGFLDwdNFcd9VI+Q73Un5ecM c2B61eBUK7GUcDC0ZoQDj6Vck+/EPtNtTN+PcXBlmWaX8lESz5qxF1PFKej3 n7/uTxyRtJvvMZeC/TvRoG/Eb3KLHx9VplA9/FRU7hgNg7rZxy5qUHD4XRNg SPxZWCNRoUfB8rJbwz5i4xkL2joMKczz0yo4TZyodjiZv5qCdnfZgVvEVlt0 tOaYU1DteOnXTpy+J+qrvjUFM5kzNznEP/99X2hpT8Hun3N3x4mdkg3D/3Gk 8C73+7FZYTRy8uLMDzpTiAgeUlInFqtnTT/nShyXcHE5sVuPyatbDAqMXaKt G4iL6OSrxT4UCgsZ75yIZ0kOu7f6U7jPa8tjEPupb9RhB5H5tYQ4BBBXG2UM jh+iEJu1v+go8XzH8aeyYRQMN3+mThAf8tsWsSiSgpPMyKc44peReRaIoXC6 7sWtRGKdlKlSO2Ip6NZd0E4ljnro3hEQT0GSdjuQTvy+viQ1JpHC9AqvqDvE hh9lPK9fpdA9p8HpHnHcN/9FBWkUCmJzqfvELMm64aYMCuOq602ziE00lEr6 7lOYjLy3/e94snFo5Gguhcz3knqZxEOObVbSBRQ0v12tvU28ce/CmZrFFB4s PjonjTgjKrrLuJyCVlDn4hTi8ZTuG47VFDh2739eJN6ev9zbr4GCF7sg5gzx w4bzSyJbKLDHLzRHEEv0soVJ7RQwkNIcQswYMS3N7aJwruj3SV/iZ1JXo2u7 KXSODI/sJJbVFNh095H59aep2BLvW2s7W8CiUBmx8o8RcZ3TnbcSfApNq7jJ C4mV/CduKg9RmGZLfZEnbr/6UM/+J4U/NxJSvpLzsOiRxIjnbwonrt393UV8 spFRfmwKFwhoVfyPeOWorN19aS5u31jndo44Tveula8sF9N6HoUE/z2vnivN tRS5kCgQ99pOfKFth9EdVS6ESQ2v5hMzxXkrPLW4uFk+uOkXOf9G68KWqi3m ojMv6O5HYlbWDZ305VzEm491pf4d79PT2L2GC5OwukdHiC/KVyormXCx6r6f x1bitSc+y1+34uKLe4OZBHGiq7ZYigsXQ6W5AwxyH3mXiye37+bCYuoc3xXE 65tsxuW8uOgrCs+fSty/Yp8wYT8XayUaC+6T+24+89Gn+EgupAtb/D+QfJFi YdbjEMNFv962XZnEA2Gv30rFcpH7c55CIPE16lvruQQu6otlh8dJ/hFUGVWc zuTipE+q0nRi6+/NJZYPuDAK+bP7OclfaXr/PBHL58IrTc7vLPHG1H9zTpRw oblIqk2U+NbB2mv/tnBxxK76E5fky5HsbUkm7VzUPV6wJZ3Y7hP70kQnFz5W NSe2EX+3n3Y2rJeLj1mNBmUk327WdggNFZDvMTjXjv3N1//0Hlg5SuJd+UxO m3g8ISjg2xgXi1i3Nr0i+f3e5GXvEDEemo5k/NIg/vXujVOgIg/+RzcYl+4n +TiOYeBrwgNHz7gym9STnN+So3HmPHSNic8x+usDxeWPrXmI40wfbCD1J3vH TNtfjjzo2rvP6iX16r5GufcVXx6OSE9VHPMh96NMMbXmIg/Pm53LuaQe3tav ZXCv8DBr4cG77n99O1BnZioPTtc5fzoZJH+dqX/icpcHfZd6uTJ3sn5bD7YN l/CQrWyXesiNxtX+VjGVLzyI7hjJv7GT7NfusBYLiodnockZYzuIX2kl+H/l wcBuUGQHcVLxcZWiUR7sZKeJS5L6nXhysbGDJB9hg3NlGKTex88/HRS+go/Q PyxOhQONGDuT7ren+Xg1oSxmRfqN6I+qXZlxfJxx75CNJP1JRJBY+8FLfDxw iiwpWk/jcGJL/axUPk448hvVTEk9+ODy2DqPD1PLkwKOMQ3LfaFnizv4+D7N yFpvBelH4vJXpaj248uX0JEsLRpTlBKX+Wj1I2gyMOGJJunXHobqLl/cD7/A H9X/aZD9fm2i3ra8Hy86o9+1qtGg5r2QlrDuR5qT2JePSjQaH3BZoQH9iLUP dC8m/d3ZZrVE59J+eLlKTt8pRvqHayoucZX9WGrpm6E0hUbHHiWVqrp+JJcv ufhZhIaK+NycRW39iHIJ9vKeFOLp+tm1E8x+9LxOGts+JsTnJ7+FGdJfEWOY NJU3JMTa9A9OQ4yvuBnCmtb+XoiBg0myZyUGYGHr1VeQJYSywv4rd6UG0B3j P65wX4jNJeYK1TID2DrgEX8sU4iCiaG5Y/MHsJu3cL5xhhBHTtmq7V86ALZH em/WdSFEUiYNtrgMoF5y9WmTeCHkSvc6zMkZAOjMfdYh5P9/TM5mbRpEGGfG Y9FVJF67Qck3kUOoEuj7WhULcKlaz7moeRhGX4Vu3+cL8IYd4jdjYhhevy/x w6cI8H8dj+my "]], LineBox[CompressedData[" 1:eJwVjWlM0nEAho0uO8xWzkq7sFh5dWkk03pp2HIqo5yl0eEq7ZqVGc4GeTWz i9RqSVqt1DzK0KV2jTGcZmrr+v9DU9PwCEvKQBFRUH/Zh3fPh2d7Xuah0yFR DBsbm7UT+8/bdtuDJQwDPN0UebZWPaqnDSeoHPthbYmVBlb2QVeUYDtd0Y+c D8wCRcAfFK+e7rQrdACmi/Hfphl1kG1pTj9vGQCr96wyM7UXltqaxLv3jRgr XXy0i/ULRo8KU9XGQRyzLbwapOvBYlfdJ1XrIDody7475GvRNoW1vlZkguyH PNIl5QfmhojtqmcNIUItap4n6obIewH/TtkQBIdjj2072IVTQy/nxwWY8cpF 80AV04ls/sPN7n/NYA6/OlR9vgPCVOnfn5eHkSzw9dILNMjwuOV0b/kInp56 ExfZ0A7T8c7HrrUjoN9NytdsbkN/mleV8oAFkk5x/HFtK5ZwPnDcp1qxlGIM rLjSAuW+lDWZxVZoFEE58sBmGCM4T6zcUTiuLVlBvL9COOxzhdszijZO6V6R cxPCYvz015LHoBHy2VmsRtTvEX7+uGAcziHtlD9PjRPNKoffinEMFi47Y973 BXls1w67XQScC+GG4Fs0uPrE4tdhBCWsrZbuDBrtReqYKCFBeVy0XiKlsXBR 8iRlBIElmp9TepFGurXJJfoEgWp3Ru/SczTEValR75IIzEmrXN330wgJ7NCl PSH4leIzy7CKhoHBrtggJ/CTv9bmr6RxXXFN8r2MQMysyw1n0qj32DSb/Zwg IT1M+caJxhb7dE+tiqCbN0NcZEfDTe0bw2skWOfZVZdlpFAvveGj/0pwv6ZR Fm6gELXtp83dVoJlg4/8nfsoPHxx88aAhoBXI/fK76HgmN1bnqsjYCaGRihb KFTuhITfR2C8ZD8nrYnCzpm3eSN6AgY7XCb4QkEq4ap3mAhcpCd9tO8puHln 3Rs1T3hSJHjWMPH/53dksYXgcUkQN/EthSMFWz1DxwjiFfYzg2soTD4gMxEy 0Y8teepUReEfrF6RUQ== "]]}, Annotation[#, "Charting`Private`Tag$11152#3"]& ], {}}, {{}, {}, {}, {}, {}}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0.10000003877551021`, 0.2773501096942674}, AxesStyle->{Medium, GrayLevel[0]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox["A", TraditionalForm], None}, { FormBox[ FractionBox[ TagBox["\[Omega]", HoldForm], "\[Omega]0"], TraditionalForm], None}}, FrameTicks->FrontEndValueCache[{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, {{Automatic, {{1., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {2., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {3., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {4., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {5., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {0., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {3.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {3.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {3.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {3.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {4.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {4.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {4.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {4.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {5.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {5.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {5.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {5.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {6., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}}}, {Automatic, {{0.5, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {1., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {1.5, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {2., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {0., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.1, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.3, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.7, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.9, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.1, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.3, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.7, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.9, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.1, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.3, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.5, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}}}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.718558276041397*^9, {3.718558314180106*^9, 3.718558336179922*^9}, 3.749388245595086*^9, 3.7811928819347324`*^9},ExpressionUUID->"67350506-942a-428f-bd23-\ 4a022dc44937"] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"Phase", "[", RowBox[{"k_", ",", "\[Omega]0_", ",", "\[Omega]_", ",", "\[Gamma]_"}], "]"}], " ", ":=", " ", RowBox[{"ArcTan", "[", RowBox[{"-", FractionBox[ RowBox[{"Re", "[", RowBox[{"AA", "[", RowBox[{"k", ",", "\[Omega]0", ",", "\[Omega]", ",", "\[Gamma]"}], "]"}], "]"}], RowBox[{"Im", "[", RowBox[{"AA", "[", RowBox[{"k", ",", "\[Omega]0", ",", "\[Omega]", ",", "\[Gamma]"}], "]"}], "]"}]]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"PhaseB", "[", RowBox[{"\[Omega]0_", ",", "\[Omega]_", ",", "\[Gamma]_"}], "]"}], ":=", RowBox[{"ArcTan", "[", RowBox[{ RowBox[{"-", "2"}], FractionBox[ RowBox[{"\[Gamma]", " ", "\[Omega]"}], RowBox[{ RowBox[{"\[Omega]0", "^", "2"}], "-", RowBox[{"\[Omega]", "^", "2"}]}]]}], "]"}]}], ";"}]}], "Input", CellChangeTimes->{{3.7179212917369204`*^9, 3.7179213123034415`*^9}, { 3.7179213553697395`*^9, 3.7179213585998507`*^9}, {3.7179512201923237`*^9, 3.717951223352206*^9}, {3.7179513088723483`*^9, 3.717951335551798*^9}, { 3.749388303307756*^9, 3.7493883488421335`*^9}, {3.7493889840414505`*^9, 3.7493889854010024`*^9}, {3.7811929801018515`*^9, 3.781192991012371*^9}, { 3.781193292390094*^9, 3.7811933196813107`*^9}, {3.781193409314311*^9, 3.781193474577293*^9}, {3.7811935647715535`*^9, 3.7811935785925255`*^9}, { 3.7811936372584915`*^9, 3.7811936550782576`*^9}, {3.7811939464027557`*^9, 3.781193966974394*^9}},ExpressionUUID->"833c9070-2460-49ae-a608-\ a0ea9b06e2af"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"Phase", "[", RowBox[{"1", ",", "1", ",", "\[Omega]", ",", "0.1"}], "]"}], "-", RowBox[{"\[Pi]", "/", "2"}]}], ",", RowBox[{ RowBox[{"Phase", "[", RowBox[{"1", ",", "1", ",", "\[Omega]", ",", "0.2"}], "]"}], "-", RowBox[{"\[Pi]", "/", "2"}]}], ",", RowBox[{ RowBox[{"Phase", "[", RowBox[{"1", ",", "1", ",", "\[Omega]", ",", "0.5"}], "]"}], "-", RowBox[{"\[Pi]", "/", "2"}]}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Omega]", ",", "0.1", ",", "2"}], "}"}], ",", RowBox[{"Frame", "\[Rule]", " ", "True"}], ",", RowBox[{"FrameLabel", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"\[Omega]", "/", "\[Omega]0"}], ",", "\[Phi]"}], "}"}]}], ",", RowBox[{"PlotRange", "\[Rule]", " ", "All"}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"{", " ", RowBox[{"Medium", ",", "Black"}], "}"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{"(*", RowBox[{"Plot", "[", RowBox[{ RowBox[{"PhaseB", "[", RowBox[{"1", ",", "\[Omega]", ",", RowBox[{"{", RowBox[{"0.01", ",", "0.2", ",", "0.5"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"\[Omega]", ",", "0.1", ",", "2"}], "}"}]}], "]"}], "*)"}], "\[IndentingNewLine]"}]], "Input", CellChangeTimes->{{3.71792132153561*^9, 3.7179213220314097`*^9}, { 3.7179214022961807`*^9, 3.7179214080320654`*^9}, {3.717951342648021*^9, 3.7179513609446707`*^9}, {3.7493883821081595`*^9, 3.749388532964489*^9}, 3.7493889915934362`*^9, {3.7811929341315374`*^9, 3.781192945479453*^9}, { 3.781193328811599*^9, 3.781193347756266*^9}, {3.781193486144964*^9, 3.781193549295969*^9}, 3.7811936686937976`*^9, {3.7811939517323084`*^9, 3.781194049745273*^9}},ExpressionUUID->"7c55ec79-f06f-406e-8f96-\ 60bdbe6c63a4"], Cell[BoxData[ GraphicsBox[{{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwVi3k4FIoaxqcsD1plPR3bFF3ilpSi6EOO0sZpkRYhCSWJdFXUdFE4FTHW HF2SrXss2Zf6bNnGbmiSYTJjFrNplDB0j/vH+7zP7/m9L/HSjRPeKwkEQvhy /t83ajbbpKfVQMNdygedYjKSKMSmTqwB0lB6SWoPGePpuvbSyRogPAnwUxOR 8e0KrUMXzGqh4SLLReOfSTjrqOqsQ6kFknX6n9ZvkjBsRNYje7EObNznmzTy kzFWOvmg0P09kAhfF4g5qTigQ3WnJzQCwWDeJS43AwOVBmuqsRX0XOVD29qz ESXTR9rJFLB5lnjxlW4euu68+bnDsA/+o0u6W5H8BlXsFHSSagfAuXeswtSt BLf0FoXd1RuCkhTzd6ritygtCfb9UPMR1len73CbqcAs12wbkcMIMJK9zBt3 1uDL+4xdO/JHgZAZaG/7rB7d560qP1mNQ/y/xnafdm7AfXeoRj0DDNCUnp3y CW3CYlcM0FkxAa6b3Q9bMlsw8pLlXaIjEzSPKSyoS9ow3+9lLe8YE0JdMkai frZhV6CctPQEEwhmDfOLSu2o+qD/nt0FJsz9sNOQ1W/HnBd+4V43mGCTXNp5 26UdW6hppNdJTLAgyGjO1rej3MGFR0YTTGifXKv9Mr4DHxnXJe64x4LokOKy 8VMUPHVj30sP0jI3qxzlX6YgsayuMC6KBdOrTr2VCaFg/d76RmEcC0i+UsPz SRSUOL4TF+SwoMHpRXTuMAXdffHIph4WOI+eq3x3vgstXjfLqBAnwYJOLPMN 7EaeTlfwt9ZJKAlaqBS29aLdboN9q7omgXAp2dXzcy9mHLu/clP/JDgrFmxk i3rxeJjpc6fPk2C1eLNIeVUfvv1ELioUT8L6N68rqsz6MIzsxvPQZAMjs9qz NKIP1yqJL3b7LXMISVBm0o8+xENbWAFsEETsaU3Z048NFlnChWA2mBxU6Yqy 68dgn5NhhvfZkHp1PInk2o+0lqq0iAQ2NMTL1Uki+zHrAYlqWceGJ1Ys/+Hx ftz1Xflw7moOhN3osFLKHMBY41e/eStzwMR5xiW8YAAZnrts9dU5EB9YoyAt H8AnPS4W2boc0Apqvq7eNYDMvBdbMs04QDqhNNazMIAJ5wxkkl05oKqQVXzy 3CBOo0V9VA4Huqr/itLeREWH2Y4q+wIO+JoqLq7YTsUMk/NlMkUcyLcmqM7s o+KhtPDCh1Uc4H5l3pSepuLLoKbU8E4OnKJXCXJjqXjc4GhIyDQHopXkou/M UvFNrPs2bysujDb9sZBGG8LCJaXvsbZcKE8N+hnCXebAyroSBy4IDmz+4jU3 hPkuaxwXnbng232gOkRzGHM31XklenNhLtNm+tbZYcyqVU9rfMYFhbmvVxbH hjFlqltG5wsXCH+saFGZ/4jJbnc6D7C5sL5t0MhvFQ2T+/Sf+/G5EJ/omUTV piG58p5Oxfflvf0BNZEdDRP+bWR5VIkHgWbRou3PaPh0Y1TA3Z080PuW1qps 9AkjDlt9Go7igUJ9IIbcHEHSqC41J5YHqY6k0utRIxgWINMbFMcDC+H8g/C0 EbyV0NmyNo0Hl4MNTkw2juDlEdcSh//yIPR5itWIyme0vxryuHKAB5FB9hhe /xnlYovMk3WnwHVoc/kXIh1XaiWYXtafguq83XRDSzr+/CvE2MxoCvyb70Q9 dabjbL8VscdsCmh1xnolD+jI/oWyWt5hCiJ7Xph4jNOxtYDDDPFf/m8j+Kbn jOHjDr2E0zXLXt6MvkKfgSapOq6x76fgnPHDNJoZAweuaOlg8xSMat1httgy UEdWs9CwZwrIr/a0jrkzsHz/uibpxBRk73W7pPUnAxllS1+zVvNBqZMtYP36 BfdmjvwucufD1YNZTkLjCWT40zQ2e/NB4pIU12U9gVH7hulnrvJhdv0u8zan Ceyj9fs13uLDmJgcue7WBF5R6XhIjuGDjBlpreTdBCZGV5XuLeNDZFYPbdsZ JgqCyMqP5QVg9WosZWMWC7XVriW+WiWAC0UamwIqWXi8ylatYb0AGo7/4xcm hYWlUpHm/EYBWLPKwewHC29HOupd2y4AO2u1X/2dJpGQ/HObk6sAfgyG20XK s1GlxveoRqEAZG8Pflz5nIP256FnZ7EAYoN6ry0VcvD2kpqzc7kAtqYfuEj8 wEGabfPJmPcC2H9Wz4s9z8GMTu3z0gEBVBdmKPh7c3HL6IDfuFQA4z8td2fa 83Dv/6we5x0TQleTSHrSgI++DUes/U8IITinbHbQjo/JD8/NmJ4Rwu3r+uT7 HnyUyIS613oIobtQz+NUBh8LFMr2dAcLgVKqWSGvLkDNDUZcSZoQFuW5kXnK Qvyhr+a4ny0EGxTElGwVY/lhodLQfRFoqR2qUpz5ik8OqT8hRIpAoEhr11OU oJcDrDGJEUFKlZri77oS3GD3fF1EogiWPGP9F49IMNDSXHVHvghIE6yKO7kS NDYM137aLwL9DbuLx91nMFtujelv+mKgZo+9D5v4hnENJqcrOsTgdvjRG9kN c3iZ/lQppkcMxMzsMvOtc2ixIMILg2Io94kI9bGbQ8bO0q2ydDEECTwfUoLm 0DTPnHByWgzKL3hPYwbncIh100dRKobqpeskQ8V5/Bv1qjqB "]], LineBox[CompressedData[" 1:eJwVz3s4lIkXB/C5ve+MSMQqYn9sm811hSxSZ0iF5BJJsqhFKqVWSaxkkySE dUlpU9myrai0XdzmLCklZX8kS4pNF7nNvO/MuIy8v/n9cZ7zfJ5zzvN9jtH2 mI0RHBaLlaOs//eCues8EzliKNz8yOuJ45TopEU5S8daDJZmZ15s11SIpLWB vcm2YjhQJNr8aqlCFOKhcmfITgyK+R9+cxcqRNY7du2uXyGGgwq2cHavQtRT at4VvkYMH/dovmtuVYhMtW/+UR0ohtBBF8GJn2dET6bvB/gmi8F/zQKH3n8/ i6apgHlVKWIYLH7Pej7xWWQ6TD9SSxWD11H1rkq1WVFGr4VDS7oYslx3c63t ZkXudRcXQZ4YrBuu27ikz4pakk72m/8mhnkT6wujlzKih6wtuwStYijzbjhn aM5C+aTsq8g2MZw3vV8Cy1loLMnrbXouhvdmxq5+q1iYNvDUM7lTDMKykuRA HxauaRR+K+8Tg/3l07/0xLLwwbGl0rdiMQz/eGu0/h4LG8nJJJGOBLoW8o0X ObJxrcFXJT66Ehh4ujwpwYWNrTaeNQOLJPDTo3jtNg82doaVyrlGEphvuHWZ 51Y2fqhxi3Ezk8Bjl7a46kQ2qsUUh/0NEsgoi81eVsPGgJeOq99GSSCn706D jyUHe0bDtx3YLYGtN/JTrJdzMJR3OpnYKwFtw3I/FScORi17W/tNrASGc5sj C905mHjqlG10kgQSGs20rcI5WAqvlshyJdCism4ipoiDn64mCfi1EqgsPMsp kHNwtK1JGF0vAdFxL79uBQfFtMrhv0USOGZZ8q8Wm4tyKBw690ACOjeNxbGq XOR0Vz6xeiaB/BR703/+w0U9QX9m0IAETgd5qaxex0X3KBfNSj4FK8M3yT/m cNEzO91daw4FOVsO9a4v4KLX7Wcp8WoUZAebJ5UXc9GftZVy0aRAV3XEyPsS F8POxHa81KPAcGjrl37VXIxvKStgW1Kg5rVzIXRysXwpX2+TPwXjQ4NrRzV5 yNrTc3c0gIIrGS/DPn3Bw8Cb1zelbaGgoS40f0CXh3xH/9y7IRRkXZx7sMGI h5HrLwr0dlKQEKi70WYZD7/eu2LidRIFEW4VffO9eVhaHdMZdZWCvsZgnjiN h5MTLj+yr1HgueL9YdcMHvo46WicraDA8pJ8XX4WD5kHdetbb1KQoRuhYZzP w5AulSaLOgpKA3KdtS7yUH/q8k2qnYLH4yM/LKrhYdGq7uyfpilw1I4z0R3i 4e2RojkqnykI9o5c3DvMw/+e3ZxWwFDgbnMiq3iMh+oTXUmVPBritE63qkp5 mFr1IrpfnQbbeveSh7M83GfY4eG6mAbBM7+Os1oEunGekWqeNFwRype/cyQw 8kbWz2e8aIjvyE0RriTwWMiG2a99afCxkoyfAQIbap7KVgbQYP14p5uzK4G2 sa2DMWE0VObp7923gUCjwZbGjgM0LOu8dc4zlMDp5qYj587T4Dqto7sohcDC Yxe0Zy7QMF3Repx1jEBr58RrwZdoWGe5e+RtKoG76qy7DK7SMDLvSnVZOoH/ 3LpoUXpDmVe154h6DoH3LiS/Kmui4QnLtvD4rwTGHV7hWDlEQ/ZaC5cvagic /92CdvURGqKJVbGiWgIrpVREzBgNgUEC+Y56At/HXMu1ommoH0uerkYCN0Xq Dt2aoWFsD9vF/pHyH7+JorvzpHAvP/sF3UEgbV4tw+VSWMXenbl2hMBBgb7E 3145Lz6p/2aUwM7B1JGPjlJI79Yl4sYJvFMS8FZDKAX/hINDv1IExqtNt4d5 SKFdP2x13ySBs8PCClaoFDg/hHqrEyQK/ni2XZguhSC/tBRffRL1TT49F/Uo 76127mhbS+Ip7Zh33/RJ4e7+FJxYR+I0Q0+ffiOFJfeTFxi5k9jd9XlJ2KAU Zl66P9i3nsT8VM2fWGNSUDfc5sTzIVGt336pM1sGh1+F18wEkjhTeOJo4zcy eP2QMXbaReIr3pJlzQdkcKg7vsUqg0TNoMKvjQ7J4L3XmntfniJxbRV/YdJh GVxx15OoZpJYteXTrO0RGdi/MXAezCLx58qqp2UnZGC6WWV/Zi6JJoGOUaln ZWBAZWLtGRLj/vC+sBpl0PM2OfzcFRI1NibMbVSVg0dDe95xJPFsc3ykr7oc bMsXewX/ReJih0Oifg05VCTdjrBuJNHO8MB+5gs55MsOVbxqIjF4bM8LJ0M5 mG27VGHyiMTfM7adv2srh/ZtE9pX2kh0aXKzuP69HIxlqU4WPSQesF2w4UyV HDQ8C4qKJCTuld/VOug2AYOvpy6vWMjH4g2lK83GJqA2tfqdmhMfg1Izxz6k T4KaTfwUFcjH0+a/6JUYTkGloiOhcz8fZTsHfjdpngJSxQTLTvJRkmaD9SHT MOK2+PEP5/lo4NDmYEYooPaEmvOJG3ysD06xzClXwNGPVlXb/+IjHepwTSGc gaicsh2XnyvzJu1PCt/PQLbZgPadPj5u3uc0furoZ0i4ZUDdG+Jjy5ag9mcL ZsH1TQTmSfm4q1ukPVw7C2Nani4xDB8v2Zn0z93EgP7CiqnnAgEKx4+U39/M gM7VQ76TSvdd7dwXEcRAT2JgiaGKABfqHmXXhzKg1xyrul/pbEXXV9G7GLBL f+CtOUeACZga8SSZgeseIXHeqgLc6NH/Ke0aA5admjsa5wpQzLGrtr7OgKL3 T4shpbNqTyW+rlLuFy7/OE9dgC3m36nZ/cnA/H/f2H+v9Kp52RbvRAxsXHzc fUJp084V+1a/YMDR1srCREO5n5lrP/6SgSe/eNt6Kx2x5gPrXA8D0t6r3x5U uvROXi71hoGHY7rcv5TWKR66dfETA9GtlwwCNQV42xcSN4wyoPHd0kdJSvvO KVg9Nc5AXp1WxGWlMxOFnT4yBqyibI6MKW1qW1gyM8FAXeWPU1rzlfkjw+Hl 08p7H8udDkpH/uZs4f+ZgdCO3W0hSnNDimQMw4BnnZVxqtL/A1pMefk= "]]}, Annotation[#, "Charting`Private`Tag$17422#1"]& ], TagBox[ {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwB4QMe/CFib1JlAgAAAD0AAAACAAAAb7kjQJqZuT+gUtwk9qykv4DLIcLK v7k/wFoiJ2bMpL+Q3R9E++W5PwBxadjY66S/sgEcSFwyuj/geOBYxiqlv/ZJ FFAey7o/ABX4R8Kopb982gRgovy7P6B+t5ZBpaa/ivvlf6pfvj/As7Pze6Co v9Ie1F/dksE/QDBhwdOgrL9wCtO5uL/GP7DZSOhSwrK/v/LwS8iUyz8QZCjf nBO3v1gzcdvJKNA/8CelD1KCu78TQggelbrSP9DTnTI2TMC/Js+ufHog1T/o I4lg2tTCv/uwc2jFudc/SMkckaXKxb+hWKJA7kbaP3gVAWZp9si/n37gNDGo 3D+w+1EafzXMv1/5PLbZPN8/SCLwlZ0O0L87edQpztLgP1hZPZrbGdK/r1i/ bh4B4j+UVx3X91vUv4RiOXohSeM/iNOdum0p17+GK7uTMXvkP6Sy2EsjMNq/ 6R7Mc/TG5T8Iibqnagjev0I2JTsLzOU/JE0w+uAY3r+cTX4CItHlP0hbdb9i Kd6/TnwwkU/b5T9wcCzOiErev7LZlK6q7+U/bNjNMGCN3r98lF3pYBjmPwSs HNFFFd+/DgrvXs1p5j/GH6BsHhfgvzT1EUqmDOc/0B2y8r9D4b+KK6NFZRHn P6IbJMztTOG/4GE0QSQW5z/KQy70IVbhv4zOVjiiH+c/HEcXRp1o4b/jp5sm njLnP644bozgjeG/klolA5ZY5z/IZJSJntnhv/C/OLyFpOc/NQ4qQiB24r+r il8uZTzoP122xXGGxOO/qv0K9YpB6D9AcxPhYtDjv6pwtruwRug/26iefEjc 47+oVg1J/FDoP5xA2Fgv9OO/piK7Y5Nl6D/Ey3SJbCTkv6G6FpnBjug/vB/V 8auG5L+X6s0DHuHoP63eQZJ4UuW/g0o82daF6T9bLraLGgnnv4DcH9Skiuk/ +9MA8IwW5798bgPPco/pPyOtBR4JJOe/dJLKxA6Z6T9xjIfxHj/nv2TaWLBG rOk/NA+bLcF1579EanWHttLpP40fjqXl5Oe/BYquNZYf6j/7PMbg2srov4fJ IJJVueo/ms6W68C26r8smB5Yir7qPxNkwjcuyOq/0mYcHr/D6j94uTGvqNnq vx4EGKoozuo/kOGHNcX86r+0Pg/C++LqP+jF0TKdQ+u/4LP98aEM6z+JjV03 zdPrvzqe2lHuX+s/9htfOkr+7L/scpQRhwbsP8Tm9Ow2fO+/Ov88h6dN7T8n fWtmnn3yv7RK7QrVfu4/ax17MsFZ9b+PwCxVtcnvP5nfA5fZmfi/1eRxZwn7 7z+rAeHikRX5vy2IFP4= "]], LineBox[CompressedData[" 1:eJwVzns0VAkcB/CZO9xBpLaO5LC1UulBpfLWb4pOUXo4pqlJw5niIK+zqV1Z jzYmHUyRZ2xoV2SLUosWza+wp9qaXmpl1bKpvJl7x2uMuXv3j9/5ns8533O+ v2+k0X7BBIfD8WXv/8w12bE7nhiDjUc0HVL7acVDcipBYaaC7rbM6JMuOsVA RYIBv1EFoWLR73oSDg4/axFENKtgYKpMt0fKwTHaMO6lQgU/DhVK8kI4OAF5 /UWtKnj6WnPCMpqDREf1k/VKFSz3zyHJZA5aGHRniHtUYPPGKnJvGQe9Q7fN r+ZTIO9p3POgh4OVtnwLoT8Fwmy1U6CYi5zIzvrhAxR4O3vN3y7h4sHbN4Wy QxTYnl/xbqWUi3xX/6x6CQUBK7e794ZxMWRXmYFFGAU25v+mOsdx0SbKbfJD AgXFLg/e78vnYumd6PbQCgo8b3o07XnJxfwtHfIfNBQ0ZFVZqd0JvDuUb2Q4 S8GTHREtZgICX10WyXIZCiiJg9rRk8C5k28TqvVooLSdumhvAlNq3kR0z6Uh SqceaxUSGLP0tY/XMhoikwsMtZEE7iSUpPFuGrpr/aZvFBOoaWtJLPqJht33 vcplNIF5Z0sWaktoaN0UZzk6TqDD1viqgKs0KMuL/xZOERje5PDWqoKGdfYp Tl/PEviutsyu9BYNRRuPyy+TPGwoSer6pYX9Z3KZZttiHp6Kc3Ot7mf3T8mu BnjwkF57Zxw3qyEqsLZBl8zDXgNLlb+zGl61Z11bd5aH7b0pQ32uaqhOzKYl qTysKz7wcZ5ADS4iq9sN53n4vbHmRZCPGp7mLPh0MJuHukHBDU6gGgIcG8/4 /sxDg1+VUkGaGrqE15XzW3louWrguaJTDalNX3n5c/WwS2/5hrbYcfCIoWz2 hujhPL/TJg/nTEBS0PrNto16GLtpkW9BzQR8a5j+8LiRPkZN1C84uXMSbiVn 1l7y0cdC31KPNSOToJ7Xd/foOX0Up2SMfEmbgtBbc0qD7unjhbWXLIqXToO3 b5Ct6Sd9HA/rub6qbRoKKmnzMFMSVbKN2CzRwIirccWgA4lWLs9c1ujPwLko WVeVkMTmgDP2FytnoCbGrSAtlkQ60KVqRqCFK8Fag5dyEsVTzucFn7WQE3TQ dKSSRFGM+2h68iw8fjwcLlKQ+OiQ+IVykQ6Uxvep6tckhncoFg426qDneY69 dR+JVx1XdZsIGSDqj5p1TZMoGE2svCdiIGfDtXhbDYnvK9pjgsUMVHy8/DiW tfniZG5zIAO7uv5YYjJDonzmrXVEOAOrlxyuc9eSeBpTgp8kMfAqaSQ3X0ei n0/3gKyKgfvRdmHuPD6OEY53HG4ycFqcOJ3KOrMxPf5DDQNN1u0nnrN+tNbJ 2PE3Bo4M162Q6vFxi6nc7pOCgRXfxcpk+nxc3e4W4/mGgfBjlxz/5LP9jCzn 0b8YsHLqO77AgI/B279wijoZCC3pST/MurQuO4v6h4GL3v3pg6zNCvtrywYY CDoakGlkxMe7+yHed5iBzRGfzf1Y7zfK9ZweZUBWJr1QyDojXtC+b5yBsSGR h+0cdn9TXrF2kgEz697YaNaPhgaPVWoY+PAgLb+OdUj5Vjv/WQZ2+u4tn2XN k+SPMwwDcth6xcuYj/8BlJtt6w== "]]}, Annotation[#, "Charting`Private`Tag$17422#2"]& ], TagBox[ {RGBColor[0.560181, 0.691569, 0.194885], AbsoluteThickness[1.6], Opacity[1.], LineBox[CompressedData[" 1:eJwBAQL+/SFib1JlAgAAAB8AAAACAAAAb7kjQJqZuT/wGKNibMW5v4DLIcLK v7k/8LZBi2Lsub+Q3R9E++W5P+CafgRbE7q/sgEcSFwyuj/AA9T2UmG6v/ZJ FFAey7o/QGcDPV/9ur982gRgovy7P6CfHmHsNby/ivvlf6pfvj+wEKyl8ai+ v9Ie1F/dksE/EAqMDbfLwb9wCtO5uL/GPyCdoHV9O8e/v/LwS8iUyz9ATFzV RnLMv1gzcdvJKNA/YFLYbMzb0L8TQggelbrSP1guVdja0tO/Js+ufHog1T9A As7nDrXWv/uwc2jFudc/WBGtF2762b+hWKJA7kbaP1wbC/5HW92/n37gNDGo 3D/egsAZQFbgv1/5PLbZPN8/Ur5GWw884r87edQpztLgP6gmZAU2G+S/r1i/ bh4B4j9mOuP0Qwrmv4RiOXohSeM/leubgaNA6L+GK7uTMXvkP5oimHWfbOq/ 6R7Mc/TG5T/VM1RNReTsvzT1EUqmDOc/v7onLFVr77+ril8uZTzoPyRYbk68 7fC/g0o82daF6T+fTMhm7Ujyv4fJIJJVueo/uRFvZz2S87/scpQRhwbsP3lj 8JQG+fS/Ov88h6dN7T8VXiRPN1f2v7RK7QrVfu4/q1ya64aY97+PwCxVtcnv P4Nt4R6D6/i/1eRxZwn77z/kWUZZBB35v0nfChA= "]], LineBox[CompressedData[" 1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAlQ1HTHsC8D+dni+K8Sb5v8IG+H2/ FvE/6mdW+J86+7/qp30IB7vxPwx9zqwxYfy/qCgHGlVU8j/ge/1YWmT9v5c+ 2I58+vI/6nT1ir5r/r/6xcN+m53zP08lApTJXP+/8yyz9cA19D8rjy5LNRcA wBwp6s+/2vQ/HCne5/aAAMDcBCUxxXT1P9kpFNOt3ADAEFJ6DcIL9j+0VodU cjABwHQ0F02Yr/Y/kBJCpvSEAcBu9rcTdUj3P26XIHVDzgHAmU2gPSvu9z9q WOYwLxgCwFqEjO7niPg/sTDaSm1YAsCPLJManCD5P2D1yBxNkwLA9WnhqSnF +T8om4UB884CwPGGM8C9Xvo/XU/nLP8CA8AdOc05KwX7P+cF0qzKNwPAvVyB LpCo+z+Y/O99SWgDwPNfOar7QPw/fQXUCcySA8Ba+DiJQOb8P8w5SdUpvgPA V3A874uA/T8AjsvRS+QDwMhZWtDOF/4/60bF+qUHBMBq2L8U67v+P7CD7iXo KwTAojYp4A1V/z9AjHRQ7EsEwEDvfqi5V/8/TjRJf3dMBMDdp9RwZVr/P2em 1o0CTQTAGBmAAb1f/z9goUdKGE4EwI771iJsav8/T/2yQUJQBMB6wIRlyn// P7WiKDSQVATAUkrg6oaq/z/m6mxyFF0EwPACNrMyrf8/AmEyrZtdBMCNu4t7 3q//P5HGBckiXgTAyCw3DDa1/z902/+jMF8EwD4Pji3lv/8/TJli6EphBMAq 1DtwQ9X/Pxmm37N5ZQTAyIyROO/X/z/QmFcE/2UEwGVF5wCb2v8/5nSBNoRm BMCgtpKR8t//P1VSE0COZwTAFpnpsqHq/z9rlknpoGkEwLRRP3tN7f8/5+Vq SCVqBMBRCpVD+e//P8GDjompagTAjHtA1FD1/z+UjQSysWsEwCo0lpz89/8/ q+BqmTVsBMDI7OtkqPr/P15Q+2K5bATAZqVBLVT9/z/hxb8OPW0EwANel/X/ //8/RibCnMBtBMDSaYEi "]]}, Annotation[#, "Charting`Private`Tag$17422#3"]& ], {}}, {{}, {}, {}, {}, {}}}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0.10000003877551021`, 0}, AxesStyle->{Medium, GrayLevel[0]}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox["\[Phi]", TraditionalForm], None}, { FormBox[ FractionBox[ TagBox["\[Omega]", HoldForm], "\[Omega]0"], TraditionalForm], None}}, FrameTicks->FrontEndValueCache[{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, {{Automatic, {{-3., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {-2., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {-1., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {0., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {-4., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-3.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-3.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-3.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-3.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-2.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-2.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-2.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-2.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-1.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-1.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-1.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-1.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-0.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-0.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-0.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {-0.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}}}, {Automatic, {{0.5, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {1., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {1.5, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {2., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.01, 0.}, { AbsoluteThickness[0.1]}}, {0., FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.1, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.3, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.7, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {0.9, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.1, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.3, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.6, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.7, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.8, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {1.9, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.1, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.2, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.3, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.4, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}, {2.5, FormBox[ TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}, { AbsoluteThickness[0.1]}}}}}], GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->{359., Automatic}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{All, All}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.7493884510447607`*^9, 3.7493885342624598`*^9}, 3.7493889937817187`*^9, {3.7811928889212418`*^9, 3.7811928956424336`*^9}, { 3.7811929350684805`*^9, 3.781192946025741*^9}, 3.781192994686102*^9, { 3.7811932866692944`*^9, 3.7811933482720366`*^9}, {3.7811935415590944`*^9, 3.7811935810152617`*^9}, {3.7811936427148676`*^9, 3.781193669131673*^9}, { 3.781193952529271*^9, 3.781193968756305*^9}, {3.7811940255304995`*^9, 3.7811940502448378`*^9}},ExpressionUUID->"1eabb991-5b14-4be3-bc41-\ 93b8f317872f"] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{{3.7179852379814205`*^9, 3.7179852380145087`*^9}},ExpressionUUID->"02985d1c-8c44-4323-95d6-\ 2fb2f13f8899"] }, Open ]], Cell[CellGroupData[{ Cell["Waves", "Section", CellChangeTimes->{{3.7179135297640452`*^9, 3.7179135354750795`*^9}, { 3.717913851192692*^9, 3.7179138513363028`*^9}},ExpressionUUID->"3a325062-79ee-4750-9fbb-\ fcac9e291dfa"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Manipulate", "[", RowBox[{ RowBox[{"Animate", "[", RowBox[{ RowBox[{"DiscretePlot", "[", RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{ RowBox[{"\[Omega]", " ", "t"}], " ", "-", " ", RowBox[{"k", " ", "x"}]}], "]"}], RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", "\[Gamma]"}], " ", "x"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "100"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", RowBox[{"{", RowBox[{"Red", ",", "Thicker"}], "}"}]}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Sphere", "[", "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "0.06"}], "}"}], "}"}]}], ",", RowBox[{"AxesLabel", "\[Rule]", " ", RowBox[{"{", RowBox[{"x", ",", "A"}], "}"}]}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"{", " ", RowBox[{"Medium", ",", "Black"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"2", "/", "0.05"}]}], "}"}], ",", RowBox[{"AnimationRunning", "\[Rule]", " ", "False"}]}], "]"}], ",", RowBox[{"{", RowBox[{"\[Omega]", ",", RowBox[{"0.05", "\[Pi]"}], ",", RowBox[{"\[Pi]", "/", "2"}]}], "}"}], ",", RowBox[{"{", RowBox[{"k", ",", RowBox[{"0.01", "\[Pi]"}], ",", "0.5"}], "\[IndentingNewLine]", "}"}], ",", RowBox[{"{", RowBox[{"\[Gamma]", ",", "0", ",", "0.1"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.717913537499401*^9, 3.7179137073608007`*^9}, { 3.7179137403843164`*^9, 3.7179137740658875`*^9}, {3.7179138710576115`*^9, 3.717913932441049*^9}, {3.717913979169194*^9, 3.717914006025194*^9}, { 3.7179142025366583`*^9, 3.717914235200721*^9}, {3.7179527867105927`*^9, 3.7179529511263137`*^9}, {3.7179530478302794`*^9, 3.7179530495275593`*^9}, {3.717953218540037*^9, 3.7179533397585545`*^9}, { 3.717953401246297*^9, 3.71795340153406*^9}, {3.7179852744446316`*^9, 3.7179852746064596`*^9}, 3.7179940243166294`*^9, {3.7182906002957807`*^9, 3.718290601443166*^9}, {3.718290791358236*^9, 3.7182908233854504`*^9}, { 3.718290853742798*^9, 3.718290874655527*^9}, {3.7182909211832485`*^9, 3.7182909310695715`*^9}, {3.718291012963914*^9, 3.718291021093147*^9}, { 3.718291100250701*^9, 3.718291153967599*^9}, {3.7182911935091333`*^9, 3.7182912340074244`*^9}, {3.718291269157217*^9, 3.7182912692244205`*^9}, { 3.7182912994253144`*^9, 3.7182913031382284`*^9}, {3.718291335105144*^9, 3.718291382570166*^9}, {3.718291420383341*^9, 3.718291590795747*^9}, 3.7182916990323963`*^9, 3.718291787364464*^9, {3.7182918308147783`*^9, 3.7182918313724747`*^9}, {3.718291871301717*^9, 3.718291915127374*^9}, { 3.7182919674585996`*^9, 3.7182919724252443`*^9}, {3.749389294012353*^9, 3.74938931055521*^9}, {3.749389358903469*^9, 3.7493894363492084`*^9}}, CellLabel->"In[7]:=",ExpressionUUID->"2d7ba7d6-e1f5-4c4a-af31-24cce5a68aca"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`k$$ = 0.066, $CellContext`\[Gamma]$$ = 0., $CellContext`\[Omega]$$ = 0.26452210143226057`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`\[Omega]$$], 0.15707963267948966`, Rational[1, 2] Pi}, { Hold[$CellContext`k$$], 0.031415926535897934`, 0.5}, { Hold[$CellContext`\[Gamma]$$], 0, 0.1}}, Typeset`size$$ = { 409., {146.13403328722342`, 151.86596671277658`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`k$$ = 0.031415926535897934`, $CellContext`\[Gamma]$$ = 0, $CellContext`\[Omega]$$ = 0.15707963267948966`}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Animate[ DiscretePlot[ Sin[$CellContext`\[Omega]$$ $CellContext`t - $CellContext`k$$ \ $CellContext`x] Exp[(-$CellContext`\[Gamma]$$) $CellContext`x], {$CellContext`x, 0, 100}, PlotRange -> {-1, 1}, PlotStyle -> {Red, $CellContext`Thicker}, PlotMarkers -> {{ Graphics3D[ Sphere[], Boxed -> False], 0.06}}, AxesLabel -> {$CellContext`x, $CellContext`A}, AxesStyle -> {Medium, Black}], {$CellContext`t, 0, 2/0.05}, AnimationRunning -> False], "Specifications" :> {{$CellContext`\[Omega]$$, 0.15707963267948966`, Rational[1, 2] Pi}, {$CellContext`k$$, 0.031415926535897934`, 0.5}, {$CellContext`\[Gamma]$$, 0, 0.1}}, "Options" :> {}, "DefaultOptions" :> {}], ImageSizeCache->{458., {213.13403328722342`, 218.86596671277658`}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Manipulate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{ 3.7179137748824162`*^9, {3.717913883120659*^9, 3.717913933289014*^9}, { 3.7179139799038935`*^9, 3.7179140065481205`*^9}, {3.7179142042414083`*^9, 3.7179142366235614`*^9}, {3.717952793838645*^9, 3.717952838354382*^9}, { 3.717952899826049*^9, 3.717952952395132*^9}, 3.7179530516255713`*^9, { 3.7179532193604174`*^9, 3.7179533404560833`*^9}, 3.71795340320712*^9, 3.7179852757554913`*^9, 3.7182903158907795`*^9, 3.718290602057456*^9, { 3.718290794818677*^9, 3.7182908237821784`*^9}, {3.718290856389248*^9, 3.7182908757342033`*^9}, 3.7182909315876627`*^9, 3.718291021605832*^9, { 3.7182911027249537`*^9, 3.718291154635043*^9}, {3.7182912062947164`*^9, 3.7182912345376067`*^9}, 3.7182912700591946`*^9, 3.7182913057896185`*^9, { 3.718291345133239*^9, 3.71829138362284*^9}, {3.7182914248712435`*^9, 3.718291591850792*^9}, 3.7182916999151263`*^9, 3.7182917951308837`*^9, 3.718291836515546*^9, {3.718291875507184*^9, 3.7182919155560284`*^9}, { 3.7182919687501106`*^9, 3.718291973764881*^9}, 3.749389002300364*^9, { 3.749389294934566*^9, 3.7493893110708904`*^9}, {3.749389370171586*^9, 3.7493894370837035`*^9}, 3.7503534752528005`*^9, 3.7811941275487785`*^9, 3.8908381140924215`*^9}, CellLabel->"Out[7]=",ExpressionUUID->"88227a62-b21a-4711-b5ab-8e87b4b8bc47"] }, Open ]], Cell[BoxData["\[AliasDelimiter]"], "Input", CellChangeTimes->{ 3.7182914382389374`*^9},ExpressionUUID->"86dd9b95-d57e-48cc-80a8-\ 302f074a62d8"], Cell[BoxData["\[AliasDelimiter]"], "Input", CellChangeTimes->{ 3.7182913775482087`*^9},ExpressionUUID->"03f4c292-297e-4d42-8673-\ 130ea30fce6f"], Cell["Standing Wave", "Text", CellChangeTimes->{{3.7179936578875594`*^9, 3.717993661236833*^9}},ExpressionUUID->"245f3bea-0517-463c-b94c-\ affd2e615b53"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Animate", "[", RowBox[{ RowBox[{"DiscretePlot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"Sin", "[", RowBox[{"\[Omega]", " ", "t"}], "]"}], RowBox[{"Cos", "[", RowBox[{"k", " ", "z"}], "]"}]}], "/.", RowBox[{"\[Omega]", "\[Rule]", " ", RowBox[{"1", "/", "2"}]}]}], "/.", RowBox[{"k", "\[Rule]", " ", RowBox[{"\[Pi]", "/", "20"}]}]}], ",", RowBox[{"{", RowBox[{"z", ",", "0", ",", "80"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", RowBox[{"{", RowBox[{"Red", ",", "Thicker"}], "}"}]}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Sphere", "[", "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "0.06"}], "}"}], "}"}]}], ",", RowBox[{"AxesLabel", "\[Rule]", " ", RowBox[{"{", RowBox[{"x", ",", "A"}], "}"}]}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"{", " ", RowBox[{"Medium", ",", "Black"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"8", "\[Pi]"}]}], "}"}], ",", RowBox[{"AnimationRunning", "\[Rule]", " ", "False"}]}], "]"}]], "Input", CellChangeTimes->{{3.717993673452592*^9, 3.7179938016759443`*^9}, { 3.7179938400779696`*^9, 3.717993962588592*^9}, 3.717993998204997*^9, { 3.717994063188485*^9, 3.7179940654117937`*^9}, {3.7182907707013474`*^9, 3.718290776396557*^9}, {3.718292508136034*^9, 3.718292556247758*^9}, { 3.7182925934693084`*^9, 3.718292598698882*^9}}, CellLabel->"In[8]:=",ExpressionUUID->"0765a2d6-fb07-4c60-a126-cc9a7b540bf4"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 24.700161043379573`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], 0, 8 Pi}}, Typeset`size$$ = { 360., {111., 115.33544516884066`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> DiscretePlot[ ReplaceAll[ ReplaceAll[ Sin[$CellContext`\[Omega] $CellContext`t$$] Cos[$CellContext`k $CellContext`z], $CellContext`\[Omega] -> 1/2], $CellContext`k -> Pi/20], {$CellContext`z, 0, 80}, PlotRange -> {-1, 1}, PlotStyle -> {Red, $CellContext`Thicker}, PlotMarkers -> {{ Graphics3D[ Sphere[], Boxed -> False], 0.06}}, AxesLabel -> {$CellContext`x, $CellContext`A}, AxesStyle -> {Medium, Black}], "Specifications" :> {{$CellContext`t$$, 0, 8 Pi, AnimationRunning -> False, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{409., {146.13403328722342`, 151.86596671277658`}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.717993878273137*^9, 3.717993932388024*^9}, 3.7179939639375067`*^9, 3.717993999134931*^9, 3.7179940694517155`*^9, 3.7182907768861575`*^9, {3.7182925102100515`*^9, 3.718292557160545*^9}, { 3.7182925945411463`*^9, 3.718292602088538*^9}, 3.781194229898922*^9, 3.7812680724436073`*^9, 3.781268199589588*^9, 3.8908381861811323`*^9}, CellLabel->"Out[8]=",ExpressionUUID->"56e96ab8-e5fd-4034-aa04-99ea787f5c4e"] }, Open ]], Cell["Asymmetric standing wave", "Text", CellChangeTimes->{{3.781268087809947*^9, 3.7812680978438168`*^9}},ExpressionUUID->"61dc8752-880a-4ed0-9343-\ cdbb39f27a4c"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Animate", "[", RowBox[{ RowBox[{"DiscretePlot", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"A1", " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"\[Omega]", " ", "t"}], "-", RowBox[{"k", " ", "z"}]}], "]"}]}], "+", RowBox[{"A2", " ", RowBox[{"Sin", "[", RowBox[{ RowBox[{"\[Omega]", " ", "t"}], "+", RowBox[{"k", " ", "z"}]}], "]"}]}]}], ")"}], "^", "2"}], "/.", RowBox[{"A1", "\[Rule]", " ", "1"}]}], "/.", RowBox[{"A2", "\[Rule]", " ", "0.5"}]}], "/.", RowBox[{"\[Omega]", "\[Rule]", " ", RowBox[{"1", "/", "2"}]}]}], "/.", RowBox[{"k", "\[Rule]", " ", RowBox[{"\[Pi]", "/", "20"}]}]}], ",", RowBox[{"{", RowBox[{"z", ",", "0", ",", "80"}], "}"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "2"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", RowBox[{"{", RowBox[{"Red", ",", "Thicker"}], "}"}]}], ",", RowBox[{"PlotMarkers", "\[Rule]", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"Graphics3D", "[", RowBox[{ RowBox[{"Sphere", "[", "]"}], ",", RowBox[{"Boxed", "\[Rule]", "False"}]}], "]"}], ",", "0.06"}], "}"}], "}"}]}], ",", RowBox[{"AxesLabel", "\[Rule]", " ", RowBox[{"{", RowBox[{"x", ",", "A"}], "}"}]}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"{", " ", RowBox[{"Medium", ",", "Black"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"8", "\[Pi]"}]}], "}"}], ",", RowBox[{"AnimationRunning", "\[Rule]", " ", "False"}]}], "]"}]], "Input", CellChangeTimes->{{3.781268108518673*^9, 3.7812681594854765`*^9}, { 3.7812682232244844`*^9, 3.7812682886714163`*^9}, {3.7812683232136164`*^9, 3.7812683487072086`*^9}, {3.7812684129425735`*^9, 3.781268434855769*^9}, { 3.781268468084956*^9, 3.7812685088293667`*^9}, {3.7812685429835167`*^9, 3.781268554767517*^9}, 3.781268593197242*^9, {3.781268624032077*^9, 3.781268646864853*^9}}, CellLabel->"In[9]:=",ExpressionUUID->"3f00aee5-02b3-4935-9883-ccad0a6b4cb1"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 18.28420011162856, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], 0, 8 Pi}}, Typeset`size$$ = { 360., {113., 118.59494170318945`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> DiscretePlot[ ReplaceAll[ ReplaceAll[ ReplaceAll[ ReplaceAll[($CellContext`A1 Sin[$CellContext`\[Omega] $CellContext`t$$ - $CellContext`k \ $CellContext`z] + $CellContext`A2 Sin[$CellContext`\[Omega] $CellContext`t$$ + $CellContext`k \ $CellContext`z])^2, $CellContext`A1 -> 1], $CellContext`A2 -> 0.5], $CellContext`\[Omega] -> 1/2], $CellContext`k -> Pi/20], {$CellContext`z, 0, 80}, PlotRange -> {-2, 2}, PlotStyle -> {Red, $CellContext`Thicker}, PlotMarkers -> {{ Graphics3D[ Sphere[], Boxed -> False], 0.06}}, AxesLabel -> {$CellContext`x, $CellContext`A}, AxesStyle -> {Medium, Black}], "Specifications" :> {{$CellContext`t$$, 0, 8 Pi, AnimationRunning -> False, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{409., {149.13403328722342`, 154.86596671277658`}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.781268147029554*^9, 3.7812681602981377`*^9}, { 3.781268224162656*^9, 3.7812682890928154`*^9}, {3.781268325135915*^9, 3.781268349207264*^9}, {3.7812684140826516`*^9, 3.7812684351839304`*^9}, { 3.7812684688041005`*^9, 3.781268509563822*^9}, {3.7812685437961435`*^9, 3.781268555361331*^9}, 3.781268593602868*^9, {3.7812686254853563`*^9, 3.781268647224267*^9}, 3.8908382025904408`*^9}, CellLabel->"Out[9]=",ExpressionUUID->"e0aed4e1-9da1-472c-83bf-ff3299368bbf"] }, Open ]], Cell["Wave Pulse", "Text", CellChangeTimes->{{3.717994077974962*^9, 3.717994080053928*^9}},ExpressionUUID->"867b2bad-c5fe-45fa-8fa3-\ 65fa6be69e1f"], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"nmean", " ", "=", " ", "10"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"nn", "=", "2"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"nw", " ", "=", " ", "2"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"P", "[", RowBox[{"k_", ",", "z_", ",", "\[Omega]_", ",", "t_"}], "]"}], ":=", " ", RowBox[{"Sum", "[", " ", RowBox[{ RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{ RowBox[{"(", RowBox[{"n", "-", "nmean"}], ")"}], "^", "2"}]}], "/", RowBox[{"nw", "^", "2"}]}], "]"}], RowBox[{"Sin", "[", RowBox[{"\[Omega]", " ", "n", " ", "t"}], "]"}], RowBox[{"Sin", "[", RowBox[{"k", " ", "n", " ", "z"}], "]"}]}], ",", RowBox[{"{", RowBox[{"n", ",", RowBox[{"nmean", "-", "nn"}], ",", RowBox[{"nmean", "+", "nn"}]}], "}"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"t0", "=", RowBox[{"1", "/", RowBox[{"(", " ", RowBox[{"2", "\[Pi]", " ", "5", "*", "6", "*", "7", "*", "8"}], ")"}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Animate", "[", RowBox[{ RowBox[{"Plot", "[", RowBox[{ RowBox[{"P", "[", RowBox[{"\[Pi]", ",", "z", ",", RowBox[{"1", "/", "8"}], ",", "t"}], "]"}], ",", RowBox[{"{", RowBox[{"z", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"Filling", "\[Rule]", " ", "Axis"}], ",", RowBox[{"Frame", "\[Rule]", " ", "True"}], ",", RowBox[{"PlotRange", "\[Rule]", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "3"}], "}"}]}], ",", RowBox[{"PlotStyle", "\[Rule]", " ", RowBox[{"{", RowBox[{"Red", ",", "Thicker"}], "}"}]}], ",", RowBox[{"AxesLabel", "\[Rule]", " ", RowBox[{"{", RowBox[{"x", ",", "A"}], "}"}]}], ",", RowBox[{"AxesStyle", "\[Rule]", RowBox[{"{", " ", RowBox[{"Medium", ",", "Black"}], "}"}]}]}], "]"}], ",", RowBox[{"{", RowBox[{"t", ",", "0", ",", RowBox[{"16", "\[Pi]"}]}], "}"}], ",", RowBox[{"AnimationRunning", "\[Rule]", " ", "False"}]}], "]"}]}], "Input", CellChangeTimes->{{3.717994097147933*^9, 3.7179943449248686`*^9}, { 3.717994389676344*^9, 3.7179943897084665`*^9}, {3.7179946207169533`*^9, 3.717994648332377*^9}, {3.7179947044679575`*^9, 3.717994897795492*^9}, 3.7179949572594323`*^9, {3.7179949964059954`*^9, 3.7179950262967024`*^9}, { 3.7179950835968986`*^9, 3.7179951261473*^9}, {3.7179951686595793`*^9, 3.7179952098587265`*^9}, {3.7182926625159607`*^9, 3.7182927012515917`*^9}, {3.7182927368329124`*^9, 3.718292738248296*^9}, { 3.7182929478505006`*^9, 3.718292949572017*^9}, {3.7182930235658245`*^9, 3.718293025944002*^9}, {3.7182931013050976`*^9, 3.718293141700262*^9}, { 3.718293177016251*^9, 3.718293243339336*^9}, {3.7182933085097804`*^9, 3.718293308586007*^9}, {3.7182933402209883`*^9, 3.7182934102095356`*^9}, { 3.718293466935097*^9, 3.7182934872289743`*^9}, {3.718293551167102*^9, 3.7182937583063154`*^9}, {3.7182938123505807`*^9, 3.718293848858482*^9}, 3.7182940227365365`*^9, {3.7182941030891604`*^9, 3.7182941166493073`*^9}, { 3.71829415512259*^9, 3.718294203627033*^9}, 3.718294822887837*^9, { 3.718294878467854*^9, 3.718294960419114*^9}, {3.7185570783654656`*^9, 3.718557151387683*^9}, {3.7185572019746356`*^9, 3.7185573398909583`*^9}, { 3.718557376320115*^9, 3.7185575330680714`*^9}, {3.718557565174008*^9, 3.7185577152407045`*^9}, {3.7185577535267134`*^9, 3.718557782043031*^9}, { 3.7185578227153683`*^9, 3.718557868516453*^9}, {3.7185579332845345`*^9, 3.718557933665826*^9}, {3.718557964419657*^9, 3.71855802232104*^9}, { 3.718558374937584*^9, 3.7185583753323507`*^9}, {3.7185929291055613`*^9, 3.718593036718652*^9}, {3.749389625790773*^9, 3.7493896512348733`*^9}, { 3.7811943670542555`*^9, 3.7811943671473484`*^9}, {3.7811944185944786`*^9, 3.78119441873512*^9}}, CellLabel->"In[10]:=",ExpressionUUID->"0975bfd0-67a0-4da3-9811-054cfbc7e685"], Cell[BoxData[ TagBox[ StyleBox[ DynamicModuleBox[{$CellContext`t$$ = 22.128598047413067`, Typeset`show$$ = True, Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{ Hold[$CellContext`t$$], 0, 16 Pi}}, Typeset`size$$ = { 360., {110., 114.41819911912563`}}, Typeset`update$$ = 0, Typeset`initDone$$, Typeset`skipInitDone$$ = True}, DynamicBox[Manipulate`ManipulateBoxes[ 1, StandardForm, "Variables" :> {$CellContext`t$$ = 0}, "ControllerVariables" :> {}, "OtherVariables" :> { Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$, Typeset`animator$$, Typeset`animvar$$, Typeset`name$$, Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$, Typeset`skipInitDone$$}, "Body" :> Plot[ $CellContext`P[ Pi, $CellContext`z, 1/8, $CellContext`t$$], {$CellContext`z, 0, 1}, Filling -> Axis, Frame -> True, PlotRange -> {-3, 3}, PlotStyle -> {Red, $CellContext`Thicker}, AxesLabel -> {$CellContext`x, $CellContext`A}, AxesStyle -> {Medium, Black}], "Specifications" :> {{$CellContext`t$$, 0, 16 Pi, AnimationRunning -> False, AppearanceElements -> { "ProgressSlider", "PlayPauseButton", "FasterSlowerButtons", "DirectionButton"}}}, "Options" :> { ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle -> "Animate", DefaultLabelStyle -> "AnimateLabel", SynchronousUpdating -> True, ShrinkingDelay -> 10.}, "DefaultOptions" :> {}], ImageSizeCache->{410., {146.13403328722342`, 151.86596671277658`}}, SingleEvaluation->True], Deinitialization:>None, DynamicModuleValues:>{}, SynchronousInitialization->True, UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$}, UnsavedVariables:>{Typeset`initDone$$}, UntrackedVariables:>{Typeset`size$$}], "Animate", Deployed->True, StripOnInput->False], Manipulate`InterpretManipulate[1]]], "Output", CellChangeTimes->{{3.7185929817212176`*^9, 3.71859303769427*^9}, 3.7493895561016665`*^9, {3.7493896273221784`*^9, 3.7493896518602886`*^9}, 3.7503536177967215`*^9, {3.7811942649865103`*^9, 3.781194268096221*^9}, 3.781194367913885*^9, 3.781194419844612*^9, 3.890838221887582*^9}, CellLabel->"Out[15]=",ExpressionUUID->"12ca151e-5268-4a7d-9b3c-a69a9d520812"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Gamma]", "=", " ", RowBox[{"1", "/", RowBox[{"Sqrt", "[", RowBox[{"1", "-", RowBox[{"v", "^", "2"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.891010369523898*^9, 3.891010396803108*^9}}, CellLabel->"In[16]:=",ExpressionUUID->"1ff9ee69-29ed-43ca-b410-7cee9e3d335a"], Cell[BoxData[ FractionBox["1", SqrtBox[ RowBox[{"1", "-", SuperscriptBox["v", "2"]}]]]], "Output", CellChangeTimes->{3.8910103989848156`*^9}, CellLabel->"Out[16]=",ExpressionUUID->"c3dcfad2-dc45-4e11-99da-3dc9d1b20e00"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{"\[Gamma]", ",", RowBox[{"{", RowBox[{"v", ",", "0", ",", "1"}], "}"}], ",", RowBox[{"Frame", "->", " ", "True"}], ",", RowBox[{"FrameLabel", "->", RowBox[{"{", RowBox[{"\"\<\[Beta]\>\"", ",", "\"\<\[Gamma]\>\""}], "}"}]}], ",", RowBox[{"PlotRange", "->", RowBox[{"{", RowBox[{"0", ",", "5"}], "}"}]}]}], "]"}]], "Input", CellChangeTimes->{{3.891010401641604*^9, 3.8910104842170963`*^9}}, CellLabel->"In[21]:=",ExpressionUUID->"ce474fae-3241-4c79-98d4-d130705cf604"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwd1wk0VdsbAPBrvmS6xih5ZCwJGdKjb3siQyquOfOUVCgVESJXAyolmWeK Es9cEkn0SimRylRCrjuqUMb/9j9rnXXWb529v3O+b+9z9jkKPiF2/pwEAmER 72tHK/+pd21Uh90chLWNDdymsqGjMrpgfqxAcM078jNyamX2wPX+8zprHt+o FBeush/+GBeeWLP164GaXBl74CjneLlmpWS50lV5F0jdUPQ3B/aSle9tbxUP +JUd37nm6YS+Du90bxjVLg7ixHbym2+5IeMHoZNcalzYHaayjc9yAkClo2Rl zVqbjat/yR+B6Q8UJjd2DqdXuXLxURDUuDPPg00ciy9yVAkGk16iLB/2oy+9 r5/Zh0LppwoHInboQT8rt/QT8JicUsGPPbz9ommKzCkQY4jjBNmQlr++TfnQ aXDSb0LC2FYiFUZPcs6Ap3nuggh2A7NbjyV/FrQ2bXkkjn3Mw6PmonckGGzo bZXEVnzD0vyrOAqiLJtHpLGvVoqp2arEQFmtbeBGbDO5khLq4VggaK32bsKO 6cwSfWp/HuI8mI4K2Lr6Giku6XFg7XOjQgW7QPJA4hWZBPhgNosLzoao17c7 HB8lwJErdfV62I6UL5ybD1EAdTZwGWILzp6Ibc5JhJkvCTTAjuhLi6DLXwZX OZvp/djk5OGGprbLACnqVDtszT0qswneV8D6phWH09p41jaekCtOgt/Wh6I9 sW1vfg7ar3IVuJWflJzA1rDeXC7bdRUaZ54fP7NWb65j3ycPXwNrG4mDUdie D1f+bbW/DsovKF4UbEn165rO6amQ//hZdRZ2HLFW9bJMGjS0sIRfYm/Zm3qp JjQNlHNa5t5i91JCqINdaeBsar40sDZ/uDTuaZ65Ba7PLntNYncul2j29abD 20+TKdwcON+f6XryyZkwZBp0zhy7Xvt0usW3TBCekUcHsD1CyfMndmXBurIM BWfsKobIw46pLLCP6jcOwrabumQUZJYDmskpg9ewM4YjTetX8sAl/ML9L9gm G11KRhzyoTW+dh8Ne9rVgIdYmQ8OL6oF5rA30c/6Vm4rALn3kl/WcbIh5Ii+ MmGoADYJ5rF3Yov5Vd0t3VkEHUX7yzOwnV0Kq9gzJdCk2xcTzMUG1qC9QJFs KQh8+nciCjvRg+hPNi0FJ3phwGXsWt8Q2Ya0Ulgf/rihBFs42JgSZVAGs+Iz 14awn8d/cuWNvgO6JCFVW2426Nwn8W4kVoBNODfThocN/2k+93qtVQGB1a8y PLC9/o1ojnGpAJ0fbe4h2CkNo6FfKyogLNBQPxV7qq1ysMzmHhzwjlb4gJ3X b/mv9s37cPG61pgfLxvWrca57d1UBXNHk8XT+XC9jjh5aJhXgaNDUWE5tlKf hhcpuAomzTgtW7B3lw/4DrZUQWdaybdx7Ifl6fWNmtVQUZRqoUdkA4NMf2z9 phqC5/h6P2M73L39KkyoBpKdE2g7BfDz7R6/L0ChBvhGREsPYI+JHX/trFcD ZycFIwKwQ6L/6TF2rwGZ685BadiX7Ri9fJU1YMzrc34Gu2Xpn8/Z+2ohE7zC qtexQdmWOfUsqQ4kycdiTITYIBu7d9fhwjrIvMrMdscWrSxIEmisA21W6sBZ 7AUiWdN2rA50KablNdhv2xrDRnbWw4JxYoOyMBsiteJWfk/Ug7SfTiRJhA1v RCQkNFEjZPv2166KsiH8jSFk/HoIeVGpfgaSePw06yf+Iz6Cjeo6jc7YJSla yYsbH0HlV4pSJPa7faqfPMweQbza/gMt2FtfSYQppz+CDU4ZE3uk2DDaxSqr MWgGx9GXUi7SbNj7tFT4deRjsC5ozrwlwwbpOtIIB0crrDd6c9tzExvckhft x6Vaoa0SuJKwi/wmXnVqtMKF2vtXG7A1JB8+THJuhdlACo+wPBv+OeN1S7K6 Fb7FUMKeYOvnOJWlbW+DZL1AsrICG7w9ytzvjrSBSVvYznVK+H04ZtrdY9QO 3zqP2uzcwob2oNwNLvQOWF9+Ve2jARtmVYxFKo93Qcfvuks+5mzg/HNPdIPy S+AZCuE0cMbxV70ayA+6YfiectNwEBu6E3TfdG7pge8vdCpkY9kgf532p5z5 FhygdKPzbTbQ5kdH+rV6wWXQZmlHNa7fdPNL4avvIT5cRKrpNa6v3B3W+Hgf WOWe6QllsCH5SH1AgdIHoMgFSOQLzcAcujceGDsAaQOHGi/vmIFTOh11Us8+ gitdeHDGZQZGH3QkvVP4DL/Ej8RJXZyBxaC+bPXIQZC5YZaGGmdgqwnfSkDz EDiZ0/Imvs/A3iKFw/9Kj8C8dnolUeEHhMt5Kn51GwU2fZv7F9cfoEF3WDdg 8wVKWNrK2hk/QFyETexY+AJLbmIO3l9+AHdrdtXmnK+w6cxe1Xz1n3BUt/kT v/UYngeC1xTP/4R7lj4FT+bGoDV43F11+CfM0mRFJ9O/Ab/ZvTZBo19QT97L lbZnHGIddp3hq/wFsRaU/LrJcXjZXOxprjALCsNWH4spExBbfENyIG8Wdhkk pMnoTIJwgVemuv4cuG3q+cPxfhJmlMy8Jt/PwezLlLHQuO9w4+zWCx5p85DB 7XHKTmkKYiLPq5G9foP4SH0RZ8cUtA0OHpk3/QM80XH2hieo8CDwuTPZewHq Zuh/WsOoECIXMN7nvwB+Ac755meo8Fn6hY5L0AJ0HNg+TY6igsLIBcWgsAVI UByODaZQQbXgZmYlZQG4X+y8V5xJBctrCgdbKhaAU5zNIdxOhQmjoCXx+QUg lHtUjYlNg3b8cyObzEXopA8E50tOA7vmSCIxfxGStWw13dZPQwe32UpXySJI N5lW9stNg8w+mWRy9SJodqnde6GGz6+aVOR2LYLbxI+yB7unoaXk3SHO+UV4 qHAxLzJoGlY3jdTquCzByayqFLH2aTisWt4drrEMjUtZF9s7puE9tUDHascy LHkkxp3swvEL+CUUdy3Dxc3up3u7p+Hvcyn+Y3uXIee+gPuNgWlQVn8nWOa7 DM+f+GuIMaah1DD7G+Qsw/pvG16R1tPgq1Wy3S/SCrRsvUQkBdOg4+7NCEvS Kuj3Sb++EUqDs0lqEVtkVqH63J1UiTAayFGjdMQUVqHodafs+ggayDiWL81q rcKlEJ5t8vE0WDywhS1iuwp2tfG229JpYJvZ9+nWjVX4vis6y/IJDRrr3Dky hQjI65ug56s2GhSUrtBXSAT0OSlns80zGvhPGY0EShFQ91Dz/YMvaFD6zwWq hTwB1cQsPHHqpcGHvDSbXdoEdK49/Jv/JA0qun3+++5AQCSrkxrxwnQQqQpz zCkioIKnIut2kegQnncpa+EOAWkZVlJnxOng4mud5VFJQPvVpsq8ZeiQnjX0 y6CJgK7weiiYKOH2MkU7tN8QEPczSynCLjr0Vl2V3rtIQHN/KxBi/OnwIIGm dtCVA1Fqn4zoBdKB3vbFOMqLA0lsdWthBOH+nygXKgM40A7Z25HuoXSIv9I3 oBrGgUJ/C84aRdFBg+i47XQyB6LW/aYuXqfDJfNW29g2DjS07e37s4/p8Llr zLVNkxPl00jRXK10iPAufHpKjxP5lJNVUp7SgRHwl7a2ESeiKg1EFHTSQVSj +ki7JSea2zAi1/WWDkeobB4Lf05EEqAflpigg2eBfjkzlxOZT/ItPRBigF5M zoS6FBfiL7Es3SmKbahezLGJC3V7J+1vF2OA7ieTjm/KXIg8LFzYL80Ac7vR pC49LuTVJ2m+pMCA3LslzSKOXCiqffN1S30GMHIDJhszuFB1HiiNezBAdrts kKIqN/oZ+ZPP25sBBxRd9S21uJG+0x3asC8DaFG5NtGG3KhZRKR2IJAB7TGs IaF93Kjz/IjJq5MMaCj8KNF3ghsN+kR71iQyoGL5nbh4GzfiVW3OOv+AAVdS EtgBgTzIkiskZrmaAaLjCdwxYTwoeVTRJ7IW37/FR8c7MTyIlHFF/VQTA7yh LFr7Fg/ayO/adLidAYU3fUPVn/EgHdrv/v0fGCA1bHZiQJEXuVfpk+RWGEBw eP994AcvanD9LfyWwIS4682S/Rx8SJj3keAFLiYkDVqozIjyoTY3YyKVyISU 5aO3L27nQ4oCe1brxJlQ8UajwzCYD0362TL2qTPB6I5cj+wPPrRbVJy2upWJ v3f17Yy4iOh2c99UjSYT6D1DhxIkiMhCzHl8vS6Of9Le7IoBEVW0egyO72bC 7kMB9OhYIgqWPfbfOXvsJAmTm9L8qPP5tq7tTkzgsbpRfXgrP5I/weoYc2FC ZTZ553HgR2+7TrZZeDLh8ezvFuFAfqRz+myjRBATbBfI39ub+dF8T2Lp/Vgm nCeum3x0XAAdjLIo9ozH7TtPVwtQBNBdFYFCMQoThlLrq7NyBJBrdEpOxBUm Xlf//IrtFkCPt6Td3HOLCdv6Le7FbV+HzlMK44YqmEA27Ru+yiWIhML5rLwr mTD31Cs0V04QZQUeF5uswvVKf3l83kAQ1VobFrPqmPBzqNH35nFBNEl618HZ ysTr63zirSFBZJ1HIKq/Z4JqWuyA4Ssh9PFawNvKfibo3vYtfjothPziujN0 PuJ8E+tWqwWEUYxfhrrRML5ek6t7j7Uwqt6iZX3gOxP85OJNbN4LI6lGz6un F3F/3bitpX9EUPHd544Ly0zIuVbz5rioKNLK2iofS2DB62mNaLKSKLKMnq+6 xMMC/XbzGh4bUXTO9Nq7bBEWLPP6pxoXiSJ+vdnMv8RYICbvrOjXJIrSVQ75 lEqwwL5Ye27ijSiq4lf9+UCGBVTfMy48y6JorOeJRPtmFvz99S+jFXcSCnmq NGyuwgLyp5BzluEktFRzpfSVGguyrebzeVNJSDLdUb9/GwuUjslvGX9OQhZu TKcpAxYY1sa/vaknhvps7P86vosFf5L83vfZiSFveDQ1Y8SCD6KcQndCxVCk YuLZRRMW/Na9fkDsgRiqnJLLFt7HggjtccvbWuLoUi7Fa2Q/C8YtrLesOooj PzuG8gNbFtiq+4zax4ijjY8fV9s4sWAy8emOmR5x9DXcac7DlQX//z0nSKD/ AYDxXDs= "]]}, Annotation[#, "Charting`Private`Tag$62858#1"]& ]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{True, True}, {True, True}}, FrameLabel->{{ FormBox[ TagBox["\"\[Gamma]\"", HoldForm], TraditionalForm], None}, { FormBox[ TagBox["\"\[Beta]\"", HoldForm], TraditionalForm], None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, ImageSize->{218.40000000000003`, Automatic}, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultGraphicsInteraction" -> { "Version" -> 1.2, "TrackMousePosition" -> {True, False}, "Effects" -> { "Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2}, "Droplines" -> { "freeformCursorMode" -> True, "placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{0., 0.9999999795918367}, {0., 5.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, {0, 0}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.8910104136869454`*^9, 3.8910104852829924`*^9}}, CellLabel->"Out[21]=",ExpressionUUID->"ed45f489-5b41-4e2c-b9e6-1f4051a5b0e4"] }, Open ]] }, Open ]] }, WindowSize->{908.25, 502.5}, WindowMargins->{{261.75, Automatic}, {81.75, Automatic}}, FrontEndVersion->"13.1 for Microsoft Windows (64-bit) (August 22, 2022)", StyleDefinitions->"Default.nb", ExpressionUUID->"bba97236-2837-45e6-aaaa-9405c6b0839b" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 176, 3, 67, "Section",ExpressionUUID->"e18c895d-cac8-4116-94d1-608a7346f7cf"], Cell[759, 27, 210, 4, 28, "Input",ExpressionUUID->"02b1d609-1284-4a66-88d3-1ba85420520d"], Cell[CellGroupData[{ Cell[994, 35, 1774, 48, 149, "Input",ExpressionUUID->"34981a1a-bc48-4b7c-a6ed-43b09aebf553"], Cell[2771, 85, 37278, 639, 179, "Output",ExpressionUUID->"58e32957-3cde-4ba4-b2e1-eec33d9972eb"] }, Open ]], Cell[CellGroupData[{ Cell[40086, 729, 1166, 30, 78, "Input",ExpressionUUID->"a56da652-b483-4aca-bf1c-40991ba60d47"], Cell[41255, 761, 2092, 42, 331, "Output",ExpressionUUID->"01bbf604-ce7a-489e-8469-0604fbd7d31a"] }, Open ]], Cell[43362, 806, 175, 3, 35, "Text",ExpressionUUID->"64cbc6ec-f9c0-4ab3-b6d3-260111922dd4"], Cell[43540, 811, 195, 3, 35, "Text",ExpressionUUID->"ebcc050d-7f2b-4af9-b27f-8ef1198b5834"], Cell[43738, 816, 695, 16, 47, "Input",ExpressionUUID->"9615f98a-f4e1-455e-baf5-16ca38fe47fb"], Cell[CellGroupData[{ Cell[44458, 836, 1181, 26, 43, "Input",ExpressionUUID->"391e5071-9083-46dc-97da-972a90fa6961"], Cell[45642, 864, 2256, 42, 359, "Output",ExpressionUUID->"ce25e341-cfd1-4817-861a-95a9bc6bed40"] }, Open ]], Cell[CellGroupData[{ Cell[47935, 911, 1346, 35, 99, "Input",ExpressionUUID->"4dd5bf8f-d1b4-4df7-9794-7a51d5fa08f3"], Cell[49284, 948, 28154, 536, 273, "Output",ExpressionUUID->"67350506-942a-428f-bd23-4a022dc44937"] }, Open ]], Cell[77453, 1487, 1647, 38, 115, "Input",ExpressionUUID->"833c9070-2460-49ae-a608-a0ea9b06e2af"], Cell[CellGroupData[{ Cell[79125, 1529, 1958, 47, 118, "Input",ExpressionUUID->"7c55ec79-f06f-406e-8f96-60bdbe6c63a4"], Cell[81086, 1578, 20297, 400, 264, "Output",ExpressionUUID->"1eabb991-5b14-4be3-bc41-93b8f317872f"] }, Open ]], Cell[101398, 1981, 156, 3, 28, "Input",ExpressionUUID->"02985d1c-8c44-4323-95d6-2fb2f13f8899"] }, Open ]], Cell[CellGroupData[{ Cell[101591, 1989, 205, 4, 67, "Section",ExpressionUUID->"3a325062-79ee-4750-9fbb-fcac9e291dfa"], Cell[CellGroupData[{ Cell[101821, 1997, 3351, 72, 135, "Input",ExpressionUUID->"2d7ba7d6-e1f5-4c4a-af31-24cce5a68aca"], Cell[105175, 2071, 3840, 69, 451, "Output",ExpressionUUID->"88227a62-b21a-4711-b5ab-8e87b4b8bc47"] }, Open ]], Cell[109030, 2143, 147, 3, 28, "Input",ExpressionUUID->"86dd9b95-d57e-48cc-80a8-302f074a62d8"], Cell[109180, 2148, 147, 3, 28, "Input",ExpressionUUID->"03f4c292-297e-4d42-8673-130ea30fce6f"], Cell[109330, 2153, 157, 3, 35, "Text",ExpressionUUID->"245f3bea-0517-463c-b94c-affd2e615b53"], Cell[CellGroupData[{ Cell[109512, 2160, 1927, 49, 114, "Input",ExpressionUUID->"0765a2d6-fb07-4c60-a126-cc9a7b540bf4"], Cell[111442, 2211, 2779, 53, 317, "Output",ExpressionUUID->"56e96ab8-e5fd-4034-aa04-99ea787f5c4e"] }, Open ]], Cell[114236, 2267, 168, 3, 35, "Text",ExpressionUUID->"61dc8752-880a-4ed0-9343-cdbb39f27a4c"], Cell[CellGroupData[{ Cell[114429, 2274, 2436, 62, 114, "Input",ExpressionUUID->"3f00aee5-02b3-4935-9883-ccad0a6b4cb1"], Cell[116868, 2338, 3066, 59, 323, "Output",ExpressionUUID->"e0aed4e1-9da1-472c-83bf-ff3299368bbf"] }, Open ]], Cell[119949, 2400, 152, 3, 35, "Text",ExpressionUUID->"867b2bad-c5fe-45fa-8fa3-65fa6be69e1f"], Cell[CellGroupData[{ Cell[120126, 2407, 4115, 89, 190, "Input",ExpressionUUID->"0975bfd0-67a0-4da3-9811-054cfbc7e685"], Cell[124244, 2498, 2511, 47, 317, "Output",ExpressionUUID->"12ca151e-5268-4a7d-9b3c-a69a9d520812"] }, Open ]], Cell[CellGroupData[{ Cell[126792, 2550, 312, 7, 43, "Input",ExpressionUUID->"1ff9ee69-29ed-43ca-b410-7cee9e3d335a"], Cell[127107, 2559, 233, 6, 54, "Output",ExpressionUUID->"c3dcfad2-dc45-4e11-99da-3dc9d1b20e00"] }, Open ]], Cell[CellGroupData[{ Cell[127377, 2570, 558, 13, 43, "Input",ExpressionUUID->"ce474fae-3241-4c79-98d4-d130705cf604"], Cell[127938, 2585, 7045, 135, 194, "Output",ExpressionUUID->"ed45f489-5b41-4e2c-b9e6-1f4051a5b0e4"] }, Open ]] }, Open ]] } ] *)